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Abstract
This paper is concerned with the existence of one and two positive solutions for the
following Sturm-Liouville boundary value problem on time scales

{
–(p(t)u�(t))� + q(t)uσ (t) = f (t,uσ (t)), t ∈ [0, T ]T,

α1u(0) – α2u�(0) = 0, α3u(σ 2(T )) + α4u�(σ (T )) = 0.

Under a locally nonnegative assumption on the nonlinearity f and some other
suitable hypotheses, positive solutions are sought by considering the corresponding
truncated problem, constructing the variational framework and combining the
sub-supersolution method with the mountain pass lemma.
MSC: 34B10; 34B18

Keywords: positive solution; Sturm-Liouville; time scales; sub-supersolution;
variational methods

1 Introduction
The theory of dynamic equations on time scales has become a new important mathemat-
ical branch [, ] since it was initiated by Hilger in  []. Since then, boundary value
problems (BVPs) for dynamic equations on time scales have received considerable atten-
tion, various fixed point theorems, sub-supersolutionmethod and Leray-Schauder degree
theory have been applied to get many interesting results about the existence of solutions;
see [, , –] and the references therein. Variationalmethod is also an importantmethod
for dealing with the existence of BVPs. Recently, some authors have used the theory to
study the existence of solutions of some BVPs on time scales [, , , ].
Especially, in [, ], Agarwal et al. studied the following dynamic equation on time scales:

–u��(t) = f
(
t,uσ (t)

)
, t ∈ (a,b)T,

and

–u��(t) = f
(
σ (t),uσ (t)

)
, t ∈ (a,b)T,
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with the Dirichlet boundary condition. They gave some sufficient conditions for the exis-
tence of single andmultiple positive solutions by using the variational method and critical
point theory.
In [], we considered the problem

⎧⎨
⎩–(p(t)u�(t))� + q(t)uσ (t) = λf (t,uσ (t)), t ∈ [,T]T,

αu() – αu�() = , αu(σ (T)) + αu�(σ (T)) = ,
(.)

and obtained the existence of many solutions depending on the value of the parameter
λ which lie in some different intervals under some suitable hypotheses. The main ap-
proaches are also the variational method and some known critical point theorems and
a three critical point theorem established in []. Erbe et al. [] also established some ex-
istence criteria of positive solutions by a fixed point theorem in a cone with the globally
nonnegative hypothesis of f .
Motivated by the papers [, , , ], in this paper, we continue to study the problem

(.) in the case of λ = , that is,

⎧⎨
⎩–(p(t)u�(t))� + q(t)uσ (t) = f (t,uσ (t)), t ∈ [,T]T,

αu() – αu�() = , αu(σ (T)) + αu�(σ (T)) = .
(.)

Here T is a time scale and [,T]T = {t ∈ T :  ≤ t ≤ T and T ∈ T
κ}, p ∈ C([,σ (T)]T,

(, +∞)), q ∈ C([,T]T, [, +∞)), f ∈ C([,T]T ×R,R), αi ≥ , i = , , , , α +α > , α +
α >  and α +α > . The purpose of this paper is to discuss the existence andmultiplicity
of positive solutions to the problem (.) under the local non-negativity assumption of f
and some other hypotheses. The main tools are the truncated method, the variational
method, the sub-supersolution method and the mountain pass lemma. First, inspired by
themethod in [], we convert the existence of a positive solution of (.) to the existence of
a solution of an associated problem of (.). In contrast with the paper [], the appearance
of term p(t), our problem is more complicated and the proof is also different from [] (see
Lemma . for details). Next, we construct a supersolution of (.) and give the existence
of one positive solution. Finally, under our weaker assumption on f (see (H) and (H)
for details), since we cannot verify that the corresponding functional for the associated
problem satisfies the P.S. condition, we consider the corresponding truncated problem. To
prove the existence of the second positive solution by the mountain pass lemma, we also
give an estimate of a nonnegative solution of (.) and prove the solution of a truncated
problem is also a solution of (.) for n large enough (see Theorem . for details). To the
best of our knowledge, the results are new both in the continuous and in the discrete case.
The paper is organized as follows. In Section , we present some basic properties of

some related Sobolev space on time scales, construct the variational framework, give some
properties of this framework and some necessary lemmas. In Section , we firstly get the
existence of a single positive solution of (.) by using the sub-supersolutionmethod; then
applying the truncated method, analytic technique and mountain pass lemma, we estab-
lish the existence of two positive solutions.
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2 Preliminaries and variational formulation
In this section, we list the definition and properties of the Sobolev space on time scales
[], give some lemmas which we need for the proof of the main result and construct a
variational framework.
For convenience, for f ∈ L�( [a,b)T) [, ], we denote

∫ b
a f (s)�s =

∫
[a,b) T

f (s)�s. We
let AC([,σ (T)]T) [] denote the class of absolutely continuous functions on [,σ (T)]T
and the Sobolev space is defined as

H
�

([
,σ (T)

]
T

)
=

{
u|u ∈ AC

[
,σ (T)

]
T
,u� ∈ L�

([
,σ (T)

)
T

)}
,

with the norm

‖u‖ =
(∫ σ(T)



(∣∣u(t)∣∣ + ∣∣u�(t)
∣∣)�t

) 

.

We know the immersion H
�([,σ (T)]T) ↪→ C([,σ (T)]T) is compact. Analogous to the

proof in the real numbers situation, one can deduce the following result on time scales.

Lemma . If f ∈ C(R), f ′ ∈ L∞(R), u ∈H
�([,σ (T)]T), then

f (u) ∈H
�

([
,σ (T)

]
T

)

and

(
f
(
u(t)

))� = u�(t)
∫ 


f ′(u(t) + (

σ (t) – t
)
s
)
ds.

Using Lemma ., by a similar proof of T =R, one can derive the following.

Lemma . If u ∈ H
�([,σ (T)]T), then u+,u– ∈ H

�([,σ (T)]T) and (u+)�(u–)� ≥ ,
�-a.e. in [,σ (T)]T, where u+ =max{u, }, u– = –(–u)+.

For convenience, we denote

β =

⎧⎨
⎩

α
α

if α 	= ,

 if α = ,
β =

⎧⎨
⎩

α
α

if α 	= ,

 if α = ,

and for u, v ∈H
�([,σ (T)]T), we set

(u, v) =
∫ σ(T)


p(t)u�(t)v�(t)�t +

∫ σ (T)


q(t)uσ (t)vσ (t)�t + βp()u()v()

+ βp
(
σ (T)

)
u
(
σ (T)

)
v
(
σ (T)

)
,

‖u‖ =
√
(u,u).
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In order to discuss the existence of a positive solution of (.), we consider the following
problem:

⎧⎨
⎩–(p(t)u�(t))� + q(t)uσ (t) = f (t, (u+)σ (t)), t ∈ [,T]T,

αu() – αu�() = , αu(σ (T)) + αu�(σ (T)) = .
(.)

First, we give an important lemma.

Lemma . If f (t, ) ≥  for t ∈ [,T]T, u is a solution of (.), then u is nonnegative
in [,σ (T)]T. Furthermore, if f (t, ) >  for t ∈ [,T]T, and p(t) is nondecreasing in
[,σ (T)]T, then u(t) > , t ∈ (,σ (T))T.

Proof Let u be a solution of (.). In view of Lemma ., we know u+,u– ∈H
�([,σ (T)]T)

and (u+)�(u–)� ≥ , �-a.e. in [,σ (T)]T. Multiplying (.) by (u–)σ (t), integrating over
[,σ (T))T and employing the integration by parts formula for an absolutely continuous
function on T, we find that

∥∥u–∥∥
 ≤

∫ σ(T)


p(t)u�(t)

(
u–

)�(t)�t +
∫ σ (T)


q(t)uσ (t)

(
u–

)σ (t)�t

+ βp()u()u–() + βp
(
σ (T)

)
u
(
σ (T)

)
u–

(
σ (T)

)
=

∫ σ (T)


f
(
t,

(
u+

)σ (t)
)(
u–

)σ (t)�t

=
∫ σ (T)


f (t, )

(
u–

)σ (t)�t ≤ .

Therefore, u(t) ≥  for t ∈ [,σ (T)]T.
Next, we show that if p(t) is nondecreasing in [,σ (T)]T, and f (t, ) >  for t ∈ [,T]T,

then u(t) > , t ∈ (,σ (T))T.
In fact, if the conclusion is false, we can suppose that there exists c ∈ (,σ (T))T such

that u(c) =  and one of the following two cases holds:
(i) u(t) >  for t ∈ (c,σ (T))T and σ (c) 	= σ (T),
(ii) u(t) =  for t ∈ (c,σ (T))T and there exists δ >  such that u(t) >  for t ∈ [c – δ, c)T.
For the case (i), if ρ(c) = c < σ (c), then u�(c) > , there exists δ >  such that u�(t) >  for

t ∈ (c – δ, c]T. According to the nonnegativity of u on [,σ (T)]T and u(c) = , it is easy to
see that ρ(c) = c < σ (c) is impossible. Thus we have

σ
(
ρ(c)

)
= c. (.)

If ρ(c) < c ≤ σ (c), then we know u�(c) ≥ , u�(ρ(c))≤  and u��(ρ(c)) = u�(c)–u�(ρ(c))
c–ρ(c) ≥ .

If ρ(c) = c = σ (c), then u�(c) = , u��(ρ(c))≥ . Hence, in this case, we always have

u�(c) ≥ , u��
(
ρ(c)

) ≥ . (.)

Therefore

–
(
p
(
ρ(c)

)
u�

(
ρ(c)

))� = –p
(
ρ(c)

)
u��

(
ρ(c)

)
– p�

(
ρ(c)

)
u�(c) ≤ . (.)

http://www.boundaryvalueproblems.com/content/2013/1/123


Zhang et al. Boundary Value Problems 2013, 2013:123 Page 5 of 12
http://www.boundaryvalueproblems.com/content/2013/1/123

However, since u is a solution of (.), (.) and u(c) = , we know that

–
(
p
(
ρ(c)

)
u�

(
ρ(c)

))� = f
(
ρ(c), 

)
> , (.)

which contradicts (.).
For the case (ii), it can be divided into two cases to consider.
() If σ (c) < σ (T), then one can deduce that u�(c) = , u��(c) ≥ . From this and

–p(σ (c))u��(c) = f (c, ) > , we have a contradiction.
() If σ (c) = σ (T), then we always have σ (c) > c. If u(σ (T)) > , then u�(c) > ,

u��(ρ(c)) ≥ . Similar to (i), we get (.) and (.). But this is impossible from (.) and
(.).
If u(σ (T)) =  and c = σ (T), then σ (T) > T , u�(c) = u�(σ (T)) = , u��(ρ(c)) =

u��(T)≥ . So, we get a contradiction to (.) and (.).
If u(σ (T)) =  and ρ(c) < c < σ (T), we have u�(c) = , u��(ρ(c)) ≥ . Hence, we get

(.) and (.). But this contradicts (.) and (.).
If u(σ (T)) =  and ρ(c) = c < σ (T), then u�(c) = . By assumption, u is a solution

of (.), so we have limt→c– u��(t) < , which contradicts u�(c) =  and u(t) >  for
t ∈ [c – δ, c)T. �

Remark . From the proof of Lemma ., we can easily find that ifT =R, then themono-
tonicity assumption of p(t) can be omitted.

By Lemma ., under the hypothesis
(H) p(t) is nondecreasing in [,σ (T)]T, and f (t, ) >  for t ∈ [,T]T,

in order to prove the existence of a positive solution of (.), it suffices to consider the ex-
istence of a solution of (.). Nowwe establish the corresponding variational formulations
for (.). We set

E =
{
u ∈H

�

([
,σ (T)

])
T
|u() =  if α = ,u

(
σ (T)

)
=  if α = 

}
,

then E is a Banach space with the norm ‖ · ‖, and we can find that ‖ · ‖ can be taken as an
equivalent norm on E. Define the functional I on E as

I(u) =



∫ σ(T)


p(t)

∣∣u�(t)
∣∣�t +




∫ σ (T)


q(t)

∣∣uσ (t)
∣∣�t –

∫ σ (T)


F
(
t,

(
u+

)σ (t)
)
�t

–
∫ σ (T)


f (t, )

(
u–

)σ (t)�t +


βp()u() +



βp

(
σ (T)

)
u

(
σ (T)

)
,

where F(t, ξ ) =
∫ ξ

 f (t, s)ds.
Note that the appearance of the term

∫ σ (T)
 f (t, )(u–)σ (t)�t in the functional I guar-

antees that I is C, see next lemma. By the definition of Fréchet derivative and the fact
that the immersion H

�([,σ (T)]T) ↪→ C([,σ (T)]T) is compact, we have the following
results.

Lemma . The following statements are valid.

http://www.boundaryvalueproblems.com/content/2013/1/123
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(i) I ∈ C(E,R), and for every u, v ∈ E,

I ′(u)v = (u, v) –
∫ σ (T)


f
(
t,

(
u+

)σ (t)
)
vσ (t)�t.

(ii) We define

J(u) =
∫ σ (T)


F
(
t,

(
u+

)σ (t)
)
�t +

∫ σ (T)


f (t, )

(
u–

)σ (t)�t, u ∈ E.

Then

J ′(u)v =
∫ σ (T)


f
(
t,

(
u+

)σ (t)
)
vσ (t)�t, u, v ∈ E,

J is weakly continuous in E and J ′ is compact.
(iii) The solutions of (.)match up to the critical points of I in E.

For the eigenvalue problem

⎧⎨
⎩–(p(t)u�(t))� + q(t)uσ (t) = λuσ (t), t ∈ [,T]T,

αu() – αu�() = , αu(σ (T)) + αu�(σ (T)) = ,
(.)

we have the following lemma.

Lemma. [, Lemma .] The eigenvalues of (.)may be arranged as  < λ < λ < · · · ,
and there exists a countable orthonormal basis of E consisting of eigenfunction associated
eigenvalues of (.) and

λ = inf
u∈E,u	≡

‖u‖∫ σ (T)
 |uσ (t)|�t

. (.)

Remark . By (.) and Lemma ., we know the eigenfunction ϕ(t) corresponding to
the eigenvalue λ satisfies ϕ(t) >  for t ∈ (,σ (T))T. Furthermore, by the Krein-Rutman
theorem [, Theorem .C], we know ϕ ∈ K with

K =
{
u ∈ E|u(t) >  for t ∈ (

,σ (T)
)
T
,u�() >  if α > ,u() >  if α = ,

u�
(
σ (T)

)
<  if α > ,u

(
σ (T)

)
>  if α = 

}
.

Lemma . [, Theorem .], [] The problem (.) has the Green function

Gq(t, s) =

⎧⎨
⎩


wϕ(t)ψ(σ (s)), t ≤ s,

wϕ(σ (s))ψ(t), t ≥ σ (s),

where w = p(t)[ϕ�(t)ψ(t) – ϕ(t)ψ�(t)] = const > , ψ ,ϕ are solutions of

–
(
p(t)u�(t)

)� + q(t)uσ (t) =  for t ∈ [,T]T, u() = α, u�() = α

http://www.boundaryvalueproblems.com/content/2013/1/123
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and

–
(
p(t)u�(t)

)� + q(t)uσ (t) =  for t ∈ [,T]T,

u
(
σ (T)

)
= α, u�

(
σ (T)

)
= –α,

respectively, and satisfy ϕ(t) > , t ∈ (,σ (T)]T, ϕ�(t) ≥ , t ∈ [,σ (T)]T, ψ(t) > , t ∈
[,σ (T))T, ψ�(t)≤ , t ∈ [,σ (T)]T.

Lemma . The function defined by

�(t, s) =
Gq(t, s)
ϕσ
 (s)

belongs to L∞([,σ (T)]T × [,σ (T)]T), where ϕ is given in Remark ..

Proof Clearly, �(t, s) is well defined in [,σ (T)]T × (,σ (T))T.
If α > , by ϕ ∈ K and αϕ() – αϕ

�
 () = , we have ϕ() > . Hence ϕ(σ ()) > .

If α = , then ϕ() = . By Remark ., we know ϕ�
 () > . If σ () > , then uσ () > .

If σ () = , then there exists δ >  such that ϕ(t) > , ϕ�
 (t) >  for t ∈ (, δ)T, then by

L’Hôspital rule [, Theorem .] and Lemma ., we know

–∞ < lim
δ→+

inf
s∈(,δ)T

ϕ�(s)
ϕ�
 (s)

≤ lim
δ→+

inf
s∈(,δ)T

ϕ(s)
ϕ(s)

≤ lim
δ→+

sup
s∈(,δ)T

ϕ(s)
ϕ(s)

≤ lim
δ→+

sup
s∈(,δ)T

ϕ�(s)
ϕ�
 (s)

< +∞.

Hence, �(t, s) is bounded for s close to .
Similarly, we can derive that �(t, s) is bounded for s close to σ (T). �

In order to derive the main result, we list the following well-known mountain pass
lemma.

Lemma . [, Theorem .] Suppose I ∈ C(E,R) satisfies the P.S. condition. Suppose
I() =  and

(i) there exist ρ > , α >  such that I(u) ≥ α for u ∈ E with ‖u‖ = ρ ;
(ii) there is u ∈ E such that ‖u‖ > ρ and I(u) < α.

Define

P =
{
p ∈ C([, ];E)

;p() = ,p() = u
}
.

Then β = infp∈P supu∈p I(u) ≥ α is a critical value.

3 Main results
In this section, we establish some existence criteria of a positive solution of (.) by em-
ploying the sub-supersolution method and critical point theory.
First, using a method analogous to that in [], we construct a supersolution to employ

the sub-supersolution method.

http://www.boundaryvalueproblems.com/content/2013/1/123
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Theorem . Assume that (H) holds and there are constants a >  and a ≥ aaμ such
that

f (t, ξ ) < μξ + a, t ∈ [,T]T, ξ ∈ [,a],

where μ < λ is fixed, aμ = ‖uμ‖∞, uμ represents the unique positive solution of
⎧⎨
⎩–(p(t)u�(t))� + q(t)uσ (t) = μuσ (t) + , t ∈ [,T]T,

αu() – αu�() = , αu(σ (T)) + αu�(σ (T)) = .

Then the problem (.) has at least one positive solution.

Proof For fixed μ < λ, let v be the unique positive solution of
⎧⎨
⎩–(p(t)u�(t))� + q(t)uσ (t) = μuσ (t) + a, t ∈ [,T]T,

αu() – αu�() = , αu(σ (T)) + αu�(σ (T)) = .
(.)

Then, from the definition of uμ, we have ‖v‖∞ ≤ aaμ. Then, by the assumptions, it is
easy to see that v is a supersolution of (.). In addition, condition (H) guarantees that
the constant function  is a strict subsolution of (.). Therefore, the sub-supersolution
method implies (.) has a positive solution u. �

Remark . Furthermore, by Lemma ., we know

aμ ≤
∫ σ (T)


max

t∈[,T]T

∣∣Gq–μ(t, s)
∣∣�s.

Theorem . Under the hypothesis of Theorem . and suppose the condition
(H) lim infξ→+∞ f (t,ξ )

ξ
> λ uniformly for t ∈ [,T]T

holds, then the problem (.) has at least two positive solutions.

In order to prove this theorem, we first present some necessary lemmas.

Lemma . Let v, u be given in the proof of Theorem ., then u is a local minimizer of I
in E.

Proof Denote

W =
{
u ∈ C([,σ (T)]

T
,R

)|αu() – αu�() = ,αu
(
σ (T)

)
+ αu�

(
σ (T)

)
= 

}
.

By the assumptions and Lemma ., we easily find v – u ∈ K , u ∈ K . Hence u is a local
minimizer of I inW .
Next, by a similar argument to that in [], we assert that u is also a local minimizer of

I in E.
In fact, if u is not a local minimizer of I in E, then for every ε >  there is vε ∈ E such

that  < ‖vε‖ ≤ ε, I(u + vε) < I(u) and I(u + vε) = infv∈E,‖v‖≤ε I(v + u). By the Lagrange
multiplier rule, we know there exists a constant με ≤  such that

I ′(u + vε)ϕ = με(vε ,ϕ) for every ϕ ∈ E. (.)

http://www.boundaryvalueproblems.com/content/2013/1/123
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Note that u is a solution of (.), so

I ′(u + vε)ϕ = (u + vε ,ϕ) –
∫ σ (T)


f
(
t,uσ

 + vσ
ε

)
ϕσ �t

= (vε ,ϕ) –
∫ σ (T)


f
(
t,uσ

 + vσ
ε

)
ϕσ �t +

∫ σ (T)


f
(
t,uσ


)
ϕσ �t.

Thus, from (.), we have

( –με)(vε ,ϕ) –
∫ σ (T)


f
(
t,uσ

 + vσ
ε

)
ϕσ �t +

∫ σ (T)


f
(
t,uσ


)
ϕσ�t = .

Therefore, vε is a solution of

⎧⎪⎪⎨
⎪⎪⎩
–( –με)(p(t)u�(t))� + q(t)uσ (t)

= f (t,uσ (t) + uσ
 (t)) – f (t,uσ

 (t)), t ∈ [,T]T,

αu() – αu�() = , αu(σ (T)) + αu�(σ (T)) = .

(.)

It is easy to show that vε →  as ε →  in C([,σ (T)]T). But this contradicts the fact that
u is a local minimizer of I inW . �

Next, under hypothesis (H), in order to show the existence of the second positive so-
lution of (.) by employing the mountain pass lemma, we need to show that I satisfies
the P.S. condition. However, by (H), we cannot justify this; therefore, we consider the
truncation function fn and the truncation functional In defined as follows.
Let γ > λ and {ξn} be an increasing positive sequence with ξn → +∞ as n → +∞. For

n = , , . . . , define

fn(t, ξ ) =

⎧⎪⎪⎨
⎪⎪⎩
f (t, ), ξ < ,

f (t, ξ ),  ≤ ξ ≤ ξn,

γ (ξ – ξn) + f (t, ξn), ξ > ξn,

and

In(u) =


‖u‖ –

∫ σ (T)


Fn

(
t,

(
u+

)σ (t)
)
�t –

∫ σ (T)


f (t, )

(
u–

)σ (t)�t, u ∈ E,

where Fn(t, s) =
∫ s
 fn(t, ξ )dξ . Then

I ′n(u)v = (u, v) –
∫ σ (T)


fn

(
t,

(
u+

)σ (t)
)
vσ (t)�t, u, v ∈ E.

Lemma . Assume that (H) and (H) hold, then there exists n >  such that the func-
tional In satisfies the P.S. condition in E for n > n.

Proof For given n, let {um} ⊆ E be the P.S. sequence of In, that is, {In(um)} is bounded
and I ′n(um) →  as m → ∞. If {um} is bounded, one can deduce that I satisfies the P.S.
condition by a similar proof to Proposition B. in [].
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Suppose that {um} is unbounded. Since

∥∥u–m∥∥
 ≤ –

∫ σ (T)


f (t, )

(
u–m

)σ (t)�t +
(
um,u–m

)
 = I ′n(um)u

–
m ≤ ∥∥I ′n(um)∥∥∥∥u–m∥∥

,

we have ‖u–m‖ →  as m → ∞. Denote vm = um
‖um‖ , then ‖vm‖ = . So, without loss of

generality, we can assume that vm ⇀ v≥  in E, vm → v in C([,σ (T)]T). Note that

I ′n(um)(vm – v)
‖um‖ = (vm, vm – v) –


‖um‖

∫ σ (T)


fn

(
t,

(
u+m

)σ (t)
)
(vm – v)σ (t)�t, (.)

by the definition of fn and passing to limit in (.), one can derive that ‖v‖ = .
In view of (H) and the definition of fn, for ε >  small enough, there exist ξ ∗ >  inde-

pendent of n, n >  such that

fn(t, ξ ) > (λ + ε)ξ for ξ > ξ ∗, n > n. (.)

Since (uσ
m,ϕ) = λ

∫ σ (T)
 uσ

m(t)ϕσ
 (t)�t, then

ε

∫ σ (T)


vσ
m(t)ϕ

σ
 (t)�t

=


‖um‖
(∫ σ (T)


(λ + ε)uσ

m(t)ϕ
σ
 (t)�t – (um,ϕ)

)

=


‖um‖
(∫ σ (T)


–fn

(
t,

(
u+m

)σ (t)
)
ϕσ
 (t) + (λ + ε)

(
u+m

)σ (t)ϕσ
 (t)�t – I ′n(um)ϕ

+
∫ σ (T)


(λ + ε)

(
u–m

)σ (t)ϕσ
 (t)�t

)
. (.)

Passing to the limit in (.), we know ε
∫ σ (T)
 vσ (t)ϕσ

 (t)�t ≤ . Hence v≡ , which contra-
dicts ‖v‖ = . Therefore {um} is bounded. So, In satisfies the P.S. condition for n > n. �

By Lemmas . and ., we deduce that for n large enough, In has a nontrivial critical
point wn by using the mountain pass lemma and Theorem  in []. In order to obtain a
solution of (.), we need to get an estimate of wn. Therefore, we first give an estimate of
a nonnegative solution of (.) employing a method similar to that in [].

Lemma. Suppose (H) holds, then there is M >  such that for any nonnegative solution
u of (.), we have ‖u‖∞ ≤ M.

Proof If u is a nonnegative solution of (.), then by the definition of ϕ, we have

λ

∫ σ (T)


uσ (t)ϕσ

 (t)�t =
∫ σ(T)


p(t)u�(t)ϕ�

 (t)�t +
∫ σ (T)


q(t)uσ (t)ϕσ

 (t)�t

+


βp()u()ϕ() +



βp

(
σ (T)

)
u
(
σ (T)

)
ϕ

(
σ (T)

)

=
∫ σ (T)


f
(
t,uσ (t)

)
ϕσ
 (t)�t. (.)
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Condition (H) implies there exist ρ > λ, C >  such that

f (t, ξ )≥ ρξ –C, t ∈ [,T], ξ ≥ . (.)

Hence, from (.) and (.), we derive that

∫ σ (T)


uσ (t)ϕσ

 (t)�t ≤ C
ρ – λ

∫ σ (T)


ϕσ
 (t)�t.

So, using (.), we know

∫ σ (T)


f
(
t,uσ (t)

)
ϕσ
 (t)�t ≤ λC

ρ – λ

∫ σ (T)


ϕσ
 (t)�t.

Thus, by (H), we know
∫ σ (T)
 |f (t,uσ (t))|ϕσ

 (t)�t is uniformly bounded. Note that by
Lemma ., for t ∈ [,σ (T)],

∣∣u(t)∣∣ = ∣∣∣∣
∫ σ (T)


Gq(t, s)f

(
s,uσ (s)

)
�s

∣∣∣∣ ≤ ‖�‖∞
∫ σ (T)



∣∣f (s,uσ (s)
)∣∣ϕσ

 (s)�s.

Hence, there existsM >  such that ‖u‖∞ ≤ M. �

Remark . Note that we only need (H) to derive (.). Hence, (.) implies Lemma .
is also valid for the truncation problem.

Proof of Theorem . Since the positive solution u derived from Theorem . is a local
minimizer of I and  < u ≤ v, we can choose n large enough such that I(u) = In(u) for
every n > n. Hence, u is also a local minimizer of In for n > n. Then, from the definition
of fn and Lemma ., we know the mountain pass lemma and Theorem  in [] imply
that In has the second critical point u. Furthermore, by Remark ., we know u is also a
critical point of I . Thus the problem (.) has the second positive solution u. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All the authors typed, read, and approved the final manuscript.

Author details
1School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China. 2Center
of Teaching Guidance, Gansu Radio and TV University, Lanzhou, Gansu 730000, People’s Republic of China.

Acknowledgements
Dedicated to Professor Hari M Srivastava.
The research of HR Sun has been supported by the program for New Century Excellent Talents in University
(NECT-12-0246) and FRFCU (lzujbky-2013-k02).

Received: 20 January 2013 Accepted: 26 April 2013 Published: 13 May 2013

References
1. Bohner, M, Peterson, A: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001)
2. Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)
3. Hilger, S: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität Würzburg

(1988) (in German)

http://www.boundaryvalueproblems.com/content/2013/1/123


Zhang et al. Boundary Value Problems 2013, 2013:123 Page 12 of 12
http://www.boundaryvalueproblems.com/content/2013/1/123

4. Agarwal, RP, Otero-Espinar, V, Perera, K, Vivero, DR: Existence of multiple positive solutions for second order nonlinear
dynamic BVPs by variational methods. J. Math. Anal. Appl. 331, 1263-1274 (2007)

5. Agarwal, RP, Otero-Espinar, V, Perera, K, Vivero, DR: Multiple positive solutions of singular Dirichlet problems on time
scales via variational methods. Nonlinear Anal. 67, 368-381 (2007)

6. Anderson, D: Solutions to second-order three-points problems on time scales. J. Differ. Equ. Appl. 8, 673-688 (2002)
7. Atici, EM, Guseinov, GS: On Green’s functions and positive solutions for boundary value problems on time scales.

J. Comput. Appl. Math. 141, 75-99 (2002)
8. Erbe, L, Peterson, A, Mathsen, R: Existence, multiplicity, and nonexistence of positive solutions to a differential

equation on a measure chain. J. Comput. Appl. Math. 113, 365-380 (2000)
9. Rynne, BP: L2 spaces and boundary value problems on time scales. J. Math. Anal. Appl. 328, 1217-1236 (2007)
10. Sun, HR: Triple positive solutions for p-Laplacianm-point boundary value problem on time scales. Comput. Math.

Appl. 58, 1736-1741 (2009)
11. Sun, HR, Li, WT: Positive solutions for nonlinear three-point boundary value problems on time scales. J. Math. Anal.

Appl. 299, 508-524 (2004)
12. Sun, HR, Li, WT: Existence theory for positive solutions to one-dimensional p-Laplacian boundary value problems on

time scales. J. Differ. Equ. 240, 217-248 (2007)
13. Jiang, L, Zhou, Z: Existence of weak solutions of two-point boundary value problems for second-order dynamic

equations on time scales. Nonlinear Anal. 69, 1376-1388 (2008)
14. Zhang, QG, Sun, HR: Variational approach for Sturm-Liouville boundary value problems on time scales. J. Appl. Math.

Comput. 36, 219-232 (2011)
15. Bonanno, G, Candito, P: Non-differentiable functionals and applications to elliptic problems with discontinuous

nonlinearities. J. Differ. Equ. 244, 3031-3059 (2008)
16. Agarwal, RP, Otero-Espinar, V, Perera, K, Vivero, DR: Basic properties of Sobolev’s spaces on time scales. Adv. Differ. Equ.

2006, Article ID 38121 (2006)
17. Guseinov, GS: Integration on time scales. J. Math. Anal. Appl. 285, 107-127 (2003)
18. Cabada, A, Vivero, DR: Criterions for absolute continuity on time scales. J. Differ. Equ. Appl. 11, 1013-1028 (2005)
19. Zeidler, E: Nonlinear Functional Analysis and Its Application I: Fixed-Point Theorems. Springer, New York (1985)
20. Struwe, M: Variational Methods. Springer, Berlin (1990)
21. DE Figueiredo, DG, Lions, PL: On pairs of positive solutions for a class of semilinear elliptic problems. Indiana Univ.

Math. J. 34, 591-606 (1985)
22. Brezis, H, Nirenberg, L: H1 versus C1 local minimizers. C. R. Acad. Sci., Sér. 1 Math. 317, 465-472 (1993)
23. Rabinowitz, PH: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg.

Conf. Ser. Math., vol. 65. Am. Math. Soc., Providence (1986)
24. Ghoussoub, N, Preiss, D: A general mountain pass principle for locating and classifying critical points. Ann. Inst. Henri

Poincaré, Anal. Non Linéaire 6, 321-330 (1989)
25. Mawhin, J, Omana, W: A priori bounds and existence of positive solutions for some Sturm-Liouville superlinear

boundary value problems. Funkc. Ekvacioj 35, 333-342 (1992)

doi:10.1186/1687-2770-2013-123
Cite this article as: Zhang et al.: Positive solutions for Sturm-Liouville BVPs on time scales via sub-supersolution and
variational methods. Boundary Value Problems 2013 2013:123.

http://www.boundaryvalueproblems.com/content/2013/1/123

	Positive solutions for Sturm-Liouville BVPs on time scales via sub-supersolution and variational methods
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries and variational formulation
	Main results
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


