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Abstract
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1 Introduction
This paper is concerned with the existence of solutions of second-order impulsive dynamic
equations on time scales. More precisely, we consider the following boundary value prob-

lem:

—uAA () + A () = f(6,u° ();  A-ae.t€[0,TIE,
(P)  Ju(0)=0=u(T),
Ut ()~ () = L), j=12.....p,

where the impulsive points ¢; € J are right-dense points in an arbitrary time scale T, with
to=0<ti<ty<---<ty<tpa=T.Heref:[0,Tlr xR—Rand;:R—R,j=1,...,p,are
continuous functions.

It is well known that the theory of impulsive dynamic equations provides a natural
framework for mathematical modeling of many real world phenomena. The impulsive ef-
fects exist widely in many evolution processes in which their states are changed abruptly
at certain moments of time.

Applications of impulsive dynamic equations arise in biology (biological phenomena
involving thresholds), medicine (bursting rhythm models), pharmacokinetics, mechanics,
engineering, chaos theory, efc. As a consequence, there has been a significant development
in impulse theory in recent years. We can see some general and recent works on the theory
of impulsive differential equations; see [1-9] and the references therein.

For a second-order dynamic equation, we usually consider impulses in the position and
velocity. However, in the motion of spacecraft, one has to consider instantaneous im-
pulses depending on the position that result in jump discontinuities in velocity, but with no
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change in position. The impulses only on the velocity occur also in impulsive mechanics.
An impulsive problem with impulses in the derivative is considered in [10].

Moreover, we are interested in the solutions of the impulsive nonlinear problem in time
scale with derivative dependence satisfying an impulsive condition. We can see, for exam-
ple, recent works on the theory of impulsive differential equations in [1, 3, 6, 8, 11].

There have been several approaches to studying the solutions of impulsive dynamic
equations on time scales, such as the method of lower and upper solutions, fixed-point
theory [12-14]. Sobolev spaces of functions on time scales, which were first introduced
in [15], opened a very fruitful new approach in the study of dynamic equations on time
scales: the use of variational methods in the context of boundary value problems on time
scales (see [16, 17]) or in second-order Hamiltonian systems [18]. Moreover, the study of
the existence and multiplicity of solutions for impulsive dynamic equations on time scales
has also been done by means of the variational method (see, for example, [19, 20]).

The aim of this paper is to use variational techniques and critical point theory to derive
the existence of multiple solutions to (P); we refer the reader to [21-24] for a broad intro-
duction to dynamic equations on time scales and to [25, 26] for variational methods and
critical point theory.

The paper is organized as follows. In Section 2 we gather together essential properties
about Sobolev spaces on time scales proved in [15, 27, 28] which one needs to read this
paper.

The goal of Section 3 is to exhibit the variational formulation for the impulsive Dirichlet
problem. As we will see, all these problems can be understood and solved in terms of
the minimization of a functional, usually related to the energy, in an appropriate space of
functions. The results presented in the part where we address the linear problem are basic
but crucial to revealing that a problem can be solved by finding the critical points of a
functional. Moreover, we prove some sufficient conditions for the existence of at least one
positive solution to (P).

To finish, in Section 4, we present an impulsive nonlinear problem with linear derivative
dependence. We transform the problem into an equivalent one that has no dependence
on the derivative, and then we prove that the problem has at least one solution. Also, with
additional conditions in nonlinearities and impulse functions, we can show the existence

of at least two solutions by using the mountain pass theorem.

2 Preliminaries
Let T be an arbitrary time scale. We assume that T has the topology that it inherits from
the standard topology on R. Assume that a < b are points in T and define the time scale
interval [a,b]t = {t € T:a <t < b}. We denote J° = [a, D).

Below we set out some results proved in [15, 27] about Sobolev spaces on time scales.

Definition 2.1 Letp € R be such thatp >landu:J — R. We say that u belongs to Wkp )
if and only if € I’} (J°), and there exists g : J* — R such that g € L’ (/°) and

f(u-soA)(s)As=—/(g-so")(s)AS ¥ € Corall")
7 7
with

C(l),rd(]k) ={u:J>R:ue Crld(]k),u(zz) = u(b) = 0},
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and Crld(]") is the set of all continuous functions on J such that they are A-differentiable

on J¥ and their A-derivatives are rd-continuous on J¥.

Theorem 2.1 Assume that p € R and p > 1. The set Wi’p ()) is a Banach space with the
norm defined for every x € Wi’p (J) as

Il g1 = llll 2 + |2 ”L’l' (2.1)

Moreover, the set H} (]) := sz (/) is a Hilbert space with the inner product given for every
(x,y) € Hy() x Hy()) by

(6 )t = (X 9)p2 + (xA:yA)LZ’A' (22)

Proposition 2.1 Assume that p € R with p > 1, then there exists a constant K > 0, only
dependent on b — a, such that the inequality

Ixlleg) < K- llxll 10

holds for all x € Wi’p(]), and hence the immersion Wi’p(]) < C(J) is continuous.

Definition 2.2 Let p € R be such that p > 1, define the set Wé:’i (J) as the closure of the
set CiU%) in W, ()). We define H} , (/) := Wo'3 ().

The spaces WS’IZ (J) and H} , (J) are endowed with the norm induced by || - || v defined
’ ’ A
in (2.1), and the inner product induced by (-, -) HL defined in (2.2). These spaces satisfy the

following properties.

Proposition 2.2 (Poincare’s inequality) Let p € R be such that p > 1. Then there exists a

constant L > 0, only dependent on b — a, such that
1,
lleellyy1p < L - [ ||L12 Vu € Wy ()

Proposition 2.3 (Corollary 3.3 in [27]) Ifu € Hé,A(]), then

b b
/a (u”)z(t)Atf)%/a (u®)*(5) At

holds, where ., is the smallest positive eigenvalue of problem —u®*(t) = Au° (¢); t €] * and
u(a) =0 = u(b).

In the Sobolev space Hé] AU) with a =0 and b = T, consider the inner product

T
(u,v):/(; u(Ov2 () At

inducing the norm || - ||.
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It is the consequence of Poincare’s inequality that

A —
gy = Ntllyngy < e[ 2 oy = el (2:3)

and

lluell = Neell 12y = 2ullyy | )- (2.4)

3 Variational formulation of (P) and existence results
Firstly, to show the variational structure underlying an impulsive dynamic equation, we
consider the lineal problem

) + 2l (8) = h(t), A-aete]<,
(LP) uA(tj*)—uA(t]f):d«, i=12,...,p,
u(0) =u(T) =0,

where we consider / witha=0and b=T and d},j=1,..., p, are fixed constants.
Suppose that u# € Ciq(/) is such that #(0) = 0 = u(T). Moreover, assume that for every
j=0,1,...,p, tj:= t|gs,,) is such that u; € H3 (8, tj.1).

Definition 3.1 We say that u is a classical solution of (LP) if the limits uA(t}-*) and uA(tj‘)
exist for everyj=1,2,...,p and it satisfies the equation on (LP) for A-almost everywhere
(A-a.e)t e]Kz.

Take v € Hj , (J), multiply the equation by v* and integrate between 0 and 7"

T T T
—/ uttye +A/ u®v° =/ ne.
0 0 0

Taking into account that v(0) = 0 = v(T') and integrating by parts, we get

T A e AA C NN NN
—/u v":—E/ u v“:E —(uv);+ +/ uvy
0 L X U t

j=0

p T
= Zdjv(tj) + / utvA,
=1 0
Hence,
T T T p
/ uv® + A/ u’v’ :/ he — Zdi"(t/)'
0 0 0 P
We define the bilinear form a : Hj , (J) x Hj o(J) = R by

T T
a(u,v) :/ utv® +A/ u’ve, (3.1)
0 0
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and the linear operator /: Hj , (/) = R by

T )4
Iv) = /0 e = dv(s). (3.2)
j=1

Thus, the concept of weak solution for the impulsive problem (LP) is a function u €
H; o (J) such that a(u, v) = I(v) is valid for any v € Hj) , (]).

We can prove that a defined by (3.1) and / defined by (3.2) are continuous, and, from
Proposition 2.3, that a is coercive if 1 > —A;.

Consider ¢ : Hj ,(J) = R defined by

) = 1a(v v)—Iv) = l/T(VA)2 + » /T(V‘T)2 - /Thv” + id»v(tl) (3.3)
o) = alv, =3, 2, ; ,‘:1]1' .
We can deduce the following regularity properties which allow us to assert that the so-

lutions to (LP) are precisely the critical points of ¢.

Lemma 3.1 The following statements are valid.
1. o isdifferentiable at any u € Hé,A(]) and

T T T p
((p/(u),v) = /0 uv® + )»/0 u®v’ —/0 o+ ;djv(tj) =a(u,v) - I(v).

2. IfueHyA()) is a critical point of ¢ defined by (3.3), then u is a weak solution of the
impulsive problem (LP).

We will use the following result in linear functional analysis, which ensures the existence
of a critical point of ¢.

Theorem 3.1 (Lax-Milgram theorem) Let H be a Hilbert space and let a: H x H — R be
a bounded bilinear form. If a is coercive, i.e., there exists a > 0 such that a(u,u) > o] u|?
for every u € H, then for any o € H' (the conjugate space of H) there exists a unique u € H
such that

a(u,v) = {p,v), veEH.

Moreover, if a is also symmetric, then the functional ] : H — R defined by

1
](V) = Eﬂ(u! V) —{@,v),
attains its minimum at u.
By the Lax-Milgram theorem, we obtain the following result.

Theorem 3.2 If ). > —); then the problem (LP) has a weak solution u € Hé] AU) for any
h € L (J°). Moreover, u € Hx (J) and u is a classical solution and u minimizes the functional
(3.3), and hence it is a critical point of ¢.

Page 5 of 15
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3.1 Impulsive nonlinear problem
We consider the nonlinear Dirichlet problem

—uBB () + 2 (8) = f(Lu” (1) A-ae.te]<,
(P) b)) - ut() =), j=12....p,
u(0) =0 =u(T).

We assume that A > —A;.
A weak solution of (P) is a function u € Hé] AU such that

T T
A_A o o o
/(; u-v +A/ u’v’ E 1 /(; f(t,u (t))v (t)At

for every v e Hy , (/).
We now consider the functional

() = Salu ) ~ 1)
T p u()) T
= %/0 (MA)Z + ﬁf + 121/(; t) dt_/(; F(t, Mo(t))At, (3.4)

where F(t,u) := [ f(t,%) dx.
One can deduce, from the properties of H, f and I, the following regularity properties

of ¢.

Proposition 3.1 The functional ¢ defined by (3.4) is continuous, differentiable, and weakly
lower semi-continuous. Moreover, the critical points of ¢ are weak solutions of (P).

Theorem 3.3 Suppose that f is bounded and that the impulsive functions I; are bounded.
Then there is a critical point of ¢, and (P) has at least one solution.

Proof Take M >0 and M; >0,;j=1,2,...,p, such that
[ft,u)| <M Y(t,u)e[0,Tlr xR

and
Lw)| <M; YueR,j=1,2,...,p.

Using that A > 14, there exists o > 0 such that for any u € Hj , (/)

o(u) %||u||2+2/ I(tdt/ F(t,u” () At

= S lul? —ZM|u(t,)| M/ |u” ()| At.
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Thus, using Proposition 2.1, (2.3) and m = max;.y,. ,{M, M;}, we have

p T
o) > %IIuIIZ—m(Zlu(t;)i—/o |u°(t)|At)

j=1

o o
> EIIMII2 —m(pllullcy) + Tlullcy) = Ellbtll2 —mpllullcy)

Ll - L ul? -
= Sl = mpKilullyy = 2 llull® - mpKeljul,

where p=p+T.
This implies that lim,—. ¢(#) = +00, and ¢ is coercive. Hence (Th. 1.1 of [26]), ¢ has
a minimum, which is a critical point of ¢. 0

Theorem 3.4 Suppose that f is sublinear and the impulsive functions I; have sublinear
growth. Then there is a critical point of ¢ and (P) has at least one solution.

Proof Leta,b,a;,b;>0,and y,y; €[0,1),j=1,2,...,p, such that
V(t, u)‘ <a+blul” and |Ij(u)’ <aj+bjlul” Vtel0,Tlr,uck.

Again, using that A > —;, Proposition 2.1, (2.3) and m = max;_i, . p{a, 4;}, m = max;_1,_,{b,
b;}, we have

o
@(u) = Ellull2 — Bllull - 8llul”*,

where B = mpKc and § = mpKY*c’*1,

Since y +1 <2, then lim . o ¢ (1) = +00 for every u € Hj o (J). O

4 Impulsive nonlinear problem with linear derivative dependence
Consider the following problem:

—ubB () + gOuP (0 (1) + M’ () = f(t,u ();  A-ae.te]<,
(NP) =) - ub (&) = Lu)), j=12....p,
u(0) =0 =u(T),

where f and I;,j =1,..., p are continuous and g is continuous and regressive.

We assume that A > —mA/M. Here, m = minse; e4(£,0), M = max;e; e4(t, 0), where e,(z, 0)
is an exponential function. Note that, as g is regressive, e,(-,0) is the solution of the prob-
lem

¥ =gy,  y0)=1

We transform the problem (NP) into the following equivalent form:

—(eg (£, 00U (£))™ + heg(t,0)u° (2) = (1, 0)f (t,u° (£));  A-ae.t €],
(NPE) —(MA(t;) - MA(’;)) = I](u(t]))x j=L2,...,p,
u(0) = u(T) = 0.
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Obviously, the solutions of (NPE) are solutions of (NP). Consider the Hilbert space
H; ,(J) with the inner product:

T
(u,v):/(; eg(t,O)uA(t)vA(t)At

and the norm induced

T 2
Ilull=(/0 eg(t,0)|MA(t)|2At) .

A weak solution of (NPE) is a function u € Hé, AU such that
T T
/ e(t, 0)u™ (v () At + A/ eq(t, 0)u’ ()V° () At
0 0
)2 T
= Z eq(t;, )1 (u(t))v(8) + / eq(t, 0)f (¢, u” (1)) () At.
j=1 0
Hence, a weak solution of (NP) is a critical point of the following functional:
1 )4 u(tj) T
Y(u) = EA(M, u) — Z e,(t,0) /0 Li(t)dt - /0 eq(t, O)F(t, u’ (t)) At, (4.1)
j=1

where
Hnm:ﬁfm@&

and
T T
Alu,u) = f e (t, 0)u (W () At + A/ eq(t,0)u’ ()’ () At.
0 0

It is evident that A is bilinear, continuous and symmetric.

Lemma 4.1 (Theorem 38.A of [29]) For the functional F : M C X — R with M not empty,
mingep F(u) = a has solutions in case the following hold:

() X is a reflexive Banach space.

(i) M is bounded and weak sequentially closed.

(ili) @ is sequentially lower semi-continuous on M.
Lemma 4.2 (Analogous to Lemma 2.2 of [5]) There exist constants B > o > 0 such that

allul? < Aw,u) < llul?,  ueH ().

Proof In fact, by Poincare’s inequality, if A > 0, we cantakea =1, 8 =1+ ;\I—A}i ; if _r;’/fl <A<

0, then we can take o =1 + % and 8 =1. 0
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Lemma4.3 Ifue H},)A(]), then there exists a constant § > 0 such that ||ullo < §||u||, where
lullo= max |u()].
te[0,T]

Proof The result is followed by the following inequalities:

T T % T %
’u(t)’ 5/0 ’uA(s)’Asf (/0 eg(i 0)) </(; eg(t,O)’uA(s)yzAs)
T
S\/jllull =5 |ul. o
m

Lemma 4.4 The functional  defined by (4.1) is continuous, continuously differentiable

and weakly lower semi-continuous.

Theorem 4.1 Suppose that A > _’;’4“ ,f and I; are bounded, j = 1,2,...,p, then (NP) has at

least one solution.

Proof Take B>0and B;>0,/=1,...,p, such that

[f(t,u)| <B V(t,u)€[0,T]r xR,

I(w)| <B, VYueR,j=12,...,p.
] ]

For any u € Hj ,(J), using Lemma 4.3 and Proposition 2.3, we have

P
o T
W) = ol - (Ma > B,+BM,/—>||M||.
2 e mi

This implies that limy,,—, - ¥ (%) = +00, and ' is coercive. Hence, ¥ has a minimum, which

is a critical point of . d

We will apply the mountain pass theorem in order to obtain at least two critical points
of .

Suppose that X is a Banach space (in particular, a Hilbert space) and ¢ : X — R is dif-
ferentiable and ¢ € R. We say that ¢ satisfies the Palais-Smale condition if every bounded
sequence {uy} in the space X such that limy_, o, ¢'(z4x) = O contains a convergent subse-

quence.

Theorem 4.2 (Mountain pass theorem) Let ¢ € C' be such that it satisfies the Palais-
Smale condition. Assume that there exist uy, uy € X and a bounded neighborhood Q2 of u,
such that u, ¢ Q and

inf{¢(u) ‘u e BQ} > max{d)(uo),qb(ul)}.

Then there exists a critical point u* of ¢.

Theorem 4.3 Suppose that ) > M’\l , then the problem (NP) has at least two solutions if

the following conditions hold:
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(H1) There exist constants n > 2 and y > 0 such that for all (t,u) € [0, Tt x R, |u| >y
0<nF(e) <uf(tu,  0<n [ 1E)de < upw)
0

wherej=1,2,...,p.

(Hy) There exists a positive s > n such that f(t,u) = o(|ul*) and Ij(u) = o(|ul*) uniformly for
tel0,T]r as |u| - 00,j=1,2,...,p.

(H3) f(t,u) = o(|u|) and Ij(u) = o(|u|) uniformly for t € [0, Ty as |u|l — 0,j=1,2,...,p.

Proof From (H,), (H3) and the continuities of / and I, it is easy to see that for any & > 0
and (¢, u) € [0, T]r x R, there exist Ci(¢) > 0 and Cy; > 0 such that

Ift,w)| < elul + Ci(e)|ul’,

()| < elul + Cyy(e)|ul’.

Hence, for any ¢ > 0 and (¢t,u) € [0, Tt x R, we have

ut]
Flt,u) < / [66 + Cu(e)e") e < EJul? + o)™, (4.2)
0
u |u)
/ I8 de < / (68 + Cy)8°] e = = lul” + (o)l 43)
0 0
cyjte)

where Cy(¢) = CSIT(f) and Cy(e) = <1

From the condition (H;), the following hold:

Integrating the above two inequalities with respect to u on [y, u] and [u, —y], respec-

tively (in this case, these are integrals on R), we have

u F(t,u) 14 F(t,~y)
In— <1 Yu=>vy, In— >1 Yu < -y.
B L O
That is,
u\" —u\"
F(t,u)zF(t,y)(—) Yu >y, F(t,u)zF(t,—y)(—) Yu>-y.
Y 14

Thus there exists a constant a; > 0 such that F(¢, u) > a;|u|” for all |u| > y.

From the continuity of F(¢, u), there exists a constant k > 0 such that
Flt,u) > k> a|u|" —ary" -k VY|u| <vy.
Hence, we have
F(t,u) > am|u|"—a, Y(t,u)e[0, Tt xR, (4.4)

where a; = a1y + k.

Page 10 of 15
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Similarly, there exist a,j, a5; > 0 such that

u
/ L&) dE > ayjlu|” —ay YueR. (4.5)
0

Firstly, we apply Lemma 4.1 to show that there exists p such that ¢ has a local minimum
uo € B, = {u € H \ () : [lull < p).

Since Hj , (/) is a Hilbert space, it is easy to deduce that B, is bounded and weak se-
quentially closed. Lemma 4.4 has shown that v is weak lower semi-continuous on B,
and, besides, H(l), A(J) is a reflexive Banach space. So, by Lemma 4.1 we can have this u,
such that ¥ (u0) = min{yr () : u € Bp}.

Now we will show that ¥ () = min{y () : u € 9B,} for some p = po.

In fact, from (4.2) and (4.3), we obtain

W () %||u||2 ZegtO)/ () dt - /eg(t,o)F(t,u“(t))At

p
o &
> = lull® - Zeg<t,0)(5|u|2 + cz,(e)|u|“l)
j=1
T & 9 o |s+1
— | eg(t,0)[ =|ul* + Co(e)|u” |
0 2
AT € oy 12 esel . s+
> o lull® = Mopd®|ull® 8 1M Y Coyle)llu

j=1

M T T o
—78/0 yuf’(t)\zAt—Mcz(g)/o |uo ()] At

14
o &
o Il = Mo p? ) = 641 M Y Coyle) )

=
j=1
Me 1 5 Tk s+t
e —_MC s - s+1
3 1P = MCoe)
Hence,
o — Me(L- + 82p) Co(e) Tk s
e o lue]> = | 55! Zcz,( )+ — -l L
We can choose
o
£= —— i ——
2M(m_)\1 +82p)

( : )
Po = S+1 o5+ ‘
BM(HEZCT Cole) + 8541 10, Cof(e)

For any u € 9B,,, llull = po, we have (u) > L > 0. Besides, ¥ (1) < ¥(0) = 0. Then
¥ (u) >y > ¥ (0) > ¥ (up) for any u € 3B,,. So, w(uo) <inf{yr(u) : u € 0B,,}. Hence, ¥

has a local minimum uy € By, ={u € Hé’AU) llu|l < po}-

Page 11 0of 15
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Next, we will show that there exists u; with ||u]| > pg such that v (u;) < inf{y/(x) : u €
9B, ).
From (4.4) and (4.5), we have

B p ul(ty) T
V(u) < E||u||2 - Zeg(t,O)/O I(#) dt—/o eg(t, 0)F (t,u° (t)) At
j=1
B - !
< §||u||2 - Zeg(t: 0)(ﬂ1j\u(t/)|n — a)) —/0 eg(t,O)(ﬂ1|MU(f)|n —a)
j=1
B » » T
< §||u||2 - chzU|u(tj)|'7 +MZa2j - mal'/o |u"(t)|nAt +Ma,T.
j=1 j=1

Thus,

P p
Y(u) < §||u||2 —mZa1j|u(tj)|” +MZa2j—mal ||1,t(r ZZ + Ma,T.
j=1

j=1

For any u € Hj ,(J) with [|u| =1, we have

g ; 3 ’
51\[2 —m;ﬂle”M(tj)V +Mj2:1:“2j —maN" || |

lﬁ(Nu) < n +Mﬂ2T.
A

L

So, limy_, « ¥ (Nu) = —00 since 1 > 2. Then there exists Ny > po such that ¥ (Nyu) < 0.
Hence, for the above py, there exists 1; such that ||u|| = Ny and v (z;) < 0.
Then, we have max{y(u), ¥ (u1)} < inf{y/ () : u € 9B, }.
The next step is to show that i satisfies the Palais-Smale condition.
Let {y(ux)} be a bounded sequence such that limy_, o ¥ (ux) = 0. Now we show that
letc || is bounded. By (4.1) we have

T
(0, ) = Al 1) — /0 gt 0)F (1,5 ()1 (D) At

14
= eg(t, 0)L (u(8y)) ua (). (4.6)
j=1
Thus,
1, 11
v () — = (V' (), uk) = (— - _)A(Uk: up) + I+
1 2
(1 1) N
> | === Jallul|” + T+ Ty,
2
where

T T
I = 1/0 eq(t, O)f(t,uZ(t))uZ(t)At—/O eq(t, 0)F (£, uf (t)) At,

1<& r ui(t)
T, = ; > eg(t, 0)L (i () uicty) = > e(2,0) /0 I(t) dt.
j=1 j=1
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Note that J = YU TX, where Yf = {t € ] : |ux(t)| < v}, YX = {t €] : lui(¢)| = y}, and that
there exists a constant ¢ such that

|F(t, u“(t))| <g, [f(t, u® (H)u’ (t))| <c, iflul<y, (4.7)

u(t;)
/ I(t)dt
0

So, by (H;) and (4.7), we have

<g, |I/(u(t,-))u(tj)| <c iflul<y. (4.8)

1 1
I, = ;/le eq(t, 0)f (£, uf (£))uf () At + ;/Tg eq(t, 0)f (£, uf (£))uf, (£) At
- /le eq(£,0)F(t, uZ(t))At—/TZk eqg(t,0)F (¢, uf (t)) At

> —% /le eq(t, 0)|f (£ uf (6))uf ()| AL - /le e, (t,0)|F(¢,uf ()| At

1
' Efvzk e (6, 0)f (1,47 (1)) () At - /T ; eg(t; 0)F (¢, uf (1)) At
Z C/ + C// =y,

where ¢/, ¢’ and ¢; are constants (independent of k).
Analogously, there exists a constant ¢, (independent of k) such that Té( > ).
Hence,

1 1 1
Y (ur) > (E - ;)Ol”uk”2 + ;(Vf,(uk)» Mk) +T1+ 10

11 , 1,
=3 allul)* = =¥ @) | lull + e + ca.
n n

Since ¥ (u) is bounded, we have {||u||}72; is a bounded sequence.

Hence, there exists a subsequence {u;} (for simplicity denoted again by {u}) such that
{ur} weakly converges to some u in H(l)‘ AU). Then the sequence {u;} converges uniformly
to u in C(J).

By (4.6), we have

T
el = /0 eg(£,0)(f (£ uf )uf - Aui)At + (W (i), )
)2
+ ) eg(t, 00 (i (8y)) ua ().
j=1
So, we have
T »
klggo luell? = /0 eq(t, 0)(f(t, u")u" - Auz)At + Zl eg(t, O)Ij(u(tj))u(t,»).
j=

Then ||ux|| converges in H(l)'A (/). Since H(l),A (/) is a Hilbert space, and the sequence {u} €
Hé,A(]) satisfies uy — u, then {u;} converges to u, i.e., uy — u.  satisfies the Palais-Smale
condition.
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Now, by Theorem 4.2, there exists a critical point u*. Therefore, #y and u* are two crit-
ical points of v, and they are classical solutions of (NPE). Hence, 1, and u* are classical
solutions of (NP). O

Example 4.1 Let T=hZ for0<h< T, T € hZ and t; € (0,T). Thus, J = [0, T] N hZ and
J© =10, T — h] N hZ. Consider the following boundary value problem:

) +aul(t+ )+ aut +h) = Pt + h);  A-ae te]<,
—Wh (&) - u™ () = u®(t), (4.9)
u(0) =0 =u(T),

where o > 0 is a constant.

We can see that g(t) = « is regressive and continuous. If we take n = s = 6 and A > —21

T
(1+ah) 7
by Theorem 4.3, Eq. (4.9) has at least two solutions.
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