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Abstract
In this paper, we are concerned with the problem of approximating a solution of an
ill-posed problem in a Hilbert space setting using the Lavrentiev regularization
method and, in particular, expanding the applicability of this method by weakening
the popular Lipschitz-type hypotheses considered in earlier studies such as
(Bakushinskii and Smirnova in Numer. Funct. Anal. Optim. 26:35-48, 2005; Bakushinskii
and Smirnova in Nonlinear Anal. 64:1255-1261, 2006; Bakushinskii and Smirnova in
Numer. Funct. Anal. Optim. 28:13-25, 2007; Jin in Math. Comput. 69:1603-1623, 2000;
Mahale and Nair in ANZIAM J. 51:191-217, 2009). Numerical examples are given to
show that our convergence criteria are weaker and our error analysis tighter under
less computational cost than the corresponding works given in (Bakushinskii and
Smirnova in Numer. Funct. Anal. Optim. 26:35-48, 2005; Bakushinskii and Smirnova in
Nonlinear Anal. 64:1255-1261, 2006; Bakushinskii and Smirnova in Numer. Funct. Anal.
Optim. 28:13-25, 2007; Jin in Math. Comput. 69:1603-1623, 2000; Mahale and Nair in
ANZIAM J. 51:191-217, 2009).
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1 Introduction
In this paper, we are interested in obtaining a stable approximate solution for a nonlinear
ill-posed operator equation of the form

F(x) = y, (.)

where F :D(F) ⊂ X → X is a monotone operator and X is a Hilbert space. We denote the
inner product and the corresponding norm on a Hilbert space by 〈·, ·〉 and ‖ · ‖, respec-
tively. LetU(x, r) stand for the open ball in X with center x ∈ X and radius r > . Note that
F is a monotone operator if it satisfies the relation

〈
F(x) – F(x),x – x

〉 ≥  (.)

for all x,x ∈ D(F).
We assume, throughout this paper, that yδ ∈ Y is the available noisy data with

∥∥y – yδ
∥∥ ≤ δ, (.)
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and (.) has a solution x̂. Since (.) is ill-posed, its solution need not depend contin-
uously on the data, i.e., small perturbation in the data can cause large deviations in the
solution. So, the regularization methods are used [–]. Since F is monotone, the Lavren-
tiev regularization is used to obtain a stable approximate solution of (.). In the Lavrentiev
regularization, the approximate solution is obtained as a solution of the equation

F(x) + α(x – x) = yδ , (.)

where α >  is the regularization parameter and x is an initial guess for the solution x̂.
In [], Bakushinskii and Smirnova proposed an iterative method

xδ
k+ = xδ

k – (αkI +Ak,δ)–
[(
F
(
xδ
k
)
– yδ

)
+ αk

(
xδ
k – x

)]
, xδ

 = x, (.)

where Ak,δ := F ′(xδ
k) and (αk) is a sequence of positive real numbers satisfying αk →  as

k → ∞. It is important to stop the iteration at an appropriate step, say k = kδ , and show
that xk is well defined for  < k ≤ kδ and xδ

kδ → x̂ as δ →  (see []).
In [, , ], Bakushinskii and Smirnova chose the stopping index kδ by requiring it to

satisfy

∥∥F(
xδ
kδ

)
– yδ

∥∥ ≤ τδ <
∥∥F(

xδ
k
)
– yδ

∥∥

for k = , , . . . and kδ – , τ > . In fact, they showed that xδ
kδ → x̂ as δ →  under the

following assumptions:
() There exists L >  such that ‖F ′(x) – F ′(y)‖ ≤ L‖x – y‖ for all x, y ∈D(F);
() There exists p >  such that

αk – αk+

αkαk+
≤ p (.)

for all k ∈N;
()

√
( + Lσ )‖x – x̂‖td ≤ σ – ‖x – x̂‖t ≤ dα, where

σ := (
√

τ – ), t := pα + , d = 
(
t‖x – x̂‖ + pσ

)
.

However, no error estimate was given in [] (see []).
In [], Mahale and Nair, motivated by the work of Qi-Nian Jin [] for an iteratively

regularized Gauss-Newton method, considered an alternate stopping criterion which not
only ensures the convergence, but also derives an order optimal error estimate under a
general source condition on x̂ – x. Moreover, the condition that they imposed on {αk} is
weaker than (.).
In the present paper, we are motivated by []. In particular, we expand the applicabil-

ity of the method (.) by weakening one of the major hypotheses in [] (see Assump-
tion .() in the next section).
In Section , we consider some basic assumptions required throughout the paper. Sec-

tion  deals with the stopping rule and the result that establishes the existence of the stop-
ping index. In Section , we prove results for the iterations based on the exact data and,
in Section , the error analysis for the noisy data case is proved. The main order optimal
result using the a posteriori stopping rule is provided in Section .
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2 Basic assumptions and some preliminary results
We use the following assumptions to prove the results in this paper.

Assumption .
() There exists r >  such that U(x̂, r) ⊆D(F) and F :U(x̂, r)→ X is Fréchet

differentiable.
() There exists K >  such that, for all uθ = u + θ (x̂ – u) ∈U(x̂, r), θ ∈ [, ] and v ∈ X ,

there exists an element, say φ(x̂,uθ , v) ∈ X , satisfying

[
F ′(x̂) – F ′(uθ )

]
v = F ′(uθ )φ(x̂,uθ , v),

∥∥φ(x̂,uθ , v)
∥∥ ≤ K‖v‖‖x̂ – uθ‖

for all uθ ∈U(x̂, r) and v ∈ X .
() ‖(F ′(u) + αI)–F ′(uθ )‖ ≤  for all uθ ∈U(x̂, r).
() ‖(F ′(u) + αI)–‖ ≤ 

α
for all uθ ∈U(x̂, r).

The condition () in Assumption . weakens the popular hypotheses given in [, ]
and [].

Assumption . There exists a constant K >  such that, for all x, y ∈ U(x̂, r) and v ∈ X,
there exists an element denoted by P(x,u, v) ∈ X satisfying

[
F ′(x) – F ′(u)

]
v = F ′(u)P(x,u, v),

∥∥P(x,u, v)∥∥ ≤ K‖v‖‖x – u‖.

Clearly, Assumption . implies Assumption .() with K = K , but not necessarily vice
versa. Note that K ≤ K holds in general and K

K can be arbitrarily large [–]. Indeed,
there are many classes of operators satisfying Assumption .(), but not Assumption .
(see the numerical examples at the end of this study).Moreover, ifK is sufficiently smaller
than K , which can happen since K

K
can be arbitrarily large, then the results obtained in

this study provide a tighter error analysis than the one in [].
Finally, note that the computation of constantK ismore expensive than the computation

of K.
We need the auxiliary results based on Assumption ..

Proposition . For any u ∈U(x̂, r) and α > ,

∥∥(
F ′(u) + αI

)–[F(x̂) – F(u) – F ′(u)
]
(x̂ – u)

∥∥ ≤ K


‖x̂ – u‖.

Proof Using the fundamental theorem of integration, for any u ∈U(x̂, r), we get

F(x̂) – F(u) =
∫ 


F ′(u + t(x̂ – u)

)
(x̂ – u)dt.

Hence, by Assumption .,

F(x̂) – F(u) – F ′(u)(x̂ – u)

=
∫ 



[
F ′(u + t(x̂ – u)

)
– F ′(x̂) + F ′(x̂) – F ′(u)

]
(x̂ – u)dt

=
∫ 


F ′(x̂)

[
φ
(
u + t(x̂ – u), x̂, x̂ – u

)
– φ(u, x̂, x̂ – u)

]
dt.
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Then, by (), () in Assumption . and the inequality ‖(F ′(u)+αI)–F ′(uθ )‖ ≤ , we obtain
in turn

∥∥(
F ′(u) + αI

)–[F(x̂) – F(u) – F ′(u)
]
(x̂ – u)

∥∥
≤

∫ 



∥∥φ
(
u + t(x̂ – u), x̂, x̂ – u

)
+ φ(u, x̂, x̂ – u)

∥∥dt

≤
∫ 


K‖x̂ – u‖t dt +K‖x̂ – u‖

≤ K


‖x̂ – u‖.

This completes the proof. �

Proposition . For any u ∈U(x̂, r) and α > ,

α
∥∥(
F ′(x̂) + αI

)– – (
F ′(u) + αI

)–∥∥ ≤ K‖x̂ – u‖. (.)

Proof Let Tx̂,u = α((F ′(x̂) + αI)– – (F ′(u) + αI)–) for all v ∈ X. Then we have, by Assump-
tion .,

‖Tx̂,uv‖ =
∥∥α

(
F ′(x̂) + αI

)–(F ′(u) – F ′(x̂)
(
F ′(u) + αI

)–)v∥∥
=

∥∥(
F ′(x̂) + αI

)–F ′(x̂)φ
(
u, x̂,α

(
F ′(u) + αI

)–v)∥∥
≤ K‖x̂ – u‖‖v‖

for all v ∈ X. This completes the proof. �

Assumption . There exists a continuous and strictly monotonically increasing func-
tion ϕ : (,a] → (,∞) with a≥ ‖F ′(x̂)‖ satisfying
() limλ→ ϕ(λ) = ;
() supλ≥

αϕ(λ)
λ+α

≤ ϕ(α) for all α ∈ (,a];
() there exists v ∈ X with ‖v‖ ≤  such that

x̂ – x = ϕ
(
F ′(x̂)

)
v. (.)

Next, we assume a condition on the sequence {αk} considered in (.).

Assumption . ([], Assumption .) The sequence {αk} of positive real numbers is
such that

 ≤ αk

αk+
≤ μ, lim

k→
αk =  (.)

for a constant μ > .

Note that the condition (.) on {αk} is weaker than (.) considered by Bakushinskii and
Smirnova [] (see []). In fact, if (.) is satisfied, then it also satisfies (.) withμ = pα +,
but the converse need not be true (see []). Further, note that for these choices of {αk},

http://www.boundaryvalueproblems.com/content/2013/1/114
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αk/αk+ is bounded, whereas (αk – αk+)/αkαk+ → ∞ as k → ∞. () in Assumption . is
used in the literature for regularization of many nonlinear ill-posed problems (see [, , ,
, ]).

3 Stopping rule
Let c >  and choose kδ to be the first non-negative integer such that xδ

k in (.) is defined
for each k ∈ {, , , . . . ,kδ} and

∥∥αkδ
(
Aδ
kδ + αkδ I

)–(F(
xδ
kδ

)
– yδ

)∥∥ ≤ cδ. (.)

In the following, we establish the existence of such a kδ . First, we consider the positive
integer N ∈N satisfying

αN ≤ (c – )δ
‖x – x̂‖ < αk (.)

for all k ∈ {, , . . . ,N – }, where c >  and α > (c – )δ/‖x – x̂‖.
The following technical lemma from [] is used to prove some of the results of this

paper.

Lemma . ([], Lemma .) Let a >  and b ≥  be such that ab ≤  and θ := ( –√
 – ab)/a. Let θ, . . . , θn be non-negative real numbers such that θk+ ≤ aθ

k + b and
θ ≤ θ . Then θk ≤ θ for all k = , , . . . ,n.

The rest of the results in this paper can be proved along the same lines as those of the
proof in []. In order for us to make the paper as self-contained as possible, we present
the proof of one of them, and for the proof of the rest, we refer the reader to [].

Theorem. ([], Theorem .) Let (.), (.), (.) and Assumption . be satisfied. Let
N be as in (.) for some c >  and cK‖x – x̂‖/(c – ) ≤ . Then xδ

k is defined iteratively
for each k ∈ {, , . . . ,N} and

∥∥xδ
k – x̂

∥∥ ≤ c‖x – x̂‖
c – 

(.)

for all k ∈ {, , . . . ,N}. In particular, if r > c‖x – x̂‖/(c – ), then xδ
k ∈ Br(x̂) for k ∈

{, , . . . ,N}.Moreover,

∥∥αN
(
Aδ
N + αNI

)–(F(
xδ
N
)
– yδ

)∥∥ ≤ cδ (.)

for c := 
c + .

Proof We show (.) by induction. It is obvious that (.) holds for k = . Now, assume
that (.) holds for some k ∈ {, , . . . ,N}. Then it follows from (.) that

xδ
k+ – x̂ = xδ

k – x̂ –
(
Aδ
k + αkI

)–[F(
xδ
k
)
– yδ + αk

(
xδ
k – x

)]
=

(
Aδ
k + αkI

)–((Aδ
k + αkI

)(
xδ
k – x̂

)
–

[
F
(
xδ
k
)
– yδ + αk

(
xδ
k – x

)])

http://www.boundaryvalueproblems.com/content/2013/1/114


Argyros et al. Boundary Value Problems 2013, 2013:114 Page 6 of 15
http://www.boundaryvalueproblems.com/content/2013/1/114

=
(
Aδ
k + αkI

)–[Aδ
k
(
xδ
k – x̂

)
+ yδ – F

(
xδ
k
)
+ αk(x – x̂)

]
= αk

(
Aδ
k + αkI

)–(x – x̂) +
(
Aδ
k + αkI

)–(yδ – y
)

+
(
Aδ
k + αkI

)–[F(x̂) – F
(
xδ
k
)
+Aδ

k
(
xδ
k – x̂

)]
. (.)

Using (.), the estimates ‖(Aδ
k +αkI)–‖ ≤ /αk , ‖(Aδ

k +αkI)–Aδ
k‖ ≤  and Proposition .,

we have

∥∥αk
(
Aδ
k + αkI

)–(x – x̂) +
(
Aδ
k + αkI

)–(yδ – y
)∥∥ ≤ ‖x – x̂‖ + δ

αk

and

∥∥(
Aδ
k + αkI

)–[F(x̂) – F
(
xδ
k
)
+Aδ

k
(
xδ
k – x̂

)]∥∥ ≤ K


∥∥xδ

k – x̂
∥∥.

Thus we have

∥∥xδ
k+ – x̂

∥∥ ≤ ‖x – x̂‖ + δ

αk
+
K


∥∥xδ

k – x̂
∥∥.

But, by (.), δ
αk

≤ ‖x – x̂‖/(c – ) and so

∥∥xδ
k+ – x̂

∥∥ ≤ c‖x – x̂‖
c – 

+
K


∥∥xδ

k – x̂
∥∥,

which leads to the recurrence relation

θk+ ≤ aθ
k + b,

where

θk =
∥∥xδ

k – x̂
∥∥, a =

K


, b =

c‖x – x̂‖
c – 

.

From the hypothesis of the theorem, we have ab = cK
‖x–x̂‖
c– < . It is obvious that

θ ≤ ‖x – x̂‖ ≤ θ :=
 –

√
 – ab
a

=
b

 +
√
 – ab

≤ b =
c‖x – x̂‖

c – 
.

Hence, by Lemma ., we get

∥∥xδ
k – x̂

∥∥ ≤ θ ≤ c‖x – x̂‖
c – 

(.)

for all k ∈ {, , . . . ,N}. In particular, if r > c‖x – x̂‖/(c– ), then we have xδ
k ∈ Br(x̂) for all

k ∈ {, , . . . ,N}.
Next, let γ = ‖αN (Aδ

N + αNI)–(F(xδ
N ) – yδ)‖. Then, using the estimates

∥∥αN
(
Aδ
N + αNI

)–∥∥ ≤ ,
∥∥αN

(
Aδ
N + αNI

)–Aδ
N
∥∥ ≤ αk

http://www.boundaryvalueproblems.com/content/2013/1/114
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and Proposition ., we have

γ ≤ δ +
∥∥αN

(
Aδ
N + αNI

)–(F(
xδ
N
)
– y +Aδ

N
(
xδ
N – x̂

)
–Aδ

N
(
xδ
N – x̂

))∥∥
= δ +

∥∥αN
(
Aδ
N + αNI

)–[F(
xδ
N
)
– F(x̂) –Aδ

N
(
xδ
N – x̂

)
+Aδ

N
(
xδ
N – x̂

)]∥∥
≤ δ + αN

[
K

‖xδ
N – x̂‖


+
∥∥xδ

N – x̂
∥∥]

≤ δ + αN
∥∥xδ

N – x̂
∥∥[

 + K
‖xδ

N – x̂‖


]

≤ δ +
αNc‖xδ

 – x̂‖
c – 

[
 +

Kc‖xδ
 – x̂‖

c – 

]
≤ δ + cδ

[
 +




]
≤

(
c


+ 
)

δ. (.)

Therefore, we have ‖αN (Aδ
N +αNI)–(F(xδ

N )–yδ)‖ ≤ cδ, where c := 
 c+. This completes

the proof. �

4 Error bound for the case of noise-free data
Let

xk+ = xk – (Ak + αkI)–
[
F(xk) – y + αk(xk – x)

]
(.)

for all k ≥ .
We show that each xk is well defined and belongs to U(x̂, r) for r > ‖x – x̂‖. For this,

we make use of the following lemma.

Lemma . ([], Lemma .) Let Assumption . hold. Suppose that, for all k ∈ {, , . . . ,
n}, xk in (.) is well defined and ρk := ‖αk(Ak + αkI)–(x – x̂)‖ for some n ∈ N. Then we
have

ρk –
K‖xk – x̂‖


≤ ‖xk+ – x̂‖ ≤ ρk +

K‖xk – x̂‖


(.)

for all k ∈ {, , . . . ,n}.

Theorem . ([], Theorem .) Let Assumption . hold. If K‖x – x̂‖ ≤  and r >
‖x – x̂‖, then, for all k ∈N, the iterates xk in (.) are well defined and

‖xk – x̂‖ ≤ ‖x – x̂‖
 +

√
 – K‖x – x̂‖ ≤ ‖x – x̂‖ (.)

for all k ∈N.

Lemma . ([], Lemma .) Let Assumptions . and . hold and let r > ‖x – x̂‖.
Assume that ‖A‖ ≤ ηα and μ( + η–)K‖x – x̂‖ ≤  for some η with  < η < . Then, for
all k ∈N, we have


( + η)μ

‖xk – x̂‖ ≤ ∥∥αk(Ak + αkI)–(x – x̂)
∥∥ ≤ 

 – η
‖xk – x̂‖ (.)

http://www.boundaryvalueproblems.com/content/2013/1/114
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and

 – η

( + η)μ
‖xk – x̂‖ ≤ ∥∥(xk+ – x̂)

∥∥ ≤
(


 – η

+
η

( + η)μ

)
‖xk – x̂‖. (.)

The following corollary follows from Lemma . by taking η = /. We show that this
particular case of Lemma . is better suited for our later results.

Corollary . ([], Corollary .) Let Assumptions . and . hold and let r > ‖x – x̂‖.
Assume that ‖A‖ ≤ α/ and μK‖x – x̂‖ ≤ . Then, for all k ∈N, we have


μ

‖xk – x̂‖ ≤ ∥∥αk(A + αkI)–(x – x̂)
∥∥ ≤ 


‖xk – x̂‖ (.)

and

‖xk – x̂‖
μ

≤ ∥∥(xk+ – x̂)
∥∥ ≤ ‖xk – x̂‖.

Theorem . ([], Theorem .) Let the assumptions of Lemma . hold. If x is chosen
such that x – x̂ ∈N(F ′(x̂))⊥, then limk→∞ xk = x̂.

Lemma . ([], Lemma .) Let the assumptions of Lemma . hold for η satisfying

(
 –

√
 –

η

( + η)μ

)[
 + (μ – )η + μ

]
+ η <



. (.)

Then, for all k, l ∈ N∪ {} with k ≥ l, we have

‖xl – x̂‖ ≤ cη
[
‖xk – x̂‖ + ‖αl(A + αlI)–(F(xl) – y)‖

αk

]
,

where

cη := ( – bη)–max

{
μ,  +

(ε + )η
( – η)

}
,

bη :=
(ε + )η
( – η)

+
εa


, ε :=
 –

√
 – a
a

, a :=
η

( + η)
μ.

Remark . ([], Remark .) It can be seen that (.) is satisfied if η ≤ / + /.

Now, if we take η = /, that is, K‖x – x̂‖μ ≤ / in Lemma ., then it takes the
following form.

Lemma . ([], Lemma .) Let the assumptions of Lemma . hold with η = /. Then,
for all k ≥ l ≥ , we have

‖xl – x̂‖ ≤ c/
[
‖xk – x̂‖ + ‖αl(A + αlI)–(F(xl) – y)‖

αk

]
,

http://www.boundaryvalueproblems.com/content/2013/1/114
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where

c/ =
[
 –

μ + (μ + )ε
μ

]–

max

{
μ,  +

ε + 


}
,

ε :=
√
μ√

μ +
√
μ – 

.

5 Error analysis with noisy data
The first result in this section gives an error estimate for ‖xδ

k – xk‖ under Assumption .,
where k = , , , . . . ,N .

Lemma . ([], Lemma .) Let Assumption . hold and let K‖x – x̂‖ ≤ /m, where
m > ( +

√
)/, and N be the integer satisfying (.) with

c >
m – m – 
m – m – 

.

Then, for all k ∈ {, , . . . ,N}, we have

∥∥xδ
k – xk

∥∥ ≤ δ

( – κ)αk
, (.)

where

κ :=

m

(
 +

c
c – 

+

m

)
.

If we take m =  in Lemma ., then we get the following corollary as a particular case
of Lemma .. We make use of it in the following error analysis.

Corollary . ([], Corollary .) Let Assumption . hold and let K‖x – x̂‖ ≤ . Let
N be the integer defined by (.) with c > . Then, for all k ∈ {, , . . . ,N}, we have

∥∥xδ
k – xk

∥∥ ≤ δ

( – κ)αk
,

where

κ :=
c – 
(c – )

.

Lemma . ([], Lemma .) Let the assumptions of Lemma . hold. Then we have

∥∥αk(A + αkδ I)
–(F(xkδ ) – y

)∥∥ ≤ cδ.

Moreover, if kδ > , then, for all  ≤ k < kδ , we have

∥∥αk(A + αkI)–
(
F(xk) – y

)∥∥ ≥ cδ,

http://www.boundaryvalueproblems.com/content/2013/1/114
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where

c =
(
 +

cK‖x – x̂‖
c – 

)(
c +

 – κ

 – κ
+

Kμ‖x – x̂‖
( – κ)(c – )

)
,

c =
c – (( – κ)( – κ)) – (K‖x – x̂‖/( – κ)(c – ))

 + (cK‖x – x̂‖/(c – ))

with c = 
c +  and κ as in Lemma ..

Theorem . ([], Theorem .) Let Assumptions . and . hold. If kμ‖x – x̂‖ ≤ 
and the integer kδ is chosen according to stopping rule (.) with c > 

 , then we have

∥∥xδ
kδ – x̂

∥∥ ≤ ξ inf

{
‖xk – x̂‖ + δ

αk
: k ≥ 

}
, (.)

where ξ =max{μ�, c/c+–κ
, c}, � :=  + μ(+K‖x–x̂‖)

c(–κ) with c/ and κ as in Lemma . and
Corollary ., respectively, and c, c as in Lemma ..

6 Order optimal result with an a posteriori stopping rule
In this section, we show the convergence xδ

kδ → x̂ as δ →  and also give an optimal error
estimate for ‖xδ

kδ – x̂‖.

Theorem. ([], Theorem.) Let the assumptions of Theorem .hold and let kδ be the
integer chosen by (.). If x is chosen such that x – x̂ ∈N(F ′(x̂))⊥, thenwe have limδ→ xδ

kδ =
x̂.Moreover, if Assumption . is satisfied, then we have

∥∥xδ
kδ – x̂

∥∥ ≤ ξ ′μψ–(δ),

where ξ ′ := μξ / with ξ as in Theorem . and ψ : (,ϕ(a)] → (,aϕ(a)] is defined as
ψ(λ) := λϕ–(λ), λ ∈ (,ϕ(a)].

Proof From (.) and (.), we get

∥∥xδ
kδ – x̂

∥∥ ≤ ξ ′′ inf
{∥∥αk(A + αkI)–(x – x̂)

∥∥ +
δ

αk
: k = , , . . .

}
, (.)

where ξ ′′ = μ

 max{μ( + μ(+k‖x–x̂‖)
c(–κ) ), c/c+–κ

, c}. Now, we choose an integer mδ such
thatmδ =max{k : αk ≥ √

δ}. Then we have

∥∥xδ
kδ – x̂

∥∥ ≤ ξ ′′ inf
{∥∥αmδ

(A + αmδ
I)–(x – x̂)

∥∥ +
δ

αmδ

: k = , , . . .
}
. (.)

Note that δ
αmδ

≤ √
δ, so δ

αmδ
→  as δ → . Therefore by (.) to show that xδ

kδ → x̂ as
δ → , it is enough to prove that ‖αmδ

(A+αmδ
I)–(x – x̂)‖ →  as δ → . Observe that for

w ∈ R(F ′(x̂)), i.e., w = F ′(x̂)u for some u ∈D(F), we have ‖αmδ
(A + αmδ

I)–w‖ ≤ αmδ
‖u‖ →

 as δ → . Now since R(F ′(x̂)) is a dense subset of N(F ′(x̂))⊥, it follows that ‖αmδ
(A +

αmδ
I)–(x – x̂)‖ →  as δ → . Using Assumption ., we get that

∥∥αk(A + αkI)–(x – x̂)
∥∥ ≤ ϕ(αk). (.)

http://www.boundaryvalueproblems.com/content/2013/1/114
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So, by (.) and (.), we obtain that

∥∥xδ
kδ – x̂

∥∥ ≤ ξ ′′ inf
{
ϕ(αk) +

δ

αk
: k = , , . . .

}
. (.)

Choose k̂δ such that

ϕ(αk̂δ )αk̂δ ≤ δ < ϕ(αk)αk for k = , , . . . ,kδ – . (.)

This also implies that

ψ
(
ϕ(αk̂δ )

) ≤ δ < ψ
(
ϕ(αk)

)
for k = , , . . . ,kδ – . (.)

From (.), ‖xδ
kδ – x̂‖ ≤ ξ ′′{ϕ(αk̂δ ) +

δ
αk̂δ

}. Now, using (.) and (.), we get ‖xδ
kδ – x̂‖ ≤

ξ ′′ δ
αk̂δ

≤ ξ ′′μ δ
αk̂δ–

≤ ξ ′′μψ–(δ). This completes the proof. �

7 Numerical examples
We provide two numerical examples, where K < K .

Example . Let X =R, D(F) =U(, ), x̂ =  and define a function F on D(F) by

F(x) = ex – . (.)

Then, using (.) and Assumptions .() and ., we get

K = e –  < K = e.

Example . Let X = C([, ]) (: the space of continuous functions defined on [, ]
equipped with the max norm) and D(F) =U(, ). Define an operator F on D(F) by

F(h)(x) = h(x) – 
∫ 


xθh(θ ) dθ . (.)

Then the Fréchet-derivative is given by

F ′(h[u])(x) = u(x) – 
∫ 


xθh(θ )u(θ )dθ (.)

for all u ∈ D(F). Using (.), (.), Assumptions .(), . for x̂ = , we get K = . <
K = .

Next, we provide an example where K
K

can be arbitrarily large.

Example . Let X =D(F) =R, x̂ =  and define a function F on D(F) by

F(x) = dx – d sin  + d sin edx, (.)

where d, d and d are the given parameters. Note that F(x̂) = F() = . Then it can easily
be seen that, for d sufficiently large and d sufficiently small, K

K
can be arbitrarily large.

http://www.boundaryvalueproblems.com/content/2013/1/114
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We now present two examples where Assumption . is not satisfied, but Assump-
tion .() is satisfied.

Example . Let X =D(F) =R, x̂ =  and define a function F on D by

F(x) =
x+


i

 + 
i
+ cx – c –

i
i + 

, (.)

where c is a real parameter and i >  is an integer. Then F ′(x) = x/i + c is not Lipschitz
on D. Hence Assumption . is not satisfied. However, the central Lipschitz condition in
Assumption .() holds for K = . We also have that F(x̂) = . Indeed, we have

∥∥F ′(x) – F ′(x̂)
∥∥ =

∣∣x/i – x̂/i
∣∣

=
|x – x̂|

x̂
i–
i + · · · + x

i–
i
,

and so

∥∥F ′(x) – F ′(x̂)
∥∥ ≤ K|x – x̂|.

Example . We consider the integral equation

u(s) = f (s) + λ

∫ b

a
G(s, t)u(t)+/n dt (.)

for all n ∈N, where f is a given continuous function satisfying f (s) >  for all s ∈ [a,b], λ is
a real number and the kernel G is continuous and positive in [a,b]× [a,b].
For example, when G(s, t) is the Green kernel, the corresponding integral equation is

equivalent to the boundary value problem

u′′ = λu+/n,

u(a) = f (a), u(b) = f (b).

These types of problems have been considered in [–]. The equation of the form (.)
generalizes the equation of the form

u(s) =
∫ b

a
G(s, t)u(t)n dt, (.)

which was studied in [–]. Instead of (.), we can try to solve the equation F(u) = ,
where

F :� ⊆ C[a,b]→ C[a,b], � =
{
u ∈ C[a,b] : u(s) ≥ , s ∈ [a,b]

}

and

F(u)(s) = u(s) – f (s) – λ

∫ b

a
G(s, t)u(t)+/n dt.

http://www.boundaryvalueproblems.com/content/2013/1/114
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The norm we consider is the max-norm. The derivative F ′ is given by

F ′(u)v(s) = v(s) – λ

(
 +


n

)∫ b

a
G(s, t)u(t)/nv(t)dt

for all v ∈ �. First of all, we notice that F ′ does not satisfy the Lipschitz-type condition
in �. Let us consider, for instance, [a,b] = [, ], G(s, t) =  and y(t) = . Then we have
F ′(y)v(s) = v(s) and

∥∥F ′(x) – F ′(y)
∥∥ = |λ|

(
 +


n

)∫ b

a
x(t)/n dt.

If F ′ were the Lipschitz function, then we had

∥∥F ′(x) – F ′(y)
∥∥ ≤ L‖x – y‖

or, equivalently, the inequality

∫ 


x(t)/n dt ≤ L max

x∈[,]
x(s) (.)

would hold for all x ∈ � and for a constant L. But this is not true. Consider, for example,
the function

xj(t) =
t
j

for all j ≥  and t ∈ [, ]. If these are substituted into (.), then we have


j/n( + /n)

≤ L
j

⇐⇒ j–/n ≤ L( + /n)

for all j ≥ . This inequality is not true when j → ∞. Therefore, Assumption . is not
satisfied in this case. However, Assumption .() holds. To show this, suppose that x̂(t) =
f (t) and γ =mins∈[a,b] f (s). Then, for all v ∈ �, we have

∥∥[
F ′(x) – F ′(x̂)

]
v
∥∥ = |λ|

(
 +


n

)
max
s∈[a,b]

∣∣∣∣
∫ b

a
G(s, t)

(
x(t)/n – f (t)/n

)
v(t)dt

∣∣∣∣
≤ |λ|

(
 +


n

)
max
s∈[a,b]

Gn(s, t),

where Gn(s, t) = G(s,t)|x(t)–f (t)|
x(t)(n–)/n+x(t)(n–)/nf (t)/n+···+f (t)(n–)/n ‖v‖. Hence it follows that

∥∥[
F ′(x) – F ′(x̂)

]
v
∥∥ =

|λ|( + /n)
γ (n–)/n max

s∈[a,b]

∫ b

a
G(s, t)dt‖x – x̂‖

≤ K‖x – x̂‖,

where K = |λ|(+/n)
γ (n–)/n N and N = maxs∈[a,b]

∫ b
a G(s, t)dt. Then Assumption .() holds for

sufficiently small λ.

http://www.boundaryvalueproblems.com/content/2013/1/114


Argyros et al. Boundary Value Problems 2013, 2013:114 Page 14 of 15
http://www.boundaryvalueproblems.com/content/2013/1/114

In the following remarks, we compare our results with the corresponding ones in [].

Remark . Note that the results in [] were shown using Assumption ., whereas we
used weaker Assumption .() in this paper. Next, our result, Proposition ., was shown
with K replacing K . Therefore, if K < K (see Example .), then our result is tighter.
Proposition . was shown with K replacing K . Then, if K < K , then our result is tighter.
Theorem . was shown with K replacing K . Hence, if K < K , our result is tighter.
Similar favorable to us observations are made for Lemma ., Theorem . and the rest of
the results in [].

Remark . The results obtained here can also be realized for the operators F satisfying
an autonomous differential equation of the form

F ′(x) = P
(
F(x)

)
,

where P : X → X is a known continuous operator. Since F ′(x̂) = P(F(x̂)) = P(), we can
compute K in Assumption .() without actually knowing x̂. Returning back to Exam-
ple ., we see that we can set P(x) = x + .
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