
Hong Boundary Value Problems 2013, 2013:121
http://www.boundaryvalueproblems.com/content/2013/1/121

RESEARCH Open Access

Existence and stability of solitary waves for
the generalized Korteweg-de Vries equations
Mingli Hong*

*Correspondence:
hml001@sohu.com
Institute of Disaster Prevention,
Sanhe Hebei, 065201, China

Abstract
In this paper, we consider the fractional Korteweg-de Vries equations with general
nonlinearities. By studying constrained minimization problems and applying the
method of concentration-compactness, we obtain the existence of solitary waves for
the generalized Korteweg-de Vries equations under some assumptions of the
nonlinear term. Moreover, we prove that the set of minimizers is a stable set for the
initial value problem of the equations, in the sense that a solution which starts near
the set will remain near it for all time.
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1 Introduction
This paper is devoted to studying the existence and stability of solitary wave solutions of
the generalized Korteweg-de Vries equation

ut +
(
f (u)

)
x –

(
L(u)

)
x =  in R, (.)

where f (u) satisfies the following assumption:
(A) f (u) ∈ C(R,R), limu→

f (u)
|u| =  and lim|u|→∞ f (u)

|u|γ =  for some  < γ <  + α,

L̂(u)(ξ ) = |ξ |αû(ξ ),

 < α ≤ , the Fourier transform Fψ(ξ ) = ψ̂(ξ ) = 

(π )



∫
R
u(x)e–iξ ·x dx.

When f (u) = 
u

 and α = , equation (.) is the well-known Korteweg-de Vries equa-
tion, introduced by Korteweg and de Vries in  (cf. []). The existence and stability
of solitary waves of the Korteweg-de Vries equation is considered by Benjamin in []. Re-
cently, in [], Pelinovsky obtained aKorteweg-deVries equationwith a forcing term,which
is a simple analytical model of tsunami generation by submarine landslides.
Here, we consider the generalizedKorteweg-deVries equation (.). Let F(u) =

∫ u
 f (s)ds.

Since the functionals

E(u) =
∫ +∞

–∞

[


uL(u) – F(u)

]
dx
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and

Q(u) =



∫ +∞

–∞
u dx

are two conserved quantities with (.), for studying the existence of solitary wave solu-
tions to (.), by the variational methods, the solitary wave solutions to equation (.) will
be founded as minimizers of

Iq := inf
{
E(u); u ∈H(R),Q(u) = q

}
, (Iq)

where q > . Denote the set of minimizers of the problem (Iq) by

Gq :=
{
u;u ∈ H(R),E(u) = Iq,Q(u) = q

}
. (Gq)

Inspired by the methods used in [, ], by studying the problem (Iq), we obtain the ex-
istence of solitary waves for equation (.) with some special nonlinearities f (u) = 

pu
p,

where  < p <  + α, and general nonlinearities satisfying the assumption (A). Moreover,
we prove that the set Gq of minimizers is a stable set for the initial value problem of equa-
tion (.) in the sense that a solution which starts near the set will remain near it for all
time. In order to obtain those results, we have to overcome one main difficulty: the min-
imization problem (Iq) is given in the unbounded domain R which results in the loss of
compactness. As is done in [, ], we overcome the difficulty of loss of compactness by
the method of concentration-compactness introduced by Lions in [, ] for solving some
minimization problems in unbounded domains.
Now we give our main results.

Theorem . Suppose that α =  and f (u) satisfies condition (A) and Iq <  for some
q > . Then there exists  < q∗ ≤ q such that Gq∗ is not empty.Moreover, if {un} is a min-
imizing sequence for the problem (Iq∗ ), then there exist a sequence {yn} ⊂ R and g ∈ Gq∗

such that {un(· + yn)} contains a subsequence converging strongly in H(R) to g , and

lim
n→+∞ inf

g∈Gq∗
‖un – g‖ = ,

where ‖ · ‖ is the norm of H(R).

Theorem . Under the assumptions of Theorem ., the set Gq∗ is H(R)-stable with re-
spect to equation (.), i.e., for any ε > , there exists δ >  such that if

inf
g∈Gq∗

‖u – g‖ < δ,

then the solution u(x, t) to equation (.) with initial data u satisfies

inf
g∈Gq∗

∥∥u(t, ·) – g
∥∥ < ε

for any t ∈ [,T).
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Theorem . Suppose that  < α <  and f (u) satisfies condition (A) and Iq <  for some
q > . Then there exists  < q∗ ≤ q such that Gq∗ is not empty. Moreover, if {un} is a
minimizing sequence for the problem (Iq∗ ), then there exists a sequence {yn} ⊂R and g ∈Gq∗

such that {un(· + yn)} contains a subsequence converging strongly in Hα(R) to g , and

lim
n→+∞ inf

g∈Gq∗
‖un – g‖α, = ,

where ‖ · ‖α, is the norm of Hα(R) given in Section .

Theorem . Under the assumptions of Theorem ., the set Gq∗ is Hα(R)-stable with re-
spect to equation (.), i.e., for any ε > , there exists δ >  such that if

inf
g∈Gq∗

‖u – g‖α, < δ,

then the solution u(x, t) to equation (.) with initial data u satisfies

inf
g∈Gq∗

∥∥u(t, ·) – g
∥∥

α, < ε

for any t ∈ [,T).

The paper is organized as follows. In Section , we give some preliminaries. In Section ,
we study the existence and stability of solitary waves of equation (.) with some special
nonlinearities f (u) = 

pu
p. Section  is devoted to studying equation (.) with general non-

linearities f (u) satisfying the assumption (A). We shall consider the existence and stability
of solitary waves of equation (.) with  < α <  in Section .

2 Some preliminaries
At first, we give some notations. The set of all integers and the set of all real numbers are
written as Z andR, respectively. And all the integrals will be taken overR unless specified.
Lp(R) denotes the usual Lebesgue space with the norm | · |p given by

| · |p =
(∫

|u|p dx
) 

p
for ≤ p < +∞.

The Sobolev space H(R) is defined by

H(R) :=
{
u : u ∈ L(R) and ux ∈ L(R)

}
,

whose norm is given by

‖ · ‖ =
(∫ (|ux| + |u|)dx) 


.

Now, we give Lemma . and Lemma . which will be used to study the behavior of the
minimizing sequence for the problem (Iq). Lemma . is due to Lions [, ].

http://www.boundaryvalueproblems.com/content/2013/1/121
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Lemma . Suppose that B >  and δ >  are given. Then there exists η = η(B, δ) such that
if u ∈H(R) with ‖u‖ ≤ B and |u|p+ ≥ δ, then

sup
y∈R

∫ y+ 


y– 


|u|p+ dx ≥ η.

Proof We have

∑
j∈Z

∫ j+ 


j– 


[
(ux) + u

]
dx = ‖u‖ ≤ B

|u|p+p+
|u|p+p+ =

∑
j∈Z

B

|u|p+p+

∫ j+ 


j– 


|u|p+ dx.

Therefore, there exists some j ∈ Z such that

∫ j+ 


j– 


[
(ux) + u

]
dx ≤ B

|u|p+p+

∫ j+ 


j– 


|u|p+ dx.

Applying the Sobolev embedding theorem [], there exists a constant A such that

(∫ j+ 


j– 


[
(ux) + u

]
dx

) 
p+ ≤ A

(∫ j+ 


j– 


[
(ux) + u

]
dx

) 


≤ AB

|u|
p+


p+

(∫ j+ 


j– 


|u|p+ dx
) 


.

Thus, we obtain

∫ j+ 


j– 


|u|p+ dx ≥
( |u|

p+


p+

AB

) (p+)
p– ≥ δ

(p+)
p–

(AB)
(p+)
p–

.

Taking η = δ

(p+)
p–

(AB)
(p+)
p–

, it follows that

sup
y∈R

∫ y+ 


y– 


|u|p+ dx ≥
∫ j+ 



j– 


|u|p+ dx≥ η. �

Lemma . Let {un} be a bounded sequence in H(R) such that

sup
y∈R

∫ y+

y–
|un| dx →  as n→ +∞

for some r > . Then un →  in Ls(R) for  < s < ∞.

Proof Let  < s < ∞. Without loss of generality, we may assume r = . It follows from the
interpolation inequalities that

|u|Ls(B(y,)) ≤ A|u| s+L(B(y,))‖u‖ s–


H(B(y,)),

where A >  is a constant independent of u.

http://www.boundaryvalueproblems.com/content/2013/1/121
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Covering R by a family of intervals (yi – , yi + ) such that each point of R is contained
in at most two such intervals and summing this inequality over this family of intervals, we
get

|u|sLs ≤ A
(
sup
y∈R

∫ y+

y–
|u| dx

) s+
 ‖u‖ s–

 .

Since {un} is bounded in H(R) and supy∈R
∫ y+
y– |un| dx →  as n → +∞, applying the

above inequality, we know that un →  in Ls(R) for  < s < ∞. �

Next, we establish a convergence result that will be used in the proof of Theorem ..

Lemma . Let f ∈ C(R,R) and suppose that

∣∣f (t)∣∣ ≤ C
(|t| + |t|p) for all t ∈ R, (.)

where  < p <∞. If un ⇀ u in H(R) and un → u a.e. on R, then

lim
n→∞

[∫ +∞

–∞
F(un)dx –

∫ +∞

–∞
F(u)dx –

∫ +∞

–∞
F(un – u)dx

]
= ,

where F(u) =
∫ u
 f (s)ds.

Proof Let R > . Applying the mean value theorem, we have

∫ +∞

–∞
F(un)dx

=
∫

|x|<R
F(un)dx +

∫
|x|≥R

F
(
u + (un – u)

)
dx

=
∫

|x|<R
F(un)dx +

∫
|x|≥R

[
F(un – u)dx + f (un – u + θu)u

]
dx,

where  < θ <  is dependent on x and R. Now we write

∣∣∣∣
∫ +∞

–∞
F(un)dx –

∫ +∞

–∞
F(u)dx –

∫ +∞

–∞
F(un – u)dx

∣∣∣∣
≤

∣∣∣∣
∫

|x|<R

[
F(un) – F(u)

]
dx

∣∣∣∣ +
∣∣∣∣
∫

|x|≥R
F(u)dx

∣∣∣∣ +
∣∣∣∣
∫

|x|<R
F(un – u)dx

∣∣∣∣
+

∣∣∣∣
∫

|x|≥R
f (un – u + θu)u dx

∣∣∣∣. (.)

It follows from (.), the mean value theorem and the Hölder inequality that

∣∣∣∣
∫

|x|<R

[
F(un) – F(u)

]
dx

∣∣∣∣
=

∣∣∣∣
∫

|x|<R
f
(
u + θ (un – u)

)
(un – u)dx

∣∣∣∣

http://www.boundaryvalueproblems.com/content/2013/1/121
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≤ C
∫

|x|<R

∣∣u + θ (un – u)
∣∣|un – u|dx

+C
∫

|x|<R

∣∣u + θ (un – u)
∣∣p |un – u|dx

≤ C
∫

|x|<R
|u||un – u|dx +C

∫
|x|<R

|un – u| dx

+ ε

∫
|x|<R

|u|p |un – u|dx +Cε

∫
|x|<R

|un – u|p+ dx

≤ C
(∫

|x|<R
|u| dx

) 

(∫

|x|<R
|un – u| dx

) 

+C

∫
|x|<R

|un – u| dx

+ ε

(∫
|x|<R

|u|p dx
) 


(∫

|x|<R
|un – u| dx

) 


+Cε

∫
|x|<R

|un – u|p+ dx (.)

and

∣∣∣∣
∫

|x|<R
F(un – u)dx

∣∣∣∣ ≤ C
∫

|x|<R
|un – u| dx +C

∫
|x|<R

|un – u|p+ dx. (.)

Since the embedding H(R) ↪→ Lsloc(R) ( ≤ s < ∞) is compact, the inequalities (.) and
(.) imply that

∣∣∣∣
∫

|x|<R

[
F(un) – F(u)

]
dx

∣∣∣∣ →  as n→ ∞, (.)

∣∣∣∣
∫

|x|<R
F(un – u)dx

∣∣∣∣ →  as n→ ∞. (.)

Similarly, by the Hölder inequality, the Sobolev embedding theorem and (.), we get

∣∣∣∣
∫

|x|≥R
f (un – u + θu)u dx

∣∣∣∣
≤ C

∫
|x|≥R

|un – u + θu||u|dx +C
∫

|x|≥R
|un – u + θu|p |u|dx

≤ C
(∫

|x|≥R
|un| dx

) 

(∫

|x|≥R
|u| dx

) 

+C

∫
|x|≥R

|u| dx

+ ε

(∫
|x|≥R

|un|p dx
) 


(∫

|x|≥R
|u| dx

) 

+Cε

∫
|x|≥R

|u|p+ dx

≤ C‖un‖
(∫

|x|≥R
|u| dx

) 

+C

∫
|x|≥R

|u| dx + ε‖un‖p
(∫

|x|≥R
|u| dx

) 


+Cε

∫
|x|≥R

|u|p+ dx.
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Since {un} is bounded in H(R), we see that

∣∣∣∣
∫

|x|≥R
f (un – u + θu)u dx

∣∣∣∣ →  as R→ ∞. (.)

Hence, combining (.), (.), (.) and (.), we obtain

∫ +∞

–∞
F(un)dx –

∫ +∞

–∞
F(u)dx –

∫ +∞

–∞
F(un – u)dx →  as n→ ∞. �

3 The case of special nonlinearity
In this section, we only consider the case of α =  and f (u) = 

pu
p, where  < p < . Corre-

spondingly,

E(u) =
∫ +∞

–∞

[


(ux) –


p


p + 

up+
]
dx.

At first, we commence by studying some properties of the functional Iq : (, +∞) → R

and the behavior of the minimizing sequences for the problem (Iq).

Lemma . For any q > ,
(i) –∞ < Iq < ;
(ii) If {un} is a minimizing sequence for the problem (Iq), there exists a constant B > 

such that ‖un‖ ≤ B for all n;
(iii) If {un} is a minimizing sequence for the problem (Iq), there exist a positive constant δ

and a sequence {yn} of real numbers such that

∫ yn+ 


yn– 


|un|p+ dx≥ δ

for sufficiently large n.

Proof (i) Choose any function u ∈ H(R) such that Q(u) = q and
∫
up+ dx 
= . For any

θ > , define uθ (x) =
√

θu(θx). Then we have

Q(uθ ) = q

and

E(uθ ) =


θ

∫
(ux) dx –


p(p + )

θ
p–


∫
up+ dx.

For  < p < , by taking θ >  sufficiently small, we get Iq ≤ E(uθ ) < .
Next we prove Iq > –∞. Let u ∈ H(R) such that Q(u) = q. By the Sobolev embedding

theorems and interpolation inequalities, we get

∣∣∣∣
∫

up+ dx
∣∣∣∣ ≤ |u|p+p+ ≤ A|u|P+P–

(P+)
≤ A‖u‖ p–

 |u|
p+


 , (.)

http://www.boundaryvalueproblems.com/content/2013/1/121
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where A denotes various constants which are independent of u. Using the Young inequal-
ity, we derive from (.)

∣∣∣∣
∫

up+ dx
∣∣∣∣ ≤ ε‖u‖ +Aε|u|

p+
–p
 ≤ ε‖u‖ +Aε,q,

where ε >  is arbitrary and Aε,q depends on ε and q, but not on u. Therefore,

E(u) = E(u) +Q(u) –Q(u)

=


‖u‖ – 

p(p + )

∫
up+ dx –




∫
u dx

≥ 

‖u‖ – ε

p(p + )
‖u‖ – 

p(p + )
Aε,q – q.

Choosing ε < p(p+)
 , we obtain the lower bound of the functional E

E(u)≥ –


p(p + )
Aε,q – q,

which implies Iq ≥ – 
p(p+)Aε,q – q > –∞.

(ii) Let {un} be a minimizing sequence for the problem (Iq). Then, by (.), we have



‖un‖ = E(un) +Q(un) +


p(p + )

∫
up+n dx

≤ sup
n

E(un) + q +


p(p + )
|un|p+p+

≤ A + q +A‖u‖ p–
 |u|

p+


 ≤ A
(
 + ‖u‖ p–


)
,

where A denotes various constants which are independent of n. Since  < p < , the exis-
tence of the desired bound B follows.
(iii) Let {un} be a minimizing sequence for the problem (Iq). Then we claim: there exists

a constant η >  such that |un|p+ ≥ η for all sufficiently large n.We argue by contradiction:
if no such η >  exists, then lim infn→∞

∫ |un|p+ dx≤ . Hence

Iq = lim
n→∞E(un) ≥ – lim inf

n→∞

∫
|un|p+ dx ≥ ,

which contradicts (i). So, the claim is achieved.
Combining (ii) and Lemma ., there exist a positive constant δ and a sequence {yn} of

real numbers such that

∫ yn+ 


yn– 


|un|p+ dx≥ δ

for sufficiently large n. The proof of Lemma . is completed. �

The next lemma will establish a subadditivity inequality which will be a crucial step in
the proof of the existence minimizer for the problem (Iq).

Lemma . For all q,q > , Iq+q < Iq + Iq .

http://www.boundaryvalueproblems.com/content/2013/1/121
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Proof For given u ∈ H(R), |u| = q, θ > , let uθ (x) = θ


p+ u(θ
p–
p+ x), where θ = ( qq )

p+
–p .

Then it follows that

Q(uθ ) =
q
q

Q(u) = q,

and

E(uθ ) =
(
q
q

) p+
–p

E(u).

Hence we get

Iq = inf

{(
q
q

) p+
–p

E(u) :Q(u) = q
}
=

(
q
q

) p+
–p

Iq . (.)

Now, from (.) and Lemma ., we obtain for all q,q > ,

Iq+q = (q + q)
p+
–p I <

(
q

p+
–p
 + q

p+
–p


)
I = Iq + Iq . �

Now we formulate the following two theorems, which are special cases corresponding
to Theorem . and Theorem ., and give their proof with the aim of Lemma . and
Lemma ..

Theorem . Let α =  and f (u) = 
pu

p, where  < p < . For any q > , the set Gq is not
empty. Moreover, if {un} is a minimizing sequence for the problem (Iq), then there exist a
sequence {yn} ⊂ R and g ∈ Gq such that {un(· + yn)} contains a subsequence converging
strongly in H(R) to g , and

lim
n→+∞ inf

g∈Gq
‖un – g‖ = .

Theorem . Let α =  and f (u) = 
pu

p, where  < p < . For any q > , the set Gq is H(R)-
stable with respect to equation (.), i.e., for any ε > , there exists δ >  such that if

inf
g∈Gq

‖u – g‖ < δ,

then the solution u(x, t) to equation (.) with initial data u satisfies

inf
g∈Gq

∥∥u(t, ·) – g
∥∥ < ε

for any t ∈ [,T).

Proof of Theorem . From (.), it is easy to check that Iq is continuous on (,∞). Let
{un} be a minimizing sequence for the problem (Iq). By Lemma ., there exist a positive
constant δ and a sequence {yn} of real numbers such that

∫ yn+ 


yn– 


|un|p+ dx≥ δ

for sufficiently large n.

http://www.boundaryvalueproblems.com/content/2013/1/121
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Let us define vn = un(x + yn). Hence Q(Vn) = Q(un) = q, E(vn) = E(un) → Iq, as n → ∞,
and

∫ 


– 


|vn|p+ dx =
∫ yn+ 



yn– 


|un|p+ dx ≥ δ > . (.)

Since {vn} is bounded in H(R), by Lemma ., we may assume going, if necessary, to a
subsequence

vn ⇀ g in H(R),

vn → g in Lp+loc (R), (.)

vn → g a.e. on R.

Hence, by (.), we get g 
= . And applying the Brezis-Lieb lemma [], we have

|vn| = |vn – g| + |g|, (.)

|vn|p+p+ = |vn – g|p+p+ + |g|p+p+. (.)

Now we show that Q(g) = 

∫
g dx = q. In the contrary case,  <Q(g) = λ < q. By (.), we

obtain limn→∞ qn = limn→∞ Q(vn – g) = q – λ. Then it follows from (.) and (.) that

Iq = E(vn) + o() ≥ 

‖vn‖ – 


|vn| –


p(p + )

|vn|p+p+ + o()

= E(vn – g) + E(g) + o() ≥ Iqn + Iλ + o(). (.)

Since Iq is continuous on (,∞), letting n → ∞, we get Iq ≥ Iq–λ + Iλ, which contradicts
Lemma .. Therefore Q(g) = q. It then follows from (.) that

vn → g in L(R). (.)

Applying the interpolation inequality, (.) and (.), we get

vn → g in Lp+(R). (.)

Using the weak low semi-continuity of the norm in H(R), we know that

Iq ≥ 

‖vn‖ – 


|vn| –


p(p + )

|vn|p+p+ + o()

≥ 

‖g‖ – 


|vn – g| –



|g| –


p(p + )

|vn – g|p+p+ –


p(p + )
|g|p+p+ + o()

= E(g) –


|vn – g| –


p(p + )

|vn – g|p+p+ + o().

Letting n→ ∞, by (.) and (.), we obtain E(g)≤ Iq. On the other hand, it follows from
Q(g) = q that E(g) ≥ Iq. Therefore E(g) = Iq, which implies that g is a minimizer of the

http://www.boundaryvalueproblems.com/content/2013/1/121
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problem (Iq) (i.e., Gq 
= ∅). Then it follows from (.), (.) and (.) that

vn = un(· + yn) → g in H(R).

We prove limn→+∞ infg∈Gq ‖un – g‖ =  with an argument by contradiction. Assume that
there exist ε >  and a subsequence {unk } of {un} such that

inf
g∈Gq

‖unk – g‖ ≥ ε >  (.)

for all nk . With the result of the above proof, we obtain that there exist a subsequence of
{unk }, denoted again by {unk }, {ynk } ⊂R and g ∈Gq such that

unk (· + ynk ) → g in H(R).

Since g(· – ynk ) ∈ Gq,

∥∥unk – g(· – ynk )
∥∥ =

∥∥unk (· + ynk ) – g
∥∥ →  as nk → +∞,

which contradicts (.). �

An immediate consequence of Theorem . is that Gq forms a stable set for the initial-
value problem for equation (.).

Proof of Theorem . We prove Theorem . with an argument by contradiction. Assume
that the set Gq is not H(R)-stable. Then there exist ε > , {ψn} ⊂ H(R) and a sequence
of times {tn} such that

inf
g∈Gq

‖ψn – g‖ < 
n
, (.)

and

inf
g∈Gq

∥∥un(·, tn) – g
∥∥ ≥ ε (.)

for all n, where un(x, t) solves equation (.) with un(x, ) = ψn.
Equation (.) implies that

E(ψn) → Iq, Q(ψn) → q.

Choose {μn} ⊂ R such that Q(μnψn) = q for all n. Thus μn →  as n → +∞. Hence the
sequence vn = μnun(·, tn) satisfies Q(vn) = q and

lim
n→∞E(vn) = lim

n→∞E
(
un(·, tn)

)
= lim

n→∞E(ψn) = Iq.

Therefore {vn} is a minimizing sequence for the problem (Iq). By Theorem ., there exists
{gnk } ⊂Gq such that

‖vnk – gnk‖ <
ε


(.)
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for sufficiently large nk . Sinceμn →  and ‖un(·, tn)‖ is bounded, we derive from (.) and
(.)

ε ≤ ∥∥unk (·, tnk ) – gnk
∥∥

≤ ∥∥unk (·, tnk ) –μnkunk (·, tnk )
∥∥ +

∥∥μnkunk (·, tnk ) – gnk
∥∥

≤ (|μnk – |)∥∥unk (·, tnk )∥∥ +
ε


≤ 


ε (.)

for sufficiently large nk . (.) is a contradiction. Therefore, the setGq isH(R)-stable with
respect to equation (.). �

4 The case for more general nonlinearities
In this section, we consider (.) with α =  and more general nonlinearities f satisfying
condition (A). At first, we study the properties of the functional Iq : (,∞) → R and the
minimizing sequence of the problem (Iq).

Lemma .
(i) For any q > , Iq is finite and continuous on (,∞).Moreover, each minimizing

sequence for (Iq) is bounded;
(ii) Iq ≤  for any q > .

Proof (i) According to assumption (A), we observe that for each ε >  there exists Cε > 
such that

∣∣F(u)∣∣ ≤ ε|u| + ε|u|γ+ +Cε|u|α , (.)

where  < α < γ + . By the Sobolev embedding theorems and interpolation inequalities,
we obtain

∫ +∞

–∞
|u|α dx ≤ A‖u‖ α–

 |u| α+


 (.)

and

∫ +∞

–∞
|u|γ+ dx ≤ A‖u‖ γ–

 |u|
γ+


 , (.)

where A >  is independent of u. Then using the Young inequality, we can derive from
(.) and (.) that for all η > , there exists Cη >  such that

∫ +∞

–∞
|u|α dx ≤ η‖u‖ +Cη|u|

(α+)
–α

 (.)

and

∫ +∞

–∞
|u|γ+ dx ≤ η‖u‖ +Cη|u|

γ+
–γ

 . (.)
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Let u ∈H(R) such that Q(u) = q. It follows from (.), (.) and (.) that

E(u) =


‖u‖ – 



∫ +∞

–∞
u dx –

∫ +∞

–∞
F(u)dx

≥ 

‖u‖ – 


|u| – ε|u| – εη‖u‖ – εCη|u|

γ+
–γ

 –Cεη‖u‖ –CεCη|u|
(α+)
–α



≥
(


– εη –Cεη

)
‖u‖ –Cε,η,q, (.)

where Cε,η,q is a positive constant dependent only on ε and η for given q > . Choosing
ε >  and η >  such that 

 – εη –Cεη > , we see that Iq > –∞.
Since |θu| = θ|u| for θ > , it is easy to check that Iq is continuous on (,∞).
Let {un} be a minimizing sequence for the problem (Iq). From (.) and the fact that Iq

is finite, we know that {un} is bounded in H(R).
(ii) For given u ∈H(R) such that Q(u) = q, let uθ (x) = √

θ
u( x

θ
) for θ > . We obtain that

|uθ | = |u| = q (.)

and

E(uθ ) =


θ

∫ +∞

–∞
(ux) dx – θ

∫ +∞

–∞
F
(

√
θ
u
)
dx. (.)

Combining (.), (.) and (.), we obtain

Iq ≤ E(uθ ) →  as θ → +∞. �

Lemma . Suppose that Iq <  for some q > . Then the following two properties hold:
(i) Iq

q is non-increasing on (, +∞) and limq→+
Iq
q = ;

(ii) there exists q ≤ q such that

Iq
q
>
Iq
q

for q ∈ (,q).

Proof First we observe that if σ >  and β >  with Q(u) = β and uσ (x) = u( 
σ
x), then

Q(uσ ) = σβ and

E(uσ ) =

σ

∫ +∞

–∞
(ux) dx – σ

∫ +∞

–∞
F(u)dx.

Consequently, for q >  and q > , we have

Iq = inf

{
q
q

∫ +∞

–∞
(ux) dx –

q
q

∫ +∞

–∞
F(u)dx,Q(u) = q

}
.

If q > q > , then for each ε > , there exists u ∈H(R) with Q(u) = q such that

Iq + ε >


q
q

∫ +∞

–∞
(ux) dx –

q
q

∫ +∞

–∞
F(u)dx >

q
q

E(u)≥ q
q

Iq . (.)

This inequality yields Iq
q

≥ Iq
q

for  < q < q.
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Since Iq ≤  for all q > , we see that

lim
q→+

Iq
q
= A≤ .

We claim that A = . Letting ε = q,  < q ≤ q, from (.), there exists u(q) ∈ H(R) with
Q(u(q)) = q such that

Iq + q ≥ 

q
q

∫ +∞

–∞

(
u(q)x

) dx – q
q

∫ +∞

–∞
F
(
u(q)

)
dx

≥ q
q

[



∫ +∞

–∞

(
u(q)x

) dx – ∫ +∞

–∞
F
(
u(q)

)
dx

]
. (.)

It follows from (.) and (.) that

Iq + q ≥ q
q

(
C(q)

∫ +∞

–∞

(
u(q)x

) dx –C(q)
)
,

where C(q) >  and C(q) >  are constants independent of q. Hence we obtain q ≥
C(q)

∫ +∞
–∞ (u(q))x dx –C(q), which implies

∫ +∞

–∞

(
u(q)x

) dx ≤ C(q), (.)

where C(q) is dependent only on q. Combining (.), (.), (.) and (.), we also get

∣∣∣∣
∫ +∞

–∞
F
(
u(q)

)
dx

∣∣∣∣ ≤ C(q), (.)

where C(q) is dependent only on q.
We claim that

∫ +∞

–∞

(
u(q)x

) dx →  as q → +. (.)

Indeed, if there exist ε >  and qn → + such that
∫ +∞
–∞ (u(qn)x ) dx ≥ ε, then by (.) and

(.), we obtain

Iqn
qn

+ qn ≥ qε



qn

–

q

C(q) → +∞ as qn → +,

which contradicts limq→+
Iq
q = A ≤ . Therefore (.) is achieved and this implies that

limq→+
∫ +∞
–∞ F(u(q))dx =  and, consequently,

Iq
q
+ q ≥ –


q

∫ +∞

–∞
F
(
u(q)

)
dx→  as q → +.

This shows that limq→+
Iq
q = .

() We observe that limq→+
Iq
q =  > Iq

q
, which implies (ii). �
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Then we establish a subadditivity inequality similar to Lemma . with the aim of
Lemma ..

Lemma . Suppose that Iq <  for some q > . Then there exists  < q∗ ≤ q such that
Iq∗ < Iq∗–q + Iq for  < q < q∗.

Proof According to Lemma ., the set

{
q|q ≤ q and

Iq
q
>
Iq
q

or each q ∈ (,q)
}

is nonempty. We define

q∗ = sup

{
q|q ≤ q and

Iq
q
>
Iq
q

for each q ∈ (,q)
}
. (.)

It follows from the continuity of Iq and limq→+
Iq
q =  that  < q∗ ≤ q,

Iq∗ =
q∗

q
Iq < , (.)

Iq >
q
q

Iq for all q ∈ (
,q∗). (.)

Therefore,

Iq∗ =
q∗

q
Iq =

q∗ – q
q

Iq +
q
q

Iq < Iq∗–q + Iq,

for all q ∈ (,q∗). �

Now we give the proof of Theorem . with the aim of Lemma ., Lemma . and
Lemma .. Since the proof of Theorem . is similar to that of Theorem ., we only give
the sketch of the proof.

Proof of Theorem . Let {un} be a minimizing sequence of Iq∗ , where q∗ is defined in
(.). Since {un} is bounded, we may assume

un ⇀ u in H(R),

un → u a.e. on R.

First, we consider the case u = . In this case, by Lemma ., either
(a) un →  in Ls(R) for  < s < ∞, or
(b) there exists a sequence {yn} ⊂R such that

υn(x) = un(x + yn)⇀ g 
=  in H(R).

In the case (a), combining Lemma . and condition (A), we obtain

lim
n→∞

∫ +∞

–∞
F(un)dx = 
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and, consequently,

Iq∗ = lim
n→∞E(un) = lim

n→∞

[



∫ +∞

–∞
(unx) dx –

∫ +∞

–∞
F(un)dx

]
≥ ,

which contradicts Lemma .. Hence (b) holds. Then it follows from Lemma . and
Lemma . that g is the minimizer for the problem (Iq∗ ) (i.e., Gq∗ 
= ∅) and the result of
Theorem . holds. The proof is similar to that of Theorem ., we omit the details.
If u 
= , we repeat the previous argument in the case (b) to obtain the result of Theo-

rem .. �

Proof of Theorem . Theorem . is an immediate result of Theorem .. We can prove it
with an argument similar to that of Theorem .. Here, we omit the details of the proof.�

5 The case for 0 < α < 1
In this section, we only consider the case of  < α < , i.e., we consider the existence and
stability of solitary waves for the fractional Korteweg-deVries equationswith general non-
linearities. At first, we give the definition of Hα(R). The fractional order Sobolev space
Hα(R) is defined by

Hα(R) :=
{
u;u :R→C, u ∈ L(R) and F–[( + |ξ |) α

 Fu
] ∈ L(R)

}
,

whose norm is given by

‖ · ‖α, =
∣∣F–[( + |ξ |) α

 F ·]∣∣.
Since the functionals

E(u) =
∫ +∞

–∞

[


∣∣(–)

α
 u

∣∣ – F(u)
]
dx

and

Q(u) =



∫ +∞

–∞
u dx

are two conserved quantities with (.), for studying the existence of solitary wave solu-
tions to (.), by the variational methods, the solitary wave solutions to the equation (.)
will be founded as minimizers of

Iq := inf
{
E(u);u ∈H(R),Q(u) = q

}
, (Iq)

where q > . Denote the set of minimizers of the problem (Iq) by

Gq :=
{
u;u ∈ H(R),E(u) = Iq, Q(u) = q

}
. (Gq)

Similar to Lemma . and Lemma ., we obtain the following two lemmas.
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Lemma .
(i) I∞q and Iq are finite and continuous on (, +∞);moreover, for any q > , each

minimizing sequence for the problem (I∞q ) or (Iq) is bounded in Hα(R);
(ii) I∞q ≤  for any q > .

Lemma . If I∞q <  for some q > , then there exists q,  < q ≤ q, such that

I∞q < I∞q–q + I∞q for  < q < q.

Applying the above two lemmas and commutator estimates [, Lemma .], we prove
Theorem . and Theorem . by similar steps to those given in Section . Here we omit
the details of Theorem . and Theorem ..
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