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Abstract
In recent years, various operators of fractional calculus (that is, calculus of integrals
and derivatives of arbitrary real or complex orders) have been investigated and
applied in many remarkably diverse fields of science and engineering. Many authors
have demonstrated the usefulness of fractional calculus in the derivation of particular
solutions of a number of linear ordinary and partial differential equations of the
second and higher orders. The purpose of this paper is to present a certain class of
the explicit particular solutions of the associated Cauchy-Euler fractional partial
differential equation of arbitrary real or complex orders and their applications as
follows:
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where u = u(x, t); A, B, C,M, N, α and β are arbitrary constants.
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1 Introduction, definitions and preliminaries
The subject of fractional calculus (that is, derivatives and integrals of any real or com-
plex order) has gained importance and popularity during the past two decades or so, due
mainly to its demonstrated applications in numerous seemingly diverse fields of science
and engineering (cf. [–]). By applying the following definition of a fractional differen-
tial (that is, fractional derivative and fractional integral) of order ν ∈ R, many authors
have obtained particular solutions of a number of families of homogeneous (as well as
nonhomogeneous) linear fractional differ-integral equations.
In this paper, we present a direct way to obtain explicit solutions of such types of the

associated Cauchy-Euler fractional partial differential equation with initial and boundary
values. The results are a coincidence that the solutions are obtained by themethods apply-
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ing the Laplace transform with the residue theorem. In this paper, we present some useful
definitions and preliminaries for the paper as follows.

Definitions . (cf. [–]) If the function f (z) is analytic and has no branch point inside
and on C , where

C := {C–,C+} (.)

C– is an integral curve along the cut joining the points z and –∞ + iT (z), C+ is an integral
curve along the cut joining the points z and ∞ + iT (z),

fν(z) = C fν(z) :=
�(ν + )
π i

∫
C

f (ζ )dζ

(ζ – z)ν+
(
ν ∈R/Z–;Z– := {–,–,–, . . .}) (.)

and

f–n(z) := lim
ν→–n

{
fν(z)

} (
n ∈N := {, , , . . .}), (.)

where ζ �= z,

–π ≤ arg(ζ – z) ≤ π for C–, (.)

and

 ≤ arg(ζ – z) ≤ π for C+, (.)

then fν(z) (ν > ) is said to be the fractional derivative of f (z) of order ν and fν(z) (ν < ) is
said to be the fractional integral of f (z) of order –ν , provided that

∣∣fν(z)∣∣ <∞ (ν ∈R). (.)

First of all, we find it is worthwhile to recall here the following useful lemmas and prop-
erties associated with the fractional differ-integration which is defined above.

Lemma . (Linearity property) If the functions f (z) and g(z) are single-valued and ana-
lytic in some domain 	 ⊆ C, then

(kf + kg)ν = kfν + kgν (ν ∈R, z ∈ 	) (.)

for any constants k and k.

Lemma . (Index law) If the function f (z) is single-valued and analytic in some domain
	 ⊆C, then

(fμ)ν = fμ+ν = (fν)μ (fμ �= , fν �= ,μ,ν ∈ R, z ∈ 	). (.)
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Lemma . (Generalized Leibniz rule) If the functions f (z) and g(z) are single-valued and
analytic in some domain 	 ⊆C, then

(f · g)ν =
∞∑
n=

(
ν

n

)
fν–n · gn (ν ∈R, z ∈ 	), (.)

where gn is the ordinary derivative of g(z) of order n (n ∈ N := N ∪ {}), it being tacitly
assumed (for simplicity) that g(z) is the polynomial part (if any) of the product f (z)g(z).

Lemma . (Cauchy’s residue theorem) Let	 be a simple connected domain, and let C be
a simple closed positively oriented contour that lies in 	. If f is analytic inside C and on C,
expect at the point z, z, . . . , zn that lie inside C, then

∫
C
f (z)dz = π i

n∑
k=

Res[f , zk].

(I) If f has a simple pole at z, then

Res[f , z] = lim
z→z

(z – z)f (z);

(II) If f has a pole of order k at z, then

Res[f , z] =


(k – )!
lim
z→z

dk–

dzk–
(z – z)kf (z).

Property . (cf. [–]) For a constant a,

(
eaz

)
ν
= aνeaz (a �= ,ν ∈R, z ∈C). (.)

Proof The proofs between ‘ν is not an integer’ and ‘ν is an integer’ are not coincident, so
we mention the proof as follows.
In case of | arga| < π/, we have

(
eaz

)
v = C–

(
eaz

)
v =

�(v + )
π i

∫
C–

eaζ

(ζ – z)v+
dζ (put ζ – z = η and aη = ξ , | argη| ≤ π )

= aveaz
�(v + )
π i

∫ (+)

–∞eiφ
ξ–(v+)eξ dξ (φ = arga)

= aveaz
�(v + )
π i

∫ (+)

–∞
ξ–(v+)eξ dξ

(
for |φ| < π



)
= aveaz

for | arga| < π/ since
∫ (+)
–∞ ξ–(v+)eξ dξ = π i

�(v+) .
In case of π/ < | arga| ≤ π , we have

(
eaz

)
v = C+

(
eaz

)
v =

�(v + )
π i

∫
C+

eaζ

(ζ – z)v+
dζ

(put ζ – z = η and aη = ξ , ≤ argη ≤ π )
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= aveaz
�(v + )
π i

∫ (+)

∞eiφ
ξ–(v+)eξ dξ (φ = arga)

= aveaz
�(v + )
π i

∫ (+)

–∞
ξ–(v+)eξ dξ

(
for

π


< |φ| ≤ π

)

= aveaz.

Therefore we have Property . for arbitrary a �= . �

Property . For a constant a,

(
e–az

)
ν
= e–iπνaνe–az (a �= ,ν ∈R, z ∈C). (.)

Property . For a constant a,

(
za

)
ν
= e–iπν �(ν – a)

�(–a)
za–ν

(
ν ∈R, z ∈C,

∣∣∣∣�(ν – a)
�(–a)

∣∣∣∣ <∞
)
. (.)

Property . (cf. [, , ]) The fractional derivative of a causal function f (t) is defined
by

dα

dtα
f (t) :=

⎧⎨
⎩
f (n)(t) if α = n ∈N,


�(n–α)

∫ t


f (n)(τ )
(t–τ )α+–n dτ if n –  < α < n,

(.)

where f (n)(t) denotes the ordinary derivative of order n and � is the gamma function.
The Laplace transform of a function f (t) is denoted as

L
{
f (t)

}
(s) =

∫ +∞


e–stf (t)dt, (.)

where s is the Laplace complex parameter. We recall from the fundamental formula
(cf. [])

L
{
dα

dtα
f (t)

}
(s) = sαL

{
f (t)

}
(s) –

n∑
k=

sα–kf (k–)(), n –  < α ≤ n,n ∈N. (.)

2 Main results
Theorem . The fractional partial differential equation

Ax
∂u
∂x

+ Bx
∂u
∂x

+Cu =M
∂αu
∂tα

+N
∂βu
∂tβ

, (.)

with u = u(x, t), n –  < α,β ≤ n, n ∈ N and A ( �= ), B, C, M, N are constants, has its
solutions of the form given by
(a)

u(x, t) = eλt[kxA–B+
√

(A–B)–A(C–Mλα–Nλβ )
A + kx

A–B–
√

(A–B)–A(C–Mλα–Nλβ )
A

]
, (.)

when the discriminant (A – B) – A(C –Mλα –Nλβ) > ;
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(b)

u(x, t) = eλt[kxm + kxm lnx
]
,

when the discriminant (A – B) – A(C –Mλα –Nλβ) = , and the roots m, m of
Equation (.) are repeated; that is,m =m =m;

(c)

u(x, t) = eλt[kxa+bi + kxa–bi
]
,

when the discriminant (A – B) – A(C –Mλα –Nλβ) < , and a + bi, a – bi are the
conjugate pair roots of Equation (.).

Proof Suppose that u(x, t) = xmeλt . We have

∂u
∂x

=mxm–eλt ,

∂u
∂x

=m(m – )xm–eλt ,

∂αu
∂tα

= λαxmeλt , and

∂βu
∂tβ

= λβxmeλt .

(.)

So that the given equation (.) becomes

Am(m – )xmeλt + Bmxmeλt +Cxmeλt –Mλαxmeλt –Nλβxmeλt = . (.)

Equation (.) leads to the auxiliary equation

Am(m – ) + Bm +C –Mλα –Nλβ = 
(
or Am – (A – B)m +

(
C –Mλα –Nλβ

)
= 

)
. (.)

That is,

m =
A – B +

√
(A – B) – A(C –Mλα –Nλβ )

A

and

m =
A – B –

√
(A – B) – A(C –Mλα –Nλβ)

A

are the two roots of the auxiliary equation (.). Thus, u(x, t) =
∑

i= kixmieλt is a solution
of the fractional partial differential equation (.) whenevermi (i = , ) is a solution of the
auxiliary equation (.).
There are three different cases to be considered, depending on whether the roots of this

quadratic equation (.) are distinct real roots, equal real roots (repeated real roots), or
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complex roots (roots appear as a conjugate pair). The three cases are due to the discrimi-
nant of the coefficients

√
(A – B) – A(C –Mλα –Nλβ).

• Case I: Distinct real roots (when (A – B) – A(C –Mλα –Nλβ ) > ).
Let m and m denote the real roots of Equation (.) such thatm �=m. Then the

general solution of Equation (.) is

u(x, t) = eλt(kxm + kxm
)
,

where ki (i = , ) are constants.
• Case II: Repeated real roots (when (A – B) – A(C –Mλα –Nλβ ) = ).

If the roots of Equation (.) are repeated, that is,m =m =m, then the general
solution of Equation (.) is

u(x, t) = eλt(kxm + kxm lnx
)
,

where ki (i = , ) are constants.
• Case III: Conjugate complex roots (when (A – B) – A(C –Mλα –Nλβ) < ).

If the roots of Equation (.) are the conjugate pair m = a + bi and m = a – bi, then
a solution of Equation (.) is

u(x, t) = eλt(kxa+bi + kxa–bi
)
,

where ki (i = , ) are constants.
In general,

u(x, t) = eλt[kxA–B+
√

(A–B)–A(C–Mλα–Nλβ )
A + kx

A–B–
√

(A–B)–A(C–Mλα–Nλβ )
A

]

forms a fundamental solution, where k, k and λ are constants. �

Theorem . The fractional partial differential equation

A
∂u
∂x

+ B
∂u
∂x

+Cu =M
∂αu
∂tα

+N
∂βu
∂tβ

, (.)

with u = u(x, t), n –  < α,β ≤ n, n ∈ N and A ( �= ), B, C, M, N are constants, has its
solutions of the form given by

(a′)

u(x, t) = eλt[ke( –B+
√

B–A(C–Mλα–Nλβ )
A )x + ke(

–B–
√

B–A(C–Mλα–Nλβ )
A )x], (.)

when the discriminant B – A(C –Mλα –Nλβ ) > ;
(b′)

u(x, t) = eλt[kemx + kxemx],
when the discriminant B – A(C –Mλα – Nλβ) = , and the roots m, m of Equa-
tion (.) are repeated; that is,m =m =m;
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(c′)

u(x, t) = eλt[kx(a+bi)x + kx(a–bi)x
]
,

when the discriminant B –A(C –Mλα –Nλβ) < , and a+bi, a–bi are the conjugate
pair roots of Equation (.).

Proof The similarity between the forms of solutions of Equation (.) and solutions of a
linear equation with constant coefficients of Equation (.) is not just a coincidence.
Suppose that u(x, t) = emxeλt . We have

∂u
∂x

=memxeλt ,

∂u
∂x

=memxeλt ,

∂αu
∂tα

= λαemxeλt , and

∂βu
∂tβ

= λβemxeλt .

(.)

So that the given equation (.) becomes

Amemxeλt + Bmemxeλt +Cemxeλt –Mλαemxeλt –Nλβemxeλt = . (.)

Ifm andm are the two roots of the auxiliary equation

Am + Bm +C –Mλα –Nλβ = , (.)

then

m =m =
–B +

√
B – A(C –Mλα –Nλβ)

A

and

m =m =
–B –

√
B – A(C –Mλα –Nλβ )

A
.

The analysis of three cases is similar to Theorem ., we can obtain each solution of the
forms as follows:

u(x, t) = eλt(kemx + kemx) withm �=m, two distinct real roots,
u(x, t) = eλt(kemx + kxemx) with m =m =m, repeated real roots, and
u(x, t) = eλt(ke(a+ib)x + ke(a–ib)x) with the conjugate complex roots. �

Remark The constant λ in Equations (.) and (.) can be solved directly by constant
initial value and constant boundary values (or by the numerical methods).

Corollary . The fractional partial differential equation

Ax
∂u
∂x

+ Bx
∂u
∂x

+C =M
∂αu
∂tα

, (.)

http://www.boundaryvalueproblems.com/content/2013/1/126
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with u = u(x, t), n–  < α ≤ n, n ∈N and A ( �= ), B, C,M are constants, has its solutions of
the form given by

(a′′)

u(x, t) = eλt[kxA–B+
√

(A–B)–A(C–Mλα )
A + kx

A–B–
√

(A–B)–A(C–Mλα )
A

]
, (.)

when the discriminant (A – B) – A(C –Mλα) > ;
(b′′)

u(x, t) = eλt[kxm + kxm lnx
]
,

when the discriminant (A – B) – A(C – Mλα) = , and the roots m, m of Equa-
tion (.) with N =  are repeated; that is,m =m =m;

(c′′)

u(x, t) = eλt[kea+bi + kea–bi
]
,

when the discriminant (A–B) – A(C –Mλα) < , and a+ bi, a– bi are the conjugate
pair roots of Equation (.) with N = .

Corollary . The fractional partial differential equation

A
∂u
∂x

+ B
∂u
∂x

+Cu =M
∂αu
∂tα

, (.)

with u = u(x, t), n–  < α ≤ n, n ∈N and A ( �= ), B, C,M are constants, has its solutions of
the form given by

(a′′′)

u(x, t) = eλt[ke( –B+
√

B–A(C–Mλα )
A )x + ke(

–B–
√

B–A(C–Mλα )
A )x], (.)

when the discriminant B – A(C –Mλα) > ;
(b′′′)

u(x, t) = eλt[kemx + kxemx],
when the discriminant B – A(C –Mλα) = , and the rootsm,m of Equation (.)
with N =  are repeated; that is, m =m =m;

(c′′′)

u(x, t) = eλt[ke(a+bi)x + ke(a–bi)x
]
,

when the discriminant B – A(C –Mλα) < , and a+ bi, a– bi are the conjugate pair
roots of Equation (.) with N = .
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3 Examples
Example . If the two-dimensional harmonic equation ∇

 u =  is transformed to plane
polar coordinates r and θ , defined by x = r cos θ , y = r sin θ , it takes the form

∂u
∂r

+

r
∂u
∂r

+

r

∂u
∂θ = , (.)

then it has solutions of the form

u(r, θ ) =
(
kriλ + kr–iλ

)
eλθ ,

where k, k and λ are constants.

Solution Equation (.) is coincident to

r
∂u
∂r

+ r
∂u
∂r

+
∂u
∂θ = .

We have the solution

u(r, θ ) =
(
kriλ + kr–iλ

)
eλθ

by taking A = , B = , C = ,M = –, N =  and α =  in Theorem .. �

Example . The fractional partial differential equation

∂u
∂x

+
∂u
∂x

=
∂αu
∂tα

with n –  < α ≤ n,n ∈N.

Solution Putting A = , B = , C =  andM =  in Corollary ., we obtain the solution

u(x, t) = eλt[ce( –+
√
+λα

 )x + ce(
––

√
+λα

 )x],
where the discriminant  + λα > .
If  + λα = ,

u(x, t) = e–(

 x+


 t)(c + cx).

The analysis of the case  + λα <  is similar to Theorem .. �

Example . The fractional partial differential equation

x
∂u
∂x

– x
∂u
∂x

= –
∂


 u

∂t 


with u(, t) = u(e, t) = .

Solution Putting A = , B = –, C =  and M = – and α = 
 in Corollary ., we obtain

the solution

u(x, t) = xeλt
[
k cos

√
× λ 

 – 


· lnx + k sin

√
× λ 

 – 


· lnx
]

= xeλt[k cos
√
λ 

 –  · lnx + k sin
√
λ 

 –  · lnx],
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u(, t) = keλt =  implies k = .

Then

u(x, t) = kxeλt sin

√
λ 

 –  · lnx,

u(e, t) = keλt+ sin

√
λ 

 –  =  implies that
√
λ 

 –  = nπ , n ∈ Z.

That is, λ = (nπ+)
 .

Thus, u(x, t) = kxe
(nπ+)

 t sinnπ · lnx, n ∈ Z.
If the discriminant λ 

 –  = , the solution is trivial. If the discriminant λ 
 –  < ,

then the solution is

u(x, t) = ke
(n+π)t


(
x+inπ – x–inπ

)
, n ∈N. �

Example . The fractional partial differential equation

∂

 u

∂t 
=



∂u
∂x

with u(, t) = e–t .

Solution Putting α = 
 , A = 

 , B = , C =  and M =  in Corollary ., the discriminant
is λ


 = (λ 

 ) ≥ , but λ =  leads to a contradiction, hence there are different real roots
m = λ 

 andm = –λ 
 , so that we have

u(x, t) = eλt(keλ 
 x + ke–λ


 x).

By the boundary condition u(, t) = e–t , we obtain λ = – and k + k = . So,

u(x, t) = e–te
√x – ke–t sinh

(
 √x

)
= e–te–

√x + ke–t sinh
(
 √x

)
,

and the particular solution is

u(x, t) = e–te
√x (

or u(x, t) = e–te–
√x).

If we apply the Laplace transform to φ(t) = u(, t) = e–t , then L{φ(t)}(s) = 
s+ and

ũ(x, s) = 
s+e

–xs

 . Using the residue theorem,

u(x, t) =


π i

∫
C
est


s + 

e–xs

 ds

=


π i
· π i lim

s→–
(s + )

e–xs

 est

s + 

= e–te
√x.

The solution obtained by the method of Laplace transform and the residue theorem is a
coincidence, which is our result above. �
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