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Abstract
We discuss the approximate controllability of nonlinear fractional integro-differential
system under the assumptions that the corresponding linear system is approximately
controllable. Using the fixed-point technique, fractional calculus and methods of
controllability theory, a new set of sufficient conditions for approximate controllability
of fractional integro-differential equations are formulated and proved. The results in
this paper are generalization and continuation of the recent results on this issue. An
example is provided to show the application of our result.

1 Introduction
Controllability is one of the fundamental concepts in mathematical control theory, which
plays an important role in control systems. The controllability of nonlinear systems rep-
resented by evolution equations or inclusions in abstract spaces and qualitative theory of
fractional differential equations has been extensively studied by several authors. An exten-
sive list of these publications can be found in [–] and the references therein. Recently,
the approximate controllability for various kinds of (fractional) differential equations has
generated considerable interest. A pioneering work on the approximate controllability of
deterministic and stochastic systems has been reported by Bashirov and Mahmudov [],
Dauer and Mahmudov [] and Mahmudov []. Sakthivel et al. [] studied the approxi-
mate controllability of nonlinear deterministic and stochastic evolution systems with un-
bounded delay in abstract spaces. On the other hand, the fractional differential equation
has gainedmore attention due to its demonstrated applications in numerous seemingly di-
verse and widespread fields of science and engineering. Yan [] derived a set of sufficient
conditions for the controllability of fractional-order partial neutral functional integro-
differential inclusions with infinite delay in Banach spaces. Debbouche and Baleanu []
established the controllability result for a class of fractional evolution nonlocal impulsive
quasi-linear delay integro-differential systems in a Banach space using the theory of frac-
tional calculus and fixed point technique. However, there exists only a limited number of
papers on the approximate controllability of the fractional nonlinear evolution systems.
Sakthivel et al. [] studied the approximate controllability of deterministic semilinear
fractional differential equations in Hilbert spaces. Wang [] investigated the nonlocal
controllability of fractional evolution systems. Surendra Kumar and Sukavanam [] ob-
tained a new set of sufficient conditions for the approximate controllability of a class of
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semilinear delay control systems of fractional order using the contraction principle and
the Schauder fixed-point theorem. More recently, Sakthivel et al. [] derived a new set
of sufficient conditions for approximate controllability of fractional stochastic differential
equations.
In this paper, we discuss the approximate controllability of nonlinear fractional integro-

differential system under the assumption that the corresponding linear system is approxi-
mately controllable. We consider the following fractional integro-differential control sys-
tem involving nonlocal conditions,

CDβ
t x(t) = –Ax(t) + f

(
t,x(t)

)
+

∫ t


K(t – s)g

(
s,x(s)

)
ds + Bu(t),

x() = x + h(x),
()

in Xα , where CDβ
t ,  < β < , stands for the Caputo fractional derivative of order β , and

f : [,T]× Xα → X, g : [,T]× Xα → X, K : [,T] → R+, h : C([,T];Xα) → Xα are given
functions to be specified later. Here, (–A,D(A)) is the infinitesimal generator of a compact
analytic semigroup of bounded linear operators S(t), t ≥ , on a real Hilbert space X. B is
a linear bounded operator from a real Hilbert space U to X.
The rest of this paper is organized as follows. In Section , we give some preliminary

results on the fractional powers of the generator of an analytic compact semigroup and
introduce the mild solution of system (). In Section , we study the existence of mild
solutions for system () under the feedback control uε(t,x) defined in ().We show that the
control system () is approximately controllable on [,T] provided that the corresponding
linear system is approximately controllable. Finally, an example is given to demonstrate the
applicability of our result.

2 Preliminaries
In this section, we introduce some facts about the fractional powers of the generator of
a compact analytic semigroup, the Caputo fractional derivative that are used throughout
this paper.
We assume that X is a Hilbert space with norm ‖ · ‖ :=

√〈·, ·〉. Let C([,T],X) be
the Banach space of continuous functions from [,T] into X with the norm ‖x‖ =
supt∈[,T] ‖x(t)‖, here x ∈ C([,T],X). In this paper, we also assume that –A :D(A) ⊂ X →
X is the infinitesimal generator of a compact analytic semigroup S(t), t > , of uniformly
bounded linear operator in X, that is, there existsM >  such that ‖S(t)‖ ≤ M for all t ≥ .
Without loss of generality, let  ∈ ρ(A), where ρ(A) is the resolvent set of A. Then for any
α > , we can define A–α by

A–α :=


�(α)

∫ ∞


tα–S(t)dt.

It follows that each A–α is an injective continuous endomorphism of X. Hence we can
define Aα := (A–α)–, which is a closed bijective linear operator in X. It can be shown that
each Aα has dense domain and that D(Aβ ) ⊂ D(Aα) for  ≤ α ≤ β . Moreover, Aα+βx =
AαAβx = AβAαx for every α,β ∈ R and x ∈D(Aμ) with μ :=max(α,β ,α +β), where A = I ,
I is the identity in X. (For proofs of these facts, we refer to the literature [, , ].)
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We denote by Xα the Hilbert space of D(Aα) equipped with norm ‖x‖α := ‖Aαx‖ =√〈Aαx,Aαx〉 for x ∈ D(Aα), which is equivalent to the graph norm of Aα . Then we have
Xβ ↪→ Xα , for  ≤ α ≤ β (with X = X ) and the embedding is continuous. Moreover, Aα

has the following basic properties.

Lemma  [] Aα and S(t) have the following properties.
(i) S(t) : X → Xα for each t >  and α ≥ .
(ii) AαS(t)x = S(t)Aαx for each x ∈D(Aα) and t ≥ .
(iii) For every t > , AαS(t) is bounded in X and there existsMα >  such that

∥∥AαS(t)
∥∥ ≤ Mαt–α .

(iv) A–α is a bounded linear operator for  ≤ α ≤ .

Let us recall the following known definitions of fractional calculus. For more details, see
[, ].

Definition  The fractional integral of order α >  with the lower limit  for a function f
is defined as

Iαf (t) =


�(α)

∫ t



f (s)
(t – s)–α

ds, t > ,α > ,

provided the right-hand side is pointwise defined on [,∞), where � is the gamma func-
tion.

Definition  The Caputo derivative of order α >  with the lower limit  for a function f
can be written as

CDαf (t) =


�(n – α)

∫ t



f (n)(s)
(t – s)α+–n

ds = In–αf (n)(t), t > ,≤ n –  < α < n.

The Caputo derivative of a constant is equal to zero. If f is an abstract function with
values in X then the integrals which appear in Definitions  and  are taken in Bochner’s
sense.
According toDefinitions  and , it is suitable to rewrite the problem () in the equivalent

integral equation

x(t) = x +


�(q)

∫ t


(t – s)α–

×
[
Ax(s) + Bu(s) + f

(
s,x(s)

)
+

∫ s


K(s – r)g

(
r,x(r)

)
dr

]
ds, t ∈ [,T], ()

provided that the integral in () exists. Applying the Laplace transform

v(λ) =
∫ ∞


e–λsx(s)ds, w(λ) =

∫ ∞


e–λsu(s)ds and

ω(λ) =
∫ ∞


e–λs

(
f
(
s,x(s)

)
+

∫ s


K(s – r)g

(
r,x(r)

)
dr

)
ds, λ > ,
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to () and using the method similar to that used in [] we get

x(t) =
∫ ∞



β (θ )S

(
tβθ

)
x dθ + β

∫ t



∫ ∞


θ (t – s)α–
β (θ )S

(
(t – s)βθ

)
×

[
Bu(s) +

(
f
(
s,x(s)

)
+

∫ s


K(s – r)g

(
r,x(r)

)
dr

)]
dθ ds,

where


β (θ ) =

β

θ
–– 

β w̄q
(
θ
– 

β
) ≥ ,

w̄β (θ ) =

π

∞∑
n=

(–)n–θ–βn– �(nβ + )
n!

sin(nπβ), θ ∈ (,∞).

Here, 
β is a probability density function defined on (,∞), that is 
β (θ ) ≥ , θ ∈ (,∞)
and

∫ ∞
 
β (θ )dθ = .

For x ∈ X, we define two families {Sβ(t) : t ≥ } and {Pβ (t) : t ≥ } of operators by

Sβ (t) =
∫ ∞



β (θ )S

(
tβθ

)
dθ ,

Pβ (t) = β

∫ ∞


θ
β (θ )S

(
tβθ

)
dθ ,

respectively.
The following lemma follows from the results given in [–].

Lemma  The operators Sβ and Pβ have the following properties.
(i) For any fixed t ≥ , and any x ∈ Xα , we have the operators Sβ (t) and Pβ (t) are

linear and bounded operators, i.e. for any x ∈ X ,

∥∥Sβ (t)x
∥∥

α
≤ M‖x‖α and

∥∥Pβ (t)x
∥∥

α
≤ M

�(β)
‖x‖α .

(ii) The operators Sβ (t) and Pβ (t) are strongly continuous for all t ≥ .
(iii) Sβ (t) and Pβ (t) are norm continuous in X for t > .
(iv) Sβ (t) and Pβ (t) are compact operators in X for t > .
(v) For every t > , the restriction of Sβ (t) to Xα and the restriction of Pβ (t) to Xα are

norm continuous.
(vi) For every t > , the restriction of Sβ (t) to Xα and the restriction of Pβ (t) to Xα are

compact operators in Xα .
(vii) For all x ∈ X and t ∈ (,∞),

∥∥AαPβ (t)x
∥∥ ≤ Cαt–αβ‖x‖, where Cα :=

Mαβ�( – α)
�( + β( – α))

.

In this paper, we adopt the following definition of mild solution of equation ().
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Definition  A function x(·;x,u) ∈ C([,T],Xα) is said to be a mild solution of () if for
any u ∈ L([,T],U) the integral equation

x(t) = Sβ (t)
(
x + h(x)

)
+

∫ t


(t – s)β–Pβ (t – s)Bu(s)ds

+
∫ t


(t – s)β–Pβ (t – s)

[
f
(
s,x(s)

)
+

∫ s


K(s – r)g

(
r,x(r)

)
dr

]
ds, ()

is satisfied.

It is clear that Lt :=
∫ t
 (t– s)

β–Pβ (t– s)Bu(s)ds : L([,T],U)→ C([,T],Xα) is bounded
if 

 < β ≤ . In what follows, we assume that 
 < β ≤ .

3 Approximate controllability
In this section, we state and prove conditions for the approximate controllability of semi-
linear fractional control integro-differential systems. To do this, we first prove the exis-
tence of a fixed point of the operator ε defined below using Krasnoselskii’s fixed-point
theorem. Secondly, in Theorem , we show that under the uniform boundedness of f and
g the approximate controllability of fractional systems () is implied by the approximate
controllability of the corresponding linear system ().
Let x(T ;x,u) be the state value of () at terminal time T corresponding to the control u

and the initial value x. Introduce the set �(T ,x) = {x(T ;x,u) : u ∈ L([,T],U)}, which
is called the reachable set of system () at terminal time T , its closure in Xα is denoted by
�(T ,x).

Definition  The system () is said to be approximately controllable on [,T] if�(T ,x) =
Xα , that is, given an arbitrary ε >  it is possible to steer from the point x to within a
distance ε from all points in the state space Xα at time T .

Consider the following linear fractional differential system:

Dβ
t x(t) = Ax(t) + Bu(t), t ∈ [,T],

x() = x.
()

The approximate controllability for linear fractional system () is a natural generalization
of approximate controllability of linear first order control system [, , ]. It is convenient
at this point to introduce the controllability and resolvent operators associated with () as

�T
 =

∫ T


(T – s)β–Pβ (T – s)BB∗P∗

β (T – s)ds : X → X,

R
(
ε,�T


)
=

(
εI + �T


)– : X → X, ε > ,

respectively, where B∗ denotes the adjoint of B and P∗
β (t) is the adjoint of Pβ (t). It is

straightforward that the operator �T
 is a linear bounded operator.

Theorem  [] Let Z be a separable reflexive Banach space and let Z∗ stands for its dual
space. Assume that � : Z∗ → Z is symmetric. Then the following two conditions are equiv-
alent:

http://www.boundaryvalueproblems.com/content/2013/1/118
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. � : Z∗ → Z is positive, that is, 〈z∗,�z∗〉 >  for all nonzero z∗ ∈ Z∗.
. For all h ∈ Zzε(h) = ε(εI + �J)–(h) strongly converges to zero as ε → +. Here, J is

the duality mapping of Z into Z∗.

Lemma  The linear fractional control system () is approximately controllable on [,T]
if and only if εR(ε,�T

 ) →  as ε → + in the strong operator topology.

Proof The lemma is a straightforward consequence of Theorem . Indeed, the system ()
is approximately controllable on [,T] if and only if 〈�T

 x,x〉 >  for all nonzero x ∈ X, see
[]. By Theorem , ‖ε(εI + �T

 )–(h)‖ →  as ε → + for all h ∈ X. �

Remark  Notice that positivity of �T
 is equivalent to 〈�T

 x,x〉 =  �⇒ x = . In other
words, since 〈�T

 x,x〉 =
∫ T
 (T – s)β–‖B∗P∗

β (T – s)x‖ ds, approximate controllability of the
linear system () is equivalent to B∗P∗

β (T – s)x = ,  ≤ s < T �⇒ x = .

Before proving the main results, let us first introduce our basic assumptions.

(H) f , g : [,T]×Xα ×Xα → X are continuous and for each r ∈N, there exists a constant
γ ∈ [,β( – α)] and functions ϕr ∈ L/γ ([,T];R+), ψr ∈ L∞([,T];R+) such that

sup
{∥∥f (t,x)∥∥ : ‖x‖α ≤ r

} ≤ ϕr and lim inf
r→∞

‖ϕr‖L/γ
r

= σ < ∞,

sup
{∥∥g(t,x)∥∥ : ‖x‖α ≤ r

} ≤ ψr and lim inf
r→∞

‖ψr‖L∞

r
= σ < ∞.

(H) h : C([,T];Xα) → Xα is a Lipschitz function with Lipschitz constant Lh.
(Hc) The linear system () is approximately controllable on [,T].

Using the hypothesis (Hc), for an arbitrary function x ∈ C([,T];Xα), we choose the
feedback control function as follows:

uε(t,x) = B∗P∗
β (T – t)

(
εI + �T


)–[Sβ (T)

(
x + h(x)

)

–
∫ T


(T – s)β–Pβ (T – s)

[
f
(
s,x(s)

)
+

∫ s


K(s, r)g

(
r,x(r)

)
dr

]
ds

]
. ()

Let Br = {x ∈ C([,T];Xα) : ‖x‖α ≤ r}, where r is a positive constant. Then Br is clearly
a bounded closed and convex subset in C([,T];Xα). We will show that when using the
above control the operator ε : Bk → Bk defined by

(εx)(t) := (�εx)(t) + (�εx)(t), t ∈ [,T],

where

(�εx)(t) := Sβ (t)
(
x + h(x)

)
,

(�εx)(t) :=
∫ t


(t – s)β–Pβ (t – s)

[
f
(
s,x(s)

)
+

∫ s


K(s, r)g

(
r,x(r)

)
dr

]
ds

+
∫ t


(t – s)β–Pβ (t – s)Buε(s,x)ds

has a fixed point in C([,T];Xα).

http://www.boundaryvalueproblems.com/content/2013/1/118
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Theorem  Let the assumptions (H) and (H) be satisfied. Then for x ∈ Xα , the frac-
tional Cauchy problem () with u = uε(t,x) has at least one mild solution provided that

LC +
CαT (–α)β

ε( – α)β
M

�(β)
LBLC < , ()

where

LC :=MLh +Cα

(
 – γ

( – α)β – γ

)–γ

T (–α)β–γ σ +
CαKT (–α)β

( – α)β
σ,

LB := ‖B‖, K := max
≤t≤b

∣∣K(t)
∣∣.

Proof It is easy to see that for any ε >  the operator ε maps C([,T];Xα) into itself.
Let x ∈ Br and  ≤ t ≤ T . Using assumption (H) yield the following estimations,

∥∥uε(s,x)
∥∥ ≤ 

ε

M
�(β)

LB
[
M

(‖x‖α + Lhr +
∥∥h()∥∥

α

)

+Cα

(
 – γ

( – α)β – γ

)–γ

T (–α)β–γ ‖ϕr‖L/γ +
CαKT (–α)β

( – α)β
‖ψr‖L∞

]

≤ 
ε

M
�(β)

LBLu(r),

Lu(r) :=M
(‖x‖α + Lhr +

∥∥h()∥∥
α

)
+Cα

(
 – γ

( – α)β – γ

)–γ

T (–α)β–γ ‖ϕr‖L/γ

+
CαKT (–α)β

( – α)β
‖ψr‖L∞ ,

and

∥∥(�εy)(t) + (�εx)(t)
∥∥

α

≤ ∥∥Sβ (t)
(
x – h(y)

)∥∥
α
+

∫ t


(t – s)β–

∥∥AαPβ (t – s)
∥∥
L(X)

∥∥Buε(s,x)
∥∥ds

+
∫ t


(t – s)β–

∥∥AαPβ (t – s)
∥∥
L(X)

∥∥∥∥f (s,x(s)) +
∫ s


K(s, r)g

(
r,x(r)

)
dr

∥∥∥∥ds
≤ M

(‖x‖α + Lhr +
∥∥h()∥∥

α

)
+Cα

∫ t


(t – s)β(–α)– 

ε
LB

M
�(β)

Lu ds

+Cα

∫ t


(t – s)β(–α)–(ϕr(s) +K‖ψr‖L∞

)
ds

≤ M
(‖x‖α + Lhr +

∥∥h()∥∥
α

)
+
CαT (–α)β

ε( – α)β
M

�(β)
LBLu(r)

+Cα

(
 – γ

( – α)β – γ

)–γ

T (–α)β–γ ‖ϕr‖L/γ

+
CαKT (–α)β

( – α)β
‖ψr‖L∞ . ()
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From () and the assumption (H), it follows that for any ε >  there exists r(ε) >  such
that

M
(‖x‖α + Lhr(ε) +

∥∥h()∥∥
α

)
+
CαT (–α)β

ε( – α)β
M

�(β)
LBLu

(
r(ε)

)

+Cα

(
 – γ

( – α)β – γ

)–γ

T (–α)β–γ ‖ϕr(ε)‖L/γ +
CαKT (–α)β

( – α)β
‖ψr(ε)‖L∞ ≤ r(ε). ()

Therefore, from () and (), it follows that for any ε >  there exists r(ε) >  such that�εy+
�εx ∈ Br(ε) for every x, y ∈ Br(ε). Therefore, for any ε >  the fractional Cauchy problem ()
with the control () has a mild solution if and only if the operator�ε +�ε has a fixed point
in Br(ε).
In what follows, we will show that �ε and �ε satisfy the conditions of Krasnoselskii’s

fixed-point theorem. From (H) and (), we infer that �ε is a contraction. Next, we show
that �ε is completely continuous on Br(ε).
Step : We first prove that �ε is continuous on Br(ε). Let {xn}∞n= ⊂ Br(ε) be a sequence

such that xn → x as n→ ∞ in C([,T];Xα). Therefore, it follows from the continuity of f ,
g and uε that for each t ∈ [,T],

f
(
s,xn(s)

) → f
(
s,x(s)

)
,

g
(
s,xn(s)

) → g
(
s,x(s)

)
,

uε

(
s,xn(s)

) → Buε

(
s,x(s)

)
as n→ ∞.

Also, by (H), we see that

∫ t


(t – s)β––αβ

(∥∥f (s,xn(s)) – f
(
s,x(s)

)∥∥
+

∫ s



∣∣K(s – r)
∣∣∥∥g(r,xn(r)) – g

(
r,x(r)

)∥∥dr)ds

+
∫ t


(t – s)β––αβ

∥∥Buε

(
s,xn(s)

)
– Buε

(
s,x(s)

)∥∥ds
≤ Cα

(
 – γ

( – α)β – γ

)–γ

T (–α)β–γ ‖ϕk‖L/γ +
CαKT (–α)β

( – α)β
‖ψk‖L∞

+Cα


ε

∫ t


(t – s)β(–α)– M

�(β)
LBLu ds.

Since

∥∥(�εxn)(t) – (�εx)(t)
∥∥

α

≤ Cα

∫ t


(t – s)β––αβ

×
(∥∥f (s,xn(s)) – f

(
s,x(s)

)∥∥ +
∫ s



∣∣K(s – r)
∣∣∥∥g(r,xn(r)) – g

(
r,x(r)

)∥∥dr)ds,

http://www.boundaryvalueproblems.com/content/2013/1/118
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using the Lebesgue dominated convergence theorem that for all t ∈ [,T], we conclude

∥∥(�εxn)(t) – (�εx)(t)
∥∥

α
→ , as n→ ∞,

implying that ‖�εxn –�εx‖α →  as n→ ∞. This proves that �ε is continuous on Br(ε).
Step . �ε is compact on Br(ε).
For the sake of brevity, we write

N
(
x(s)

)
:= f

(
s,x(s)

)
+

∫ s


K(s, r)g

(
r,x(r)

)
dr + Buε(s,x).

Let t ∈ [,T] be fixed and δ,η >  be small enough. For x ∈ Br(ε), we define the map

(
�δη

ε x
)
(t) =

∫ δ



∫ ∞

η

βr(t – s)β–
β (r)S
(
(t – s)βr

)
N

(
x(s)

)
dr ds

= S
(
δβη

)∫ δ



∫ ∞

η

βr(t – s)β–
β (r)S
(
(t – s)βr – δβη

)
N

(
x(s)

)
dr ds.

Therefore, from Lemma , we see that for each t ∈ (,T], the set {(�δη
ε x)(t) : x ∈ Br(ε)} is

relatively compact in Xα . Since

∥∥(�εx)(t) –
(
�δη

ε x
)
(t)

∥∥
α

≤
∥∥∥∥
∫ t



∫ η


βr(t – s)β–
β (r)S

(
(t – s)βr

)
N

(
x(s)

)
dr ds

∥∥∥∥
α

+
∥∥∥∥
∫ t

t–δ

∫ ∞

η

βr(t – s)β–
β (r)S
(
(t – s)βr

)
N

(
x(s)

)
dr ds

∥∥∥∥
α

≤ βMα

[∫ t


(t – s)β(–α)–

(
ϕr(ε)(s) +K‖ψr(ε)‖L∞ +


ε

M
�(β)

LBLu
)
ds

∫ η


τ –α
β (τ )dτ

+
∫ t

t–δ

(t – s)β(–α)–
(

ϕr(ε)(s) +K‖ψr(ε)‖L∞ +

ε

M
�(β)

LBLu
)
ds

∫ ∞

η

τ –α
β (τ )dτ

]

≤ βMα

[(
 – γ

( – α)β – γ

)–γ

T (–α)β–γ ‖ϕr(ε)‖L/γ +
KT (–α)β

(–α)β ‖ψr(ε)‖L∞

+
T (–α)β

(–α)β

ε

M
�(β)

LBLu
]∫ η


τ –α
β (τ )dτ

+
βMα�( – α)
�( + β( – α))

[(
 – γ

( – α)β – γ

)–γ

η(–α)β–γ ‖ϕr(ε)‖L/γ +
Kη(–α)β

(–α)β ‖ψr(ε)‖L∞

+
η(–α)β

(–α)β

ε

M
�(β)

LBLu
]

approaches to zero as η → +, using the total boundedness, we conclude that for each
t ∈ [,T], the set {(�δη

ε x)(t) : x ∈ Br(ε)} is relatively compact in Xα .
On the other hand, for  < t < t ≤ T and δ >  small enough, we have

∥∥(�εx)(t) – (�εx)(t)
∥∥

α
≤ I + I + I + I,
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where

I :=
∫ t

t
(t – s)β––αβ

∥∥N(
x(s)

)∥∥ds,
I :=

∫ t–δ


(t – s)β–

∥∥AαPβ (t – s) –AαPβ (t – s)
∥∥
L(X)

∥∥N(
x(s)

)∥∥ds,
I :=

∫ t

t–δ

(t – s)β–
(
(t – s)–αβ + (t – s)–αβ

)∥∥N(
x(s)

)∥∥ds,
I :=

∫ t


(t – s)–αβ

∣∣(t – s)β– – (t – s)β–
∣∣∥∥N(

x(s)
)∥∥ds.

Therefore, it follows from (H) and Lemma  that

I ≤ Cα

∫ t

t
(t – s)β––αβ

((
ϕr(ε)(s) +K‖ψr(ε)‖L∞

)
+

ε
LB

M
�(β)

Lu
(
r(ε)

))
ds

≤ Cα

((
 – γ

( – α)β – γ

)–γ

(t – t)(–α)β–γ ‖ϕr(ε)‖L/γ

+
CαK(t – t)(–α)β

( – α)β
‖ψr(ε)‖L∞

+
C(–α)β

α (t – t)
ε( – α)β

M
�(β)

LBLu
(
r(ε)

))
,

I ≤ sup
≤s≤t–δ

∥∥AαPβ (t – s) –AαPβ (t – s)
∥∥
L(X)

×
∫ t–δ


(t – s)β––αβ

((
ϕr(ε)(s) +K‖ψr(ε)‖L∞

)
+

ε

M
�(β)

LBLu
(
r(ε)

))
ds

≤ sup
≤s≤t–δ

∥∥AαPβ (t – s) –AαPβ (t – s)
∥∥
L(X)

×
[(

 – γ

β – γ

)–γ

‖ϕr(ε)‖L/γ
(
t

β–γ
–γ

 – δ
β–γ
–γ

)–γ +
K‖ψr(ε)‖L∞

β

(
tβ – δβ

)

+

εβ

M
�(β)

LBLu
(
r(ε)

)(
tβ – δβ

)]
,

I ≤ Cα

∫ t

t–δ

(t – s)β––αβ

((
ϕk(s) +K‖ψk‖L∞

)
+

ε

M
�(β)

LBLu
)
ds

≤ Cα

((
 – γ

( – α)β – γ

)–γ

δ(–α)β–γ ‖ϕk‖L/γ +
CαK‖ψk‖L∞

( – α)β
δ(–α)β

+
CαLBLu
ε( – α)β

M
�(β)

δ(–α)β
)
,

and

I ≤ Cα

∫ t



∣∣(t – s)β––αβ – (t – s)β––αβ
∣∣

×
((

ϕr(ε)(s) +K‖ψr(ε)‖L∞
)
+

ε

M
�(β)

LBLu
(
r(ε)

))
ds
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≤ Cα

(
 – γ

( – α)β – γ

)–γ

‖ϕr(ε)‖L/γ
[
t(–α)β–γ
 –

(
t
(–α)β–γ

–γ

 – (t – t)
(–α)β–γ

–γ
)–γ ]

+Cα

K
( – α)β

‖ψr(ε)‖L∞
[
t(–α)β
 – t(–α)β

 – (t – t)(–α)β]

+Cα

LBLu(r(ε))
( – α)β

M
�(β)

‖ψr(ε)‖L∞
[
t(–α)β
 – t(–α)β

 – (t – t)(–α)β]
,

from which it is easy to see that all Ii, i = , , , , tend to zero independent of x ∈ Bk as
t – t →  and δ → . Thus, we can conclude that

∥∥(�εx)(t) – (�εx)(t)
∥∥

α
→  as t – t → ,

and the limit is independent of x ∈ Br(ε). The case t =  is trivial. Consequently, the set
{(�εx)(t) : t ∈ [,T],x ∈ Br(ε)} is equicontinuous. Now applying the Arzela-Ascoli theo-
rem, it results that �ε is compact on Br(ε).
Therefore, applying Krasnoselskii’s fixed-point theorem, we conclude thatε has a fixed

point, which gives rise to a mild solution of Cauchy problem () with control given in ().
This completes the proof. �

Theorem  Let the assumptions (H), (H) and (Hc) be satisfied. Moreover, assume the
functions f , g : [,T]×Xα ×Xα → X and h : C([,T];Xα) → Xα are bounded andMLh < .
Then the semilinear fractional system () is approximately controllable on [,T].

Proof It is clear that all assumptions of Theorem  are satisfied with σ = σ = . Let xε

be a fixed point of Fε in Br . Any fixed point of Fε is a mild solution of () under the control

uε(t,xε) = B∗P∗
β (T – t)R

(
ε,�T


)(

h – Sβ (T)
(
x + h(xε)

)

–
∫ T


(T – s)β–Pβ (T – s)

[
f
(
s,xε(s)

)
+

∫ s


K(s – τ )g

(
τ ,xε(τ )

)
dτ

]
ds

)

and satisfies the equality

xε(T) = h – εR
(
ε,�T


)
p(xε), ()

where

p(xε) =
(
h – Sβ (T)

(
x + h(xε)

)

–
∫ T


(T – s)β–Pβ (T – s)

[
f
(
s,xε(s)

)
+

∫ s


K(s – τ )g

(
τ ,xε(τ )

)
dτ

]
ds

)
.

Moreover, by the boundedness of the functions f and g and Dunford-Pettis theorem, we
have that the sequences {f (s,xε(s))} and {g(s,xε(s))} are weakly compact in L([,T];X), so
there are subsequences still denoted by {f (s,xε(s))} and {g(s,xε(s))}, that weakly converge
to, say, f and g in L([,T];X). On the other hand, there exists h̃ ∈ Xα such that h(xε)
converges to h̃ weakly in Xα . Denote

w = h – Sβ

(
x + h̃)

)
–

∫ T


(T – s)β–Pβ (T – s)

[
f (s) +

∫ s


K(s – τ )g(τ )dτ

]
ds.
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It follows that

∥∥p(xε) –w
∥∥

α
≤ ∥∥Sβ (T)h(xε) – Sβ (T )̃h

∥∥
α

+
∥∥∥∥
∫ T


(T – s)β–Pβ (T – s)

(
f
(
s,xε(s)

)
– f (s)

)
ds

∥∥∥∥
α

+
∥∥∥∥
∫ T


(T – s)β–Pβ (T – s)

∫ s


K(s – τ )(g

(
τ ,xε(τ ) – g(τ )

)
dτ ds

∥∥∥∥
α

→ 

as ε → + because of compactness of the operator

l(·)→
∫ ·


(· – s)β–Pβ (· – s)l(s)ds : L

(
[,T],X

) → C
(
[,T],Xα

)
.

Then from (), we obtain

∥∥xε(T) – h
∥∥

α
≤ ∥∥εR

(
ε,�T


)
(w)

∥∥
α
+

∥∥εR
(
ε,�T


)∥∥∥∥p(xε) –w

∥∥
α

≤ ∥∥εR
(
ε,�T


)
(w)

∥∥
α
+

∥∥p(xε) –w
∥∥

α
→  ()

as ε → +. This proves the approximate controllability of (). �

4 Applications
Example  As an application to Theorem , we study the following simple example. Con-
sider a control system governed by the fractional partial differential equation of the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c∂


t x(t, z) = ∂

z x(t, z) + u(t, z) + F(t, z,x(t, z))

+
∫ t
 K(t, s)G(s, z,x(s, z))ds, t ∈ [,T], z ∈ [,π ],

x(t, ) = x(t,π ) = ,

x(, z) = x(z) +
∑p

k=
∫ π

 k(z, r) cos(x(tk , r))dr,

()

where f , g : [,T]× [,π ]× R → R, k : [,π ]× [,π ] → R,  < t < · · · < tp < T .
Let us take X = U = L[,π ] and define the operator A by Aw = –w′′ with the domain

D(A) = {w(·) ∈ L[,π ],w,w′ are absolutely continuous, w′′ ∈ L[,π ],w() = w(π ) = }.
Then

Aw =
∞∑
n=

n〈w, en〉en, w ∈D(A),

where en(z) =
√


π
sinnz,  ≤ z ≤ π , n = , , . . . . Clearly –A generates a compact analytic

semigroup S(t), t >  in X and it is given by

S(t)w =
∞∑
n=

e–n
t〈w, en〉en, w ∈ X.

Clearly, the assumption (H) is satisfied. On the other hand, it can be easily seen that the
deterministic linear system corresponding to () is approximately controllable on [,T];
see [].
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The operator A 
 is given by

A

w =

∞∑
n=

n〈w, en〉en, w ∈ D
(
A



)
,

where D(A 
 ) = {w ∈ X :

∑∞
n= n〈w, en〉en ∈ X} and ‖A– 

 ‖ = .
Let X 


:= (D(A 

 ),‖ · ‖/), where ‖x‖/ := ‖A 
 x‖X for x ∈ D(A 

 ). Assume that F ,G :
[,T]× [,π ]× R → R satisfies the following conditions:
. The functions F(·, ·, ·), G(·, ·, ·) are continuous and uniformly bounded.
. F(, ·, ·) = F(π , ·, ·) =G(, ·, ·) =G(π , ·, ·) = .
. k : [,π ]× [,π ] → R is continuously differentiable, k(, ·) = k(π , ·) =  and

∫ π



∫ π



∣∣∣∣ ∂

∂ξ  k(ξ , y)
∣∣∣∣ dydξ < ∞.

Denote by Eβ ,ζ , the Mittag-Leffler special function defined by

Eβ ,ζ =
∞∑
k=

tk

�(ζk + β)
, ζ ,β > , t ∈ R.

Therefore,

Sβ (t)x =
∞∑
k=

Eβ ,
(
–ntβ

)〈x, en〉en, ∥∥Sβ (t)
∥∥
L(X) ≤ ,

Pβ (t)x =
∞∑
k=

Eβ ,β
(
–ntβ

)〈x, en〉en, ∥∥Pβ (t)
∥∥
L(X) ≤


�(β)

, x ∈ X, t ≥ .

Define

f
(
t,x(t)

)
(z) = F

(
t, z,x(t, z)

)
,

g
(
t,x(t)

)
(z) =G

(
s, z,x(s, z)

)
,

h(x)(z) =
p∑
k=

∫ π


k(z, y) cos

(
x(tk , y)

)
dy.

Then, for each x, y ∈ C([,T],X/) we have

∥∥h(x)∥∥
/ =

∥∥A/h(x)(·)∥∥
L[,π ] =

∞∑
n=

n‖en‖L[,π ]
∣∣〈h(x)(·), en〉∣∣

=

π

∞∑
n=

n
∣∣∣∣
∫ π


h(x)(ξ ) sin(nξ )dξ

∣∣∣∣ =
∞∑
n=


n

∣∣∣∣
∫ π



∂

∂ξ  h(x)(ξ )en(ξ )dξ

∣∣∣∣

≤ π



∥∥∥∥ ∂

∂ξ  h(x)(ξ )
∥∥∥∥

L[,π ]
=

π



∥∥∥∥∥ ∂

∂ξ 

p∑
k=

∫ π


k(ξ , y) cos

(
x(tk , y)

)
dy

∥∥∥∥∥


L[,π ]
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=
π



∫ π



∣∣∣∣∣
p∑

k=

∫ π



∂

∂ξ  k(ξ , y) cos
(
x(tk , y)

)
dy

∣∣∣∣∣


dξ

≤ pπ



∫ π



∫ π



∣∣∣∣ ∂

∂ξ  k(ξ , y)
∣∣∣∣ dydξ =

pπ



∥∥∥∥ ∂

∂ξ  k(ξ , y)
∥∥∥∥

L[,π ]×[,π ]

and

∥∥h(x) – h(y)
∥∥
/ =

∥∥A/h(x)(·) –A/h(y)(·)∥∥
L[,π ]

≤ π



∥∥∥∥∥ ∂

∂ξ 

p∑
k=

∫ π


k(ξ , r)

[
cos

(
x(tk , r)

)
– cos

(
y(tk , r)

)]
dr

∥∥∥∥∥


L[,π ]

=
π



∫ π



∣∣∣∣∣
p∑

k=

∫ π



∂

∂ξ  k(ξ , r)
[
cos

(
x(tk , r)

)
– cos

(
y(tk , r)

)]
dr

∣∣∣∣∣


dξ

≤ pπ



∫ π



∫ π



∣∣∣∣ ∂

∂ξ  k(ξ , r)
∣∣∣∣ dr dξ sup

≤t≤π

∫ π



∣∣x(t, r) – y(t, r)
∣∣ dr.

It follows that h : C([,T];X/) → X/ is bounded and Lipschitz continuous. On the other
hand, it is not difficult to verify that f , g : [,T]×X/ → X are continuous.
Next, we show that the linear system corresponding to () is approximately controllable

on [,T]. It is clear that Pβ (t) : X 


→ X 

is defined as follows:

Pβ (t) = β

∫ ∞


θ
β (θ )S

(
tβθ

)
dθ ,

B∗P∗
β (T – t)x

= β

∞∑
n=

n
∫ ∞


θ
β (θ )Eβ ,β

(
–n(T – t)βθ

)
dθ〈x, en〉en, x ∈ X 


,  ≤ t < T .

By Remark , the linear system corresponding to () is approximately controllable on
[,T] if and only if B∗P∗

β (T – t)x = ,  ≤ t < T implies that x = . This follows from the
representation of B∗P∗

β (T – t)x.
Now, we note that the problem () can be reformulated as the abstract problem. Thus,

by Theorem , the system () is approximately controllable on [,T], provided that

MLh =
pπ



∫ π



∫ π



∣∣∣∣ ∂

∂ξ  k(ξ , r)
∣∣∣∣ dr dξ < .
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