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Abstract
For ε ∈ (0, 1), we investigate the convergence of corresponding uniform attractors of
the 3D non-autonomous Benjamin-Bona-Mahony equation with singularly oscillating
force contrast with the averaged Benjamin-Bona-Mahony equation (corresponding to
the limiting case ε = 0). Under suitable assumptions on the external force, we shall
obtain the uniform boundedness and convergence of the related uniform attractors
as ε → 0+.
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1 Introduction
Let ρ ∈ [, ) be a fixed parameter, � ⊂ R be a bounded domain with sufficiently
smooth boundary ∂�. We investigate the long-time behavior for the non-autonomous
D Benjamin-Bona-Mahony (BBM) equation with singularly oscillating forces:

ut –�ut – ν�u +∇ · –→F (u) = f(t,x) + ε–ρ f(t/ε,x), x ∈ �, (.)

u(t,x)|∂� = , (.)

u(τ ,x) = uτ (x), τ ∈ R. (.)

Here, t ∈ Rτ , Rτ = (τ ,∞), and u = u(t,x) = (u(t,x),u(t,x),u(t,x)) is the velocity vector
field, ν >  is the kinematic viscosity, –→F is a nonlinear vector function, f(t,x)+ε–ρ f(t/ε,x)
is the singularly oscillating force.
Along with (.)-(.), we consider the averaged Benjamin-Bona-Mahony equation

ut –�ut – ν�u +∇ · –→F (u) = f(t,x), x ∈ �, (.)

u(t,x)|∂� = , (.)

u(τ ,x) = uτ (x), τ ∈ R (.)

formally corresponding to the case ε =  in (.).
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The function

f ε(x, t) =

{
f(x, t) + ε–ρ f(x, t/ε),  < ε < ,
f(x, t), ε = 

(.)

represents the external forces of problem (.)-(.) for ε >  and of problem (.)-(.) for
ε = , respectively.
The functions f(x, s) and f(x, s) are taken from the space Lb(R,H) of translational

bounded functions in Lloc(R,H), namely,

‖f‖Lb(R,H) := sup
t∈R

∫ t+

t

∥∥f(s)∥∥
H ds =M

, (.)

‖f‖Lb(R,H) := sup
t∈R

∫ t+

t

∥∥f(s)∥∥
H ds =M

 , (.)

for some constantsM,M ≥ .
Defining

Qε =

{
M + Mε

–ρ ,  < ε < ,
M, ε = ,

as a straightforward consequence of (.), we have

∥∥f ε
∥∥
Lb(R,H) ≤ Qε , (.)

note that Qε is of the order ε–ρ as ε → +.
The BBM equation is a well-knownmodel for long waves in shallowwater which was in-

troduced by Benjamin, Bona, andMahony ([], ) as an improvement of the Korteweg-
de Vries equation (KdV equation) for modeling long waves of small amplitude in two
dimensions. Contrasting with the KdV equation, the BBM equation is unstable in high
wavenumber components. Further, while the KdV equation has an infinite number of in-
tegrals ofmotion, the BBMequation only has three. Formore results on thewellposedness
and infinite dimensional dynamical systems for BBM equations, we can refer to [–].
In this paper, firstly, we shall study the asymptotic behavior of the non-autonomousBBM

equation depending on the small parameter ε, which reflects the rate of fast time oscil-
lations in the term ε–ρ f(x, t/ε) with amplitude of order ε–ρ , then we shall consider the
boundedness and convergence of corresponding uniform attractors of (.)-(.) in con-
trast to (.)-(.).

2 Preliminaries
Throughout this paper, Lp(�) ( ≤ p ≤ +∞) is the generic Lebesgue space, Hs(�) is the
Sobolev space. We set E := {u|u ∈ (C∞

 (�))}, H , V , W is the closure of the set E in the
topology of (L(�)), (H(�)), (H(�)) respectively. ‘⇀’ stands for theweak convergence
of sequences.
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Lemma . For each τ ∈ R, every nonnegative locally summable function φ on Rτ and
every β > , we have

∫ t

τ

φ(s)e–β(t–s) ds ≤ 
 – e–β

sup
θ≥τ

∫ θ+

θ

φ(s)ds, (.)

holds for all t ≥ τ .

Proof See, e.g., []. �

Lemma . Let ζ : Rτ → R+ fulfill that for almost every t ≥ τ , the differential inequality

d
dt

ζ (t) + φ(t)ζ (t)≤ φ(t), (.)

where, for every t ≥ τ , the scalar functions φ and φ satisfy

∫ t

τ

φ(s)ds≥ β(t – τ ) – γ ,
∫ t+

t
φ(s)ds≤ M, (.)

for some β > , γ ≥  and M ≥ . Then

ζ (t)≤ eγ ζ (τ )e–β(t–τ ) +
Meγ

 – e–β
, ∀t ≥ τ . (.)

Proof See, e.g., []. �

For the non-autonomous general Benjamin-Bona-Mahony (BBM) equation,

ut –�ut – ν�u +∇ · –→F (u) = g(t,x), x ∈ �, t ∈ Rτ , (.)

u(t,x)|∂� = , (.)

u(τ ,x) = uτ (x), τ ∈ R. (.)

Assume that uτ ∈H
(�), the nonlinear vector function –→F (s) = (F(s),F(s),F(s)), ∀s ∈ R,

we denote

fi(s) = F ′
i (s), Fi(s) =

∫ s


Fi(r)dr, (.)

where

–→
f (s) =

(
f(s), f(s), f(s)

)
,

–→F (s) =
(
F(s),F(s),F(s)

)
. (.)

In addition, Fi (i = , , ) is a smooth function satisfying

Fi() = ,
∣∣Fi(s)∣∣ ≤ C|s| +C|s|, (.)

C
 +C

 |s| ≤
∣∣fi(s)∣∣ ≤ C +C|s|,

∣∣Fi(s)
∣∣ ≤ C|s| +C|s| (.)

for all s ∈ R, where C and C are positive constants.

http://www.boundaryvalueproblems.com/content/2013/1/111
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Similar to [], by the Galerkin method and a priori estimate, we easily derive the exis-
tence of a global weak solution and a uniform attractor which shall be stated in the follow-
ing theorems.

Theorem . Assume that (.)-(.) hold, g ∈ Lloc(R,H), uτ ∈ H
(�) (or V ) , then there

exists a unique global weak solution u(x, t) of the problem (.)-(.) which satisfies

u ∈ C
(
(τ ,T);V

)
, ut ∈ L

(
(τ ,T);V ′) (.)

for all τ ∈ R and T > τ .

Theorem . Assume that the external force g ∈ Lloc(R,H) and (.)-(.) hold, then the
processes {U(t, τ ), t ≥ τ } generated by the global solution possess uniform attractors Ag(t)
in H

(�) for the non-autonomous system (.)-(.).

3 Some lemmas
Lemma . The functions f(x, s) and f(x, s) are taken from the space Lb(R,H) of transla-
tional bounded functions in Lloc(R,H), then the processes {Uf ε (t, τ ), t ≥ τ , t, τ ∈ R} gener-
ated by system (.)-(.) have a uniformly (w.r.t. σ = f ε ∈ �) compact attractorAε for any
fixed ε ∈ (, ).

Proof As a similar argument in Section , we choose g(t,x) = f ε(t,x) in Theorem ., since
f and f are translational bounded in Lloc(R,H), then for any fixed ε ∈ (, ], f ε(t,x) is
translational bounded in Lloc(R,H) and we can easily deduce the existence of uniformly
compact attractors Aε . �

We can briefly describe the structure of the uniform attractor as follows: if the func-
tions f(t) and f(t) are translational bounded, problem (.)-(.) generates the dynamical
processes {Uε(t, τ ), t ≥ τ , τ ∈ R} acting on V which is defined by Uε(t, τ )uε

τ = uε(t), t ≥ τ ,
where uε(t) is the solution to (.)-(.). The processes {Uε(t, τ ), t ≥ τ , τ ∈ R} have a uni-
formly (w.r.t. t ∈ R) absorbing set

Bε :=
{
uε ∈ V |∥∥uε

∥∥
V ≤ CQε

}
, (.)

which is bounded in V for any fixed ε ∈ (, ).
On the other hand, Aε is also bounded in V for each fixed ε since Aε ⊆ Bε

 . Assuming
f, f ∈ Ltc(R,H), the external force f ε(t) appearing in equation (.) belongs to Ltc(R,H)
also. Moreover, if ε >  and f̂ ε ∈H(f ε), then

f̂ ε(t) = f̂(t) + ε–ρ f̂
(
t
ε

)
, (.)

for some f̂ ∈ H(f) and f̂ ∈ H(f). In this case, to describe the structure of the uniform
attractorAε , we consider the family of equations

ût +Aût + νAû +∇ · F(û) = f̂ ε(t), f̂ ε ∈H
(
f ε

)
. (.)

For every external force f̂ ε ∈H(f ε), equation (.) generates a class of processes {Uf̂ ε (t, τ )}
on V , which shares similar properties to those of the processes {Uf ε (t, τ )}, corresponding

http://www.boundaryvalueproblems.com/content/2013/1/111
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to the original equation (.) with the external force f ε(t). Moreover, the map

(
uτ , f̂ ε

) �→Uf̂ ε (t, τ )uτ (.)

is (V ×H(f ε),V )-continuous.

Lemma . If the function f(t,x) in (.) is taken from the space Lb(R,H) of translational
bounded functions in Lloc(R,H), then the processes {Uf (t, τ ), t ≥ τ , τ ∈ R} generated by sys-
tem (.)-(.) have a uniformly (w.r.t. σ = f ∈ �) compact attractor A.

Proof Use a similar technique as that in Theorem ., we can easily deduce the existence
of a uniformly compact attractorA if we choose g(t,x) = f(t,x). �

4 Uniform boundedness ofAε

Firstly, we shall consider the auxiliary linear equation with a non-autonomous external
force and give some useful lemmas, and then we shall prove the uniform boundedness
of Aε .
Considering the linear equation

Yt +AYt + νAY = K(t), Y |t=τ = , (.)

we get the following lemma.

Lemma . Assume that K ∈ Lloc(R,H), then problem (.) has a unique solution

Y ∈ L
(
(τ ,T);W

) ∩C
(
(τ ,T);V

)
, (.)

∂tY ∈ L
(
(τ ,T);W ′). (.)

Moreover, the following inequalities

∥∥Y (t)∥∥
W ≤ C

∫ t

τ

e–Cν(t–s)∥∥K(s)
∥∥
H ds, (.)

∫ t+

t

∥∥Y (s)∥∥
V ds≤ C

(∥∥Y (t)∥∥
V +

∫ t+

t

∥∥K(s)
∥∥
H ds

)
(.)

hold for every t ≥ τ and some constant C > , independent of the initial time τ ∈ R.

Proof Firstly, using the Galerkin approximation method, we can deduce the existence of
a global solution for (.), here we omit the details.
Then multiplying (.) by Y and AY respectively, we get



d
dt

(‖Y‖ + ‖∇Y‖) + ν‖∇Y‖ = (
K(t),Y

) ≤ 
ν

∥∥K(t)
∥∥ +

ν


‖Y‖ (.)

and



d
dt

(‖∇Y‖ + ‖AY‖) + ν‖AY‖ = (
K(t),AY

) ≤ 
ν

∥∥K(t)
∥∥ +

ν


‖AY‖. (.)

By the Gronwall inequality and Poincaré inequality, we can easily prove the lemma. �

http://www.boundaryvalueproblems.com/content/2013/1/111


Zhao et al. Boundary Value Problems 2013, 2013:111 Page 6 of 14
http://www.boundaryvalueproblems.com/content/2013/1/111

Setting K(t, τ ) =
∫ t
τ
k(s)ds, t ≥ τ , τ ∈ R, we have the following lemma.

Lemma . Assume that the formula

sup
t≥τ ,τ∈R

{∥∥K(t, τ )
∥∥
H +

∫ t+

t

∥∥K(s, τ )
∥∥
H ds

}
≤ l (.)

holds for some constant l ≥ , let k ∈ Lloc(R,H). Then the solution y(t) yields the following
problem:

yt +Ayt + νAy = k(t/ε), y|t=τ = , (.)

with ε ∈ (, ) satisfying the inequality

∥∥y(t)∥∥
V +

∫ t+

t

∥∥y(s)∥∥
V ds ≤ Clε, ∀t ≥ τ , (.)

where C >  is constant independent of K .
Moreover, we also have

∫ t+

t

∥∥Kε(s)
∥∥
H ds≤ C. (.)

Proof Noting that

Kε(t) =
∫ t

τ

k(s/ε)ds = ε

∫ t/ε

τ /ε
k(s)ds = εK(t/ε, τ /ε), (.)

we can derive the following estimates from (.):

sup
t≥τ

∥∥Kε(t)
∥∥
H ≤ lε,

∫ t+

t

∥∥Kε(s)
∥∥
H ds = ε

∫ t+

t

∥∥K(s/ε, τ /ε)
∥∥
H ds

≤ Cε sup
t≥τ

{∫ t+

t

∥∥K(s, τ )
∥∥
H ds

}
≤ Clε.

From Lemma ., we have

∫ t

τ

e–Cν(t–s)∥∥Kε(s)
∥∥
H ds

≤
∫ t

t–
eCν(s–t)∥∥Kε(s)

∥∥ ds +
∫ t–

t–
eCν(s–t)∥∥Kε(s)

∥∥ ds + · · ·

≤
∫ t

t–

∥∥Kε(s)
∥∥ ds + e–Cν

∫ t–

t–

∥∥Kε(s)
∥∥ ds + e–Cν

∫ t–

t–

∥∥Kε(s)
∥∥ ds + · · ·

≤ (
 + e–Cν + e–Cν + · · · )∥∥Kε(s)

∥∥
Lb(R;H)

≤ 
( – e–Cν)

∥∥Kε(s)
∥∥
Lb(R;H)

http://www.boundaryvalueproblems.com/content/2013/1/111
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≤ 
( – e–Cν)

sup
t≥τ

∫ t+

t

∥∥Kε(s)
∥∥
H ds

≤ Clε. (.)

Hence, from the Poincaré inequality, combining (.) and (.)-(.), we conclude that

∥∥Y (t)∥∥
W ≤ Clε, (.)∫ t+

t

∥∥Y (s)∥∥
V ds≤ C

(∥∥Y (t)∥∥
V +

∫ t+

t

∥∥K(s)
∥∥
H ds

)
≤ Clε. (.)

Setting

Y (t) =
∫ t

τ

y(s)ds, (.)

we deduce that for any t ≥ τ ,

∂tY (t) = y(t) =
∫ t

τ

∂ty(s)ds, (.)

since y(τ ) = .
Integrating (.) with respect to time variable from τ to t, we see that Y (t) is a solution

to the problem

∂tY (t) + ∂t
(
AY (t)

)
+ νAY (t) = Kε(t), qY (t)|t=τ = , (.)

such that from (.) and (.), we can derive

∥∥Y (t)∥∥
H +

∥∥∇Y (t)
∥∥
H +

∫ t+

t

∥∥Y (s)∥∥
V ds≤ Clε. (.)

By virtue of y(t) = ∂tY (t), (AY (t),Y (t))∼ ‖Y (t)‖V , ‖AY (t)‖ ∼ ‖Y (t)‖W , we have

∥∥∂tY (t)
∥∥ +

∥∥∂tAY (t)
∥∥ =

∥∥y(t)∥∥ +
∥∥Ay(t)∥∥ ≤ ν

∥∥Y (t)∥∥W +
∥∥Kε(t)

∥∥ ≤ Clε. (.)

Hence, we conclude

∥∥y(t)∥∥V ≤ C
(∥∥y(t)∥∥ +

∥∥Ay(t)∥∥) ≤ C
(
ν
∥∥Y (t)∥∥W +

∥∥Kε(t)
∥∥) ≤ Clε (.)

and
∫ t+

t

∥∥y(s)∥∥
V ds ≤ Clε. (.)

The proof is finished. �

Now, we shall use the auxiliary linear equation and some estimates to prove the uniform
boundedness of Aε in V . For convenience, we set

F(t, τ ) =
∫ t

τ

f(s)ds, t ≥ τ , (.)

http://www.boundaryvalueproblems.com/content/2013/1/111
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and assume that

sup
t≥τ ,τ∈R

{∥∥F(t, τ )∥∥ +
∫ t+

t

∥∥F(s, τ )∥∥
H ds

}
≤ l, (.)

holds for some constants l ≥ .

Theorem . The attractors Aε of problem (.)-(.) (or (.)-(.)) are uniformly (w.r.t.
ε) bounded in V , namely,

sup
ε∈[,)

∥∥Aε
∥∥
V < +∞. (.)

Proof Let uε(t) = Uε(t, τ )uε
τ be the solution to (.)-(.) with the initial data uε

τ ∈ V . For
ε > , we consider the auxiliary linear equation

vt +Avt + νAv = ε–ρ f(t/ε), v|t=τ = . (.)

From Lemma ., we have the estimate

∥∥v(t)∥∥
V +

∫ t+

t

∥∥v(s)∥∥
V ds≤ Clε(–ρ), ∀t ≥ τ . (.)

Setting the function w(t) as

w(t) = u(t) – v(t), (.)

which satisfies the problem

wt +Awt + νAw +∇ · –→F (w + v) = f, w|t=τ = uτ . (.)

Taking the scalar product of (.) with w, we obtain



d
dt

(‖w‖ + ‖∇w‖) + ν‖∇w‖ + (∇ · –→F (w + v),w
)
= (f,w). (.)

Using the inequality

∥∥v(t)∥∥ =
∥∥v(t)∥∥

H ≤ C
∥∥v(t)∥∥

V ≤ Clε(–ρ), ∀t ≥ τ , (.)

we have

(∇ · (–→F (w + v)
)
,w

) ≤ C
(
 + ‖w‖ + ‖v‖) + ν

λ
‖w‖

≤ C
(
 + ‖w‖ + lε(–ρ)) + ν

λ
‖w‖

≤ C
(
 + ‖w‖ + lε(–ρ)) + ν

λ
‖w‖, (.)

where λ is the first eigenvalue of –�.

http://www.boundaryvalueproblems.com/content/2013/1/111
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Moreover, notice that

(f,w) ≤ ν


‖w‖V +


ν
‖f‖, (.)

and inserting (.)-(.) into (.), we have



d
dt

(‖w‖ + ‖∇w‖) + ν‖∇w‖

≤ C
(
 + ‖w‖ + lε(–ρ)) + ν

λ
‖w‖ + ν


‖w‖V +


ν
‖f‖

≤ C
(
 + ‖w‖ + lε(–ρ)) + ν


‖w‖V +

ν


‖w‖V +


ν
‖f‖

= C
(
 + ‖w‖ + lε(–ρ)) + ν


‖w‖V +


ν
‖f‖, (.)

which implies that

d
dt

(‖w‖ + ‖w‖V
)
+ φ‖w‖V ≤ φ, (.)

where

φ(t)≡ 
[

ν


–C

(
 + ‖u‖ + lε(–ρ))], (.)

φ(t) ≡ 
ν

∥∥f(t)∥∥. (.)

Therefore using (.), we derive from (.)-(.) that for any t ≥ τ ,

∫ t

τ

φ(s)ds≥ ν


(t – τ ), (.)

∫ t+

t
φ(s)ds≤ CM

. (.)

Applying Lemma . with ζ (t) = ‖w‖ + ‖w‖V , β = ν
 , γ = ,M = CM

, we have

‖w‖ + ‖w‖V ≤ Ce–β(t–τ )(‖uτ‖ + ‖uτ‖V
)
+CM

, ∀t ≥ τ , (.)

which gives

‖w‖V ≤ Ce–β(t–τ )(‖uτ‖ + ‖uτ‖V
)
+CM

, ∀t ≥ τ . (.)

Recalling that u = w + v, and using (.) and (.), we end up with

∥∥u(t)∥∥
V ≤ ‖w‖V + ‖v‖V ≤ Ce–β(t–τ )(‖uτ‖ + ‖uτ‖V

)
+C

(
l +M


)
, ∀t ≥ τ . (.)

Thus, for every  < ε ≤ ε, the processes {Uε(t, τ )} have an absorbing set

B :=
{
u ∈ V |‖u‖V ≤ C

(
l +M


)}
. (.)

http://www.boundaryvalueproblems.com/content/2013/1/111
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On the other hand, if ε < ε < , the processes {Uε(t, τ )} also possess an absorbing set

Bε =
{
u ∈ V |‖u‖V ≤ CQε

}
. (.)

In conclusion, for every ε ∈ [, ), the set

B* := B ∪ Bε (.)

is an absorbing set for {Uε(t, τ )} which is independent of ε. Since Aε ⊂ B*, (.) follows
and hence the proof is complete. �

5 Convergence ofAε toA0

The main result of the paper reads as follows.

Theorem . Assume that f, f ∈ Ltc(R,H)⊂ Lb(R,H) and (.) holds. Then the uniform
attractorAε (for problem (.)-(.)) converges toA (for problem (.)-(.)) as ε → + in
the following sense:

lim
ε→+

distV
(
Aε ,A) = . (.)

Next, we shall study the difference of two solutions for (.) with ε >  and (.) with
ε =  which share the same initial data. Denote

uε(t) :=Uε(t, τ )uτ , (.)

with uτ belonging to the absorbing set B* which can be found in Section . In particular,
since uτ ∈ B*, the formula corresponding to ε = 

∥∥u(t)∥∥
V +

∫ t+

t

∥∥u(s)∥∥
V ds≤ R

, (.)

holds for some R = R(ρ), as the size of B* depends on ρ .

Lemma . For every ε ∈ (, ), τ ∈ R, uτ ∈ B* and uε() = u() = uτ , the difference

w(t) = uε(t) – u(t) (.)

satisfies the estimate

∥∥w(t)∥∥V ≤ Dε–ρeR(t–τ ), ∀t ≥ τ , (.)

for some positive constants D =D(ρ, l) and R = R(ρ, l), both independent of ε > .

Proof Since the difference w(t) solves the equation

wt +Awt + νAw +∇ · (–→F (
uε

)
– –→F (

u
))

= ε–ρ f(ε/t), w|t=τ = , (.)

http://www.boundaryvalueproblems.com/content/2013/1/111
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the difference

q(t) = w(t) – v(t), (.)

fulfills the Cauchy problem

qt +Aqt + νAq +∇ · (–→F (
uε

)
– –→F (

u
))

= , q|t=τ = , (.)

where v(t) is the solution to (.).
Taking an inner product of equation (.) with q in H , we obtain



d
dt

(‖q‖ + ‖∇q‖) + ν‖∇q‖ + (∇ · (–→F (
uε

)
– –→F (

u
))
,q

)
= . (.)

Noting that

(∇ · (–→F (
uε

)
– –→F (

u
))
,q

)
≤ sup

i

(
F ′
i
(
uε

)
+ F ′

i
(
u

))∥∥∇ · uε –∇ · u∥∥ +
ν

λ
‖q‖

≤ C
(
 +

∥∥uε
∥∥ +

∥∥u∥∥)‖∇w‖ + ν

λ
‖q‖

≤ C
(
 +

∥∥uε
∥∥ + R


)‖∇w‖ + ν

λ
‖q‖

≤ C
(
 +

∥∥uε
∥∥ + R


)‖q + v‖V +

ν

λ
‖q‖

≤ C
(
 +K

 + R

)‖v‖V +

ν


‖q‖V +

ν

λ
‖q‖

= f (t) +
ν


‖q‖V + h(t)‖q‖, (.)

where λ is the first eigenvalue of –�, K is the upper bound for uε (by Lemma .) and

h(t) =
ν

λ
,

f (t) = C
(
 +K

 + R

)‖v‖V ≤ C

(
 +K

 + R

)
lε(–ρ),

thus, it follows from (.) and (.) that



d
dt

(‖q‖ + ‖∇q‖) + ν


‖q‖V ≤ Ch(t)‖q‖ + f (t)

≤ Ch(t)
(‖q‖ + ‖∇q‖) + f (t). (.)

Noting that ‖q(τ )‖ = ‖q(τ )‖V = , by the Gronwall inequality, we get

‖q‖ + ‖∇q‖ ≤  exp
{
C

∫ t

τ

h(s)ds
}∫ t

τ

f (s)ds. (.)

Moreover, we can derive the following formulas:

∫ t

τ

h(s)ds≤ ν

λ
(t – τ + ) (.)
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and
∫ t

τ

f (s)ds =
∫ t

τ

[
C

(
 +K

 + R

)‖v‖V ]

ds

≤
∫ t

τ

[
C

(
 +K

 + R

)
lε(–ρ)]ds

=
[
C

(
 +K

 + R

)
lε(–ρ)](t – τ ). (.)

Consequently,

∥∥q(t)∥∥
V ≤ C

(‖q‖ + ‖∇q‖)
≤ C

[(
 +K

 + R

)
lε(–ρ)](t – τ + )e

ν
λ

(t–τ+)

≤ C′D
ε

(–ρ)e
ν
λ

(t–τ ) (.)

holds for some positive constants D = D(ρ, l). Finally, since w = q + v, using (.) to
control ‖v‖V , we may obtain

∥∥w(t)∥∥
V ≤ C

(‖q‖V + ‖v‖V
)

≤ C′D
ε

(–ρ)e
ν
λ

(t–τ ) +Clε(–ρ)

≤ Dε(–ρ)eR(t–τ ), (.)

where R is a positive constant. The proof is finished. �

Next, we want to generalize Lemma . to derive the convergence of corresponding
uniform attractors. Let the external force in equation (.) as f̂ = f̂ ε ∈H(f ε), then f̂ ∈H(f)
satisfies inequality (.).
Define

Ĝ(t, τ ) =
∫ t

τ

f̂(s)ds, t ≥ τ , (.)

we have

sup
t≥τ ,τ∈R

{∥∥Ĝ(t, τ )
∥∥
H +

∫ t+

t

∥∥Ĝ(s, τ )∥∥
H ds

}
≤ l. (.)

For any ε ∈ [, ], we observe that ûε(t) =Uf̂ ε (t, τ )yτ is a solution to (.) with the external
force f̂ ε = f̂ + ε–ρ f̂(·/ε) ∈ H(f ε) and yτ (f ε) ∈ B*. For ε > , we investigate the property of
the difference

ŵ(t) = ûε(t) – û(t). (.)

Lemma . The inequality

∥∥ŵ(t)∥∥ ≤ Dε–ρeR(t–τ ), ∀t ≥ τ , (.)

holds, here D and R are defined in Lemma ..
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Proof As the similar discussion in the proof of Lemma ., replacing ûε , f̂ and f̂ by
uε , f and f, respectively, noting that (.) still holds for û, and the family {Uf̂ ε (t, τ )}
(f̂ ε ∈ H(f ε)), is (H × Hε(f ε),H)-continuous, using (.) in place of (.), we can finally
complete the proof of the lemma. �

Proof of Theorem . For ε > , uε ∈ Aε , we obtain that there exists a complete bounded
trajectory ûε(t) of equation (.), with some external force

f̂ ε = f̂ + ε–ρ f̂(·/ε) ∈H
(
f ε

)
, (.)

such that ûε() = uε .
We choose L ≥  such that

ûε(–L) ∈Aε ⊂ B*. (.)

From the equality

uε =Uf̂  (,–L)û
ε(–L), (.)

applying Lemma . with t = , τ = –L, we obtain

∥∥uε –Uf̂  (,–L)û
ε(–L)

∥∥
V ≤ Dε–ρeRL. (.)

On the other hand, the set A attracts all sets Uf̂  (t, –L)B* uniformly when f̂ ∈ H(f ).
Then, for all δ > , there exists some time T = T(δ) ≥  which is independent of L such
that

distV
(
Uf̂  (T – L, –L)ûε(–L),A) ≤ δ. (.)

Choosing L = T and collecting (.)-(.), we readily get

distV
(
uε ,A) ≤ ∥∥uε –Uf̂  (,–T)û

ε(–T)
∥∥
V + distV

(
Uf̂  (,–T)û

ε(–T),A)
≤ Dε–ρeRT + δ. (.)

Since uε ∈Aε and δ >  is arbitrary, taking the limit ε → +, we can prove the theorem.
�
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