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Abstract
This paper is devoted to study the existence and multiplicity of positive solutions for
the fourth-order p-Laplacian boundary value problem involving impulsive effects

⎧⎪⎨
⎪⎩
(|y′′|p–1y′′)′′ = f (t, y), t ∈ J, t �= tk ,

�y′|t=tk = –Ik(y(tk)), k = 1, 2, . . . ,m,

y(0) = y(1) = y′′(0) = y′′(1) = 0,

where J = [0, 1], f ∈ C([0, 1]×R
+,R+), Ik ∈ C(R+,R+) (R+ := [0,∞)). Based on a priori

estimates achieved by utilizing the properties of concave functions and Jensen’s
inequality, we adopt fixed point index theory to establish our main results.
MSC: 34B18; 47H07; 47H11; 45M20; 26D15

Keywords: p-Laplacian boundary value problem with impulsive effects; positive
solution; fixed point index; concave function; Jensen inequality

1 Introduction
In this paper, we mainly investigate the existence and multiplicity of positive solutions for
the fourth-order p-Laplacian boundary value problem with impulsive effects

⎧⎪⎪⎨
⎪⎪⎩
(|y′′|p–y′′)′′ = f (t, y), t ∈ J , t �= tk ,

�y′|t=tk = –Ik(y(tk)), k = , , . . . ,m,

y() = y() = y′′() = y′′() = .

(.)

Here J = [, ], f ∈ C([, ] × R
+,R+), Ik ∈ C(R+,R+). Let  < t < · · · < tm <  be fixed,

�y′|t=tk = y′(t+k ) – y′(t–k ), where y′(t+k ) and y′(t–k ) denote the right and left limit of y′(t) at
t = tk , respectively.
Fourth-order boundary value problems, including those with the p-Laplacian operator,

have their origin in beam theory [, ], ice formation [, ], fluids on lungs [], brain warp-
ing [, ], designing special curves on surfaces [, ], etc. In beam theory, more specifi-
cally, a beam with a small deformation, a beam of a material which satisfies a nonlinear
power-like stress and strain law, and a beam with two-sided links which satisfies a nonlin-
ear power-like elasticity law can be described by fourth-order differential equations along
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with their boundary value conditions. For the case of Ik = , k = , , . . . ,m, and p = , prob-
lem (.) reduces to the differential equation y()(t) = f (t, y(t)) subject to boundary value
conditions y() = y() = y′′() = y′′() = , which can be used to model the deflection of
elastic beams simply supported at the endpoints [–]. This explains the reason that the
last two decades have witnessed an overgrowing interest in the research of such problems,
withmany papers in this direction published.We refer the interested reader to [–] and
references therein devoted to the existence of solutions for the equations with p-Laplacian
operator.
In [], Zhang et al. studied the existence and nonexistence of symmetric positive solu-

tions of the following fourth-order boundary value problem with integral boundary con-
ditions:

⎧⎪⎪⎨
⎪⎪⎩
(φp(u′′(t)))′′ = w(t)f (t,u(t)),  < t < ,

u() = u() =
∫ 
 g(s)u(s) ds,

φp(u′′()) = φp(u′′()) =
∫ 
 h(s)φp(u′′(s)) ds,

(.)

where w ∈ L[, ] is nonnegative, symmetric on the interval [, ] (i.e., w( – t) = w(t) for
t ∈ [, ]), f ∈ C([, ] × R

+,R+), f ( – t,u) = f (t,u) for all (t,x) ∈ [, ] × R
+, and g,h ∈

L[, ] are nonnegative, symmetric on [, ]. The arguments are based upon a specially
constructed cone and the fixed point theory for cones. Moreover, they also studied the
nonexistence of a positive solution.
In [], Luo and Luo considered the existence, multiplicity, and nonexistence of sym-

metric positive solutions for (.) with a φ-Laplacian operator and the term f involving
the first derivative.
Except that, many researchers considered and studied the existence of positive solutions

for a lot of impulsive boundary value problems; see, for example, [–] and the refer-
ences therein.
In [], Feng considered the problem (.) with impulsive effects and he obtained the ex-

istence and multiplicity of positive solutions. The fundamental tool in this paper is Guo-
Krasnosel’skii fixed point theorem on a cone. Moreover, the nonlinearity f can be allowed
to grow both sublinear and superlinear. Therefore, he improved and generalized the re-
sults of [] to some degree. However, we can easily find that these papers do only simple
promotion based on their original papers, and no substantial changes.
Motivated by the worksmentioned above, in this paper, we study the existence andmul-

tiplicity of positive solutions for (.). Nevertheless, our methodology and results in this
paper are different from those in the papers cited above. The main features of this paper
are as follows. Firstly, we convert the boundary value problem (.) into an equivalent in-
tegral equation. Next, we consider impulsive effect as a perturbation to the corresponding
problem without the impulsive terms, so that we can construct an integral operator for an
appropriate linear Dirichlet boundary value problem and obtain its first eigenvalue and
eigenfunction. Our main results are formulated in terms of spectral radii of the linear in-
tegral operator, and our a priori estimates for positive solutions are derived by developing
some properties of positive concave functions and using Jensen’s inequality. It is of inter-
est to note that our nonlinearity f may grow superlinearly and sublinearly. The main tool
used in the proofs is fixed point index theory, combinedwith the a priori estimates of posi-
tive solutions. Although our problem (.) merely involves Dirichlet boundary conditions,
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both our methodology and the results in this work improve and extend the corresponding
ones from [–].

2 Preliminaries
Let E := C[, ], ‖u‖ := supt∈[,] |u(t)|. Then (E,‖ · ‖) is a real Banach space. Let J ′ := J \
{t, t, . . . , tm} and introduce the following space:

PC′[, ] :=
{
y ∈ C[, ], y′|(tk ,tk+) ∈ C(tk , tk+), y′(t–k )

= y′(tk),∃y′(t+k ),k = , , . . . ,m
}

with the norm ‖y‖PC′ =max{‖y‖,‖y′‖}. Then (PC′[, ],‖ · ‖PC′ ) is also a Banach space.
A function y ∈ PC′[, ] ∩ C(J ′) is called a solution of (.) if it satisfies the differential

equation

(∣∣y′′∣∣p–y′′)′′ = f (t, y), t ∈ J ′,

and the function y satisfies the conditions �y′|t=tk = y′(t+k ) – y′(t–k ) = –Ik(y(tk)), and the
Dirichlet boundary conditions y() = y() = y′′() = y′′() = .

Lemma . (see []) If y is a solution of the integral equation

y(t) =
∫ 


G(t, s)

(∫ 


G(s, τ )f

(
τ , y(τ )

)
dτ

) 
p
ds +

m∑
k=

G(t, tk)Ik
(
y(tk)

)
:= (Ay)(t), (.)

then y is a solution of (.),where G(t, s) =min{t, s}min{– s, – t}, ∀t, s ∈ [, ].Note that if
f ∈ C([, ]×R

+,R+), Ik ∈ C(R+,R+), then A : C[, ] → C[, ] is a completely continuous
operator, and the existence of positive solutions for (.) is equivalent to that of positive fixed
points of A.

Remark . By (.), we easily find y is concave on [, ]. Indeed,

y′′(t) = –
(∫ 


G(t, s)f

(
s, y(s)

)
ds

) 
p

≤ 

implies y is concave on [, ]. Furthermore, y(tk) =  (k = , , . . . ,m) leads to y(t) ≡ , ∀t ∈
[, ].

Let P be a cone in C[, ] which is defined as

P :=
{
y ∈ C[, ] : y(t) ≥ t( – t)‖y‖, t ∈ J

}
.

In what follows, we prove that A(P) ⊂ P.

Lemma . A(P) ⊂ P.

Proof We easily see that t(– t)G(s, s)≤ G(t, s) ≤ G(s, s), ∀t, s ∈ [, ]. Consequently, on the
one hand, we find

(Ay)(t) ≤
∫ 


G(s, s)

(∫ 


G(s, τ )f

(
τ , y(τ )

)
dτ

) 
p
ds +

m∑
k=

G(tk , tk)Ik
(
y(tk)

)
.
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On the other hand,

(Ay)(t) ≥ t( – t)

[∫ 


G(s, s)

(∫ 


G(s, τ )f

(
τ , y(τ )

)
dτ

) 
p
ds +

m∑
k=

G(tk , tk)Ik
(
y(tk)

)]
.

Therefore, (Ay)(t) ≥ t( – t)‖Ay‖, for any t ∈ [, ], as required. This completes the proof.
�

We denote Bρ := {u ∈ E : ‖u‖ < ρ} for ρ >  in the sequel.

Lemma . (see []) Suppose A : P → P is a completely continuous operator and has no
fixed points on ∂Bρ ∩ P.
. If ‖Ay‖ ≤ ‖y‖ for all y ∈ ∂Bρ ∩ P, then i(A,Bρ ∩ P,P) = , where i is fixed point index

on P.
. If ‖Ay‖ ≥ ‖y‖ for all y ∈ ∂Bρ ∩ P, then i(A,Bρ ∩ P,P) = .

Lemma . (see []) If A : Bρ ∩P → P is a completely continuous operator. If there exists
y ∈ P \ {} such that y –Ay �= λy, ∀λ ≥ , y ∈ ∂Bρ ∩ P, then i(A,Bρ ∩ P,P) = .

Lemma . (see []) If  ∈ Bρ and A : Bρ ∩P → P is a completely continuous operator. If
y �= λAy, ∀y ∈ ∂Bρ ∩ P,  ≤ λ ≤ , then i(A,Bρ ∩ P,P) = .

Lemma . Let ψ(t) := sin(π t). Then

∫ 


G(t, s)ψ(t) dt =


π ψ(s),

∫ 


G(t, s)ψ(s) ds =


π ψ(t). (.)

Lemma . (Jensen’s inequalities) Let θ > , n ≥ , ai ≥  (i = , , . . . ,n), and ϕ ∈
C([, ],R+). Then

(∫ 


ϕ(t) dt

)θ

≤
∫ 



(
ϕ(t)

)θ dt and

( n∑
i=

ai

)θ

≤ (n–)(θ–)
n∑
i=

aθ
i , ∀θ ≥ ,

(∫ 


ϕ(t) dt

)θ

≥
∫ 



(
ϕ(t)

)θ dt and

( n∑
i=

ai

)θ

≥ (n–)(θ–)
n∑
i=

aθ
i , ∀ < θ ≤ .

3 Main results
Let p∗ :=max{,p}, p∗ :=min{,p}, κ := p∗–, κ := m(p∗–), κ := p∗–, κ := m(p∗–), κ :=


p∗
p +p∗–, κ := (m+)(p∗–). We now list our hypotheses.
(H) There is a ρ >  such that  ≤ y < ρ and  ≤ t ≤  imply

f (t, y) ≤ ηpρp, Ik(y) ≤ ηkρ,

where η,ηk ≥  satisfy

η +
m∑
k=

ηk > , η

∫ 


G(s, s)

(∫ 


G(s, τ ) dτ

) 
p
ds +

m∑
k=

G(tk , tk)ηk < .
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(H) There exist  < r < ρ and a ≥ , a ≥  satisfying

a
p∗
p
 κ +

π


σ p∗ap∗

 κ

m∑
k=

sin(π tk) > π

such that

f (t, y) ≥ ayp, Ik(y) ≥ ay, ∀t ∈ [, ],  < y < r, (.)

where σ :=mint∈[t,tm] t( – t) > .
(H) There exist c >  and a ≥ , a ≥  satisfying

a
p∗
p
 κ +

π


σ p∗ap∗

 κ

m∑
k=

sin(π tk) > π

such that

f (t, y) ≥ ayp – c, Ik(y) ≥ ay – c, ∀t ∈ [, ], y≥ . (.)

(H) There is a ρ >  such that σρ ≤ y≤ ρ and  ≤ t ≤  imply

f (t, y) ≥ ξpρp, Ik(y) ≥ ξkρ,

where ξ , ξk ≥  satisfy

ξ +
m∑
k=

ξk > , ξ

∫ tm

t
G

(


, s

)(∫ 


G(s, τ ) dτ

) 
p
ds +

m∑
k=

G
(


, tk

)
ξk > .

(H) There exist  < r < ρ and b ≥ , b ≥  satisfying

b + b �= , b
p∗
p
 κ +

πbp
∗

 κ
∑m

k= sin(π tk)∫ 
 (t( – t))p∗ sin(π t) dt

< π

such that

f (t, y) ≤ byp, Ik(y) ≤ by, ∀t ∈ [, ],  < y < r. (.)

(H) There exist c >  and b ≥ , b ≥  satisfying

b + b �= , b
p∗
p
 κ +

πbp
∗

 κ
∑m

k= sin(π tk)∫ 
 (t( – t))p∗ sin(π t) dt

< π

such that

f (t, y) ≤ byp + c, Ik(y) ≤ by + c, ∀t ∈ [, ], y≥ . (.)

http://www.boundaryvalueproblems.com/content/2013/1/120
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Theorem . Suppose that (H)-(H) are satisfied. Then (.) has at least two positive
solutions.

Proof If y ∈ ∂Bρ ∩ P, it follows from (H) that

‖Ay‖ ≤
∫ 


G(s, s)

(∫ 


G(s, τ )f

(
τ , y(τ )

)
dτ

) 
p
ds +

m∑
k=

G(tk , tk)Ik
(
y(tk)

)

≤ ρ

(
η

∫ 


G(s, s)

(∫ 


G(s, τ ) dτ

) 
p
ds +

m∑
k=

G(tk , tk)ηk

)
< ρ = ‖y‖.

Now Lemma . yields

i(A,Bρ ∩ P,P) = . (.)

Let r ∈ (, r). Then for y ∈ ∂Br ∩ P, we find

y(t) ≥ t( – t)‖y‖ ≥ σ r, ∀t ∈ [t, tm], (.)

where σ = mint∈[t,tm] t( – t) > . Let M := {y ∈ P : y = Ay + λψ for some λ ≥ }, where
ψ(t) = sin(π t). Next, from (H), we prove M ⊂ {}. Indeed, y ∈ M implies y(t) ≥ (Ay)(t).
Lemma ., together with this, leads to

yp∗ (t) ≥
[∫ 


G(t, s)

(∫ 


G(s, τ )f

(
τ , y(τ )

)
dτ

) 
p
ds +

m∑
k=

G(t, tk)Ik
(
y(tk)

)]p∗

≥ κ

[∫ 


G(t, s)

(∫ 


G(s, τ )f

(
τ , y(τ )

)
dτ

) 
p
ds

]p∗
+ κ

[ m∑
k=

G(t, tk)Ik
(
y(tk)

)]p∗

≥ κ

∫ 



∫ 


G(t, s)G(s, τ )f

p∗
p

(
τ , y(τ )

)
dτ ds + κ

m∑
k=

G(t, tk)I
p∗
k

(
y(tk)

)
. (.)

Multiply both sides of the above by sin(π t) and integrate over [, ] and use (.) to obtain

∫ 


yp∗ (t) sin(π t) dt ≥ κ

∫ 


sin(π t)

∫ 



∫ 


G(t, s)G(s, τ )f

p∗
p

(
τ , y(τ )

)
dτ dsdt

+ κ

m∑
k=

∫ 


sin(π t)G(t, tk)I

p∗
k

(
y(tk)

)
dt

≥ κ

π

∫ 


f
p∗
p

(
t, y(t)

)
sin(π t) dt +

κ

π

m∑
k=

Ip∗
k

(
y(tk)

)
sin(π tk). (.)

Combining this and (.), we get

∫ 


yp∗ (t) sin(π t) dt ≥ a

p∗
p
 κ

π

∫ 


yp∗ (t) sin(π t) dt +

ap∗
 κ

π

m∑
k=

yp∗ (tk) sin(π tk). (.)

In what follows, we will distinguish three cases.

http://www.boundaryvalueproblems.com/content/2013/1/120
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Case . a
p∗
p
 κ = π. By (H), we know a > . (.) implies

ap∗
 κ

π

m∑
k=

yp∗ (tk) sin(π tk) ≤ .

Therefore, y(tk) =  (k = , , . . . ,m), and then y(t) ≡ , ∀t ∈ [, ] by Remark ., which
contradicts y ∈ ∂Br ∩ P.

Case . a
p∗
p
 κ > π. Equation (.) implies

(
a

p∗
p
 κ

π – 
)∫ 


yp∗ (t) sin(π t) dt +

ap∗
 κ

π

m∑
k=

yp∗ (tk) sin(π tk) ≤ ,

and thus y(t) ≡ , ∀t ∈ [, ], which also contradicts y ∈ ∂Br ∩ P.

Case . a
p∗
p
 κ < π. Since

∫ 
 y

p∗ (t) sin(π t) dt ≤ rp∗
π

, we have by (.) and (.),

[π – a
p∗
p
 κ]rp∗

π
≥ [

π – a
p∗
p
 κ

] ∫ 


yp∗ (t) sin(π t) ≥ πσ p∗rp∗ap∗

 κ

m∑
k=

sin(π tk).

Therefore,

a
p∗
p
 κ +

π


σ p∗ap∗

 κ

m∑
k=

sin(π tk) ≤ π,

which contradicts (H). So, we have y – Ay �= λψ for all y ∈ ∂Br ∩ P and λ ≥ . Now, by
virtue of Lemma ., we obtain

i(A,Br ∩ P,P) = . (.)

On the other hand, by (H), we prove M is bounded in P. By (.) together with (.), we
obtain

∫ 


yp∗ (t) sin(π t) dt

≥ κ

π

∫ 



[
ayp(t) – c

] p∗
p sin(π t) dt +

κ

π

m∑
k=

[
ay(tk) – c

]p∗ sin(π tk)

≥ a
p∗
p
 κ

π

∫ 


yp∗ (t) sin(π t) dt +

ap∗
 κ

π

m∑
k=

yp∗ (tk) sin(π tk) – c, (.)

where c := κc
p∗
p

π + κcp∗
π

∑m
k= sin(π tk). Now we distinguish the following two cases.

Case . a
p∗
p
 κ ≥ π. (H) implies

(
a

p∗
p
 κ – π)∫ 


tp∗ ( – t)p∗ sin(π t) dt + πσ p∗ap∗

 κ

m∑
k=

sin(π tk) > .

http://www.boundaryvalueproblems.com/content/2013/1/120
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Combining this and (.), we have

(
a

p∗
p
 κ – π)∫ 


yp∗ (t) sin(π t) dt + πap∗

 κ

m∑
k=

yp∗ (tk) sin(π tk) ≤ πc.

Therefore,

‖y‖p∗ ≤ πc

(a
p∗
p
 κ – π)

∫ 
 tp∗ ( – t)p∗ sin(π t) dt + πσ p∗ap∗

 κ
∑m

k= sin(π tk)
:=N.

Case . a
p∗
p
 κ < π. (.) implies

[π – a
p∗
p
 κ]‖y‖p∗

π
+ πc

≥ [
π – a

p∗
p
 κ

] ∫ 


yp∗ (t) sin(π t) dt + πc

≥ πap∗
 κ

m∑
k=

yp∗ (tk) sin(π tk)

≥ πσ p∗ap∗
 ‖y‖p∗κ

m∑
k=

sin(π tk),

and thus

‖y‖p∗ ≤ πc

a
p∗
p
 κ + πσ p∗ap∗

 κ
∑m

k= sin(π tk) – π
:=N.

Therefore, we obtain the boundedness of M, as claimed. Taking R > sup{ρ, p∗√N, p∗√N},
we have y–Ay �= λψ for all y ∈ ∂BR ∩P and λ ≥ . Now, by virtue of Lemma ., we obtain

i(A,BR ∩ P,P) = . (.)

Combining (.), (.), and (.), we arrive at

i
(
A, (BR\Bρ)∩ P,P

)
=  –  = –, i

(
A, (Bρ\Br)∩ P,P

)
=  –  = .

Now A has at least two fixed points, one on (BR\Bρ) ∩ P and the other on (Bρ\Br) ∩ P.
Hence (.) has at least two positive solutions. The proof is completed. �

Theorem . Suppose that (H)-(H) are satisfied. Then (.) has at least two positive
solutions.

Proof If y ∈ ∂Bρ ∩ P, then we find

y(t) ≥ t( – t)‖y‖ = σρ, ∀t ∈ [t, tm]. (.)

http://www.boundaryvalueproblems.com/content/2013/1/120
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By (H),

(Ay)
(



)
≥

∫ tm

t
G

(


, s

)(∫ 


G(s, τ )f

(
τ , y(τ )

)
dτ

) 
p
ds +

m∑
k=

G
(


, tk

)
Ik

(
y(tk)

)

≥ ρ

(
ξ

∫ tm

t
G

(


, s

)(∫ 


G(s, τ ) dτ

) 
p
ds +

m∑
k=

G
(


, tk

)
ξk

)
> ρ = ‖y‖,

so that

‖Ay‖ > ‖y‖, ∀y ∈ ∂Bρ ∩ P.

Now Lemma . yields

i(A,Bρ ∩ P,P) = . (.)

Let r ∈ (, r). Then for y ∈ ∂Br ∩ P, we find

y(t) ≥ t( – t)‖y‖ = t( – t)r, ∀t ∈ [, ]. (.)

Let M := {y ∈ P : y = λAy for some λ ∈ [, ]}. Next, from (H), we prove M = {}. In-
deed, if y ∈ M, we have

yp
∗
(t)≤ (Ay)p

∗
(t) =

[∫ 


G(t, s)

(∫ 


G(s, τ )f

(
τ , y(τ )

)
dτ

) 
p
ds +

m∑
k=

G(t, tk)Ik
(
y(tk)

)]p∗

≤ κ

∫ 



∫ 


G(t, s)G(s, τ )f

p∗
p

(
τ , y(τ )

)
dτ ds + κ

m∑
k=

G(t, tk)I
p∗
k

(
y(tk)

)
.

Multiply both sides of the above by sin(π t) and integrate over [, ] and use (.) to obtain

∫ 


yp

∗
(t) sin(π t) dt

≤ κ

π

∫ 


f
p∗
p

(
t, y(t)

)
sin(π t) dt +

κ

π

m∑
k=

Ip
∗

k
(
y(tk)

)
sin(π tk). (.)

Combining this and (.), we have

∫ 


yp

∗
(t) sin(π t) dt ≤ b

p∗
p
 κ

π

∫ 


yp

∗
(t) sin(π t) dt +

bp
∗

 κ

π

m∑
k=

yp
∗
(tk) sin(π tk).

Consequently,

rp
∗(

π – b
p∗
p
 κ

)∫ 



(
t( – t)

)p∗
sin(π t) dt

≤ (
π – b

p∗
p
 κ

)∫ 


yp

∗
(t) sin(π t) dt ≤ rp

∗
πbp

∗
 κ

m∑
k=

sin(π tk),

http://www.boundaryvalueproblems.com/content/2013/1/120
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which contradicts (H). This implies M = {}, and thus y �= λAy for all y ∈ ∂Br ∩ P and
λ ∈ [, ]. Now Lemma . yields

i(A,Br ∩ P,P) = . (.)

On the other hand, by (H), we prove M is bounded in P. By (.) together with (.),
we obtain

∫ 


yp

∗
(t) sin(π t) dt ≤ κ

π

∫ 



(
byp(t) + c

) p∗
p sin(π t) dt +

κ

π

m∑
k=

(
by(tk) + c

)p∗
sin(π tk)

≤ b
p∗
p
 κ

π

∫ 


yp

∗
(t) sin(π t) dt +

bp
∗

 κ

π

m∑
k=

yp
∗
(tk) sin(π tk) + c,

where c := κc
p∗
p

π + κcp
∗

π
∑m

k= sin(π tk). Therefore,

‖y‖p∗(
π – b

p∗
p
 κ

)∫ 



(
t( – t)

)p∗
sin(π t) dt

≤ (
π – b

p∗
p
 κ

)∫ 


yp

∗
(t) sin(π t) dt ≤ ‖y‖p∗

πbp
∗

 κ

m∑
k=

sin(π tk) + πc,

namely,

‖y‖p∗ ≤ πc

(π – b
p∗
p
 κ)

∫ 
 (t( – t))p∗ sin(π t) dt – πbp

∗
 κ

∑m
k= sin(π tk)

:=N.

This proves the boundedness of M, as required. Choosing R > p∗√N and R > ρ , we have
y �= λAy for all y ∈ ∂BR ∩ P and λ ∈ [, ]. Now Lemma . yields

i(A,BR ∩ P,P) = . (.)

Combining (.), (.), and (.), we obtain

i
(
A, (BR\Bρ)∩ P,P

)
=  –  = , i

(
A, (Bρ\Br)∩ P,P

)
=  –  = –.

Hence A has at least two fixed points, one on (BR \Bρ)∩ P and the other on (Bρ \Br)∩ P,
and thus (.) has at least two positive solutions. The proof is completed. �

4 An example
Let us consider the problem

⎧⎪⎪⎨
⎪⎪⎩
(|y′′|p–y′′)′′ = yα + yβ , t ∈ J ′,  < α < p < β ,

�y′|t=tk = –cky(tk), ck ≥ ,k = , , . . . ,m,

y() = y() = y′′() = y′′() = .

(.)

http://www.boundaryvalueproblems.com/content/2013/1/120
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Taking ρ =  in (H),
∑m

k=G(tk , tk)ck <

 , and η >  is chosen such that  < η <  ·  

p . Set
f (t, y) = yα + yβ ,  < α < p < β , ηk = ck . Therefore, f (t, y) ≤ ρα + ρβ =  < ηp, Ik(y) = cky ≤
ckρ = ηk , and

η +
m∑
k=

ηk > , η

∫ 


G(s, s)

(∫ 


G(s, τ ) dτ

) 
p
ds +

m∑
k=

G(tk , tk)ηk < .

As a result, (H) holds. On the other hand, by simple computation, we have

lim inf
y→+

min
t∈[,]

f (t, y)
yp

= +∞, lim inf
y→+∞ min

t∈[,]
f (t, y)
yp

= +∞.

Therefore,
(i) There exist  < r < ρ and a > , a >  such that (H) holds.
(ii) There exist c >  and a > , a >  such that (H) holds.
Consequently, the problem (.) has at least two positive solutions by Theorem ..
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