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Abstract
We prove the existence of positive ground states for the nonlinear Schrödinger
system

{
–�u + (1 + a(x))u = Fu(u, v) + λv,

–�v + (1 + b(x))v = Fv(u, v) + λu,

where a, b are periodic or asymptotically periodic and F satisfies some superlinear
conditions in (u, v). The proof is based on the method of Nehari manifold and the
concentration-compactness principle.
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1 Introduction and statement of themain result
This paper was motivated by the following two-component system of nonlinear Schrö-
dinger equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–i ∂tφ = �φ +μ|φ|φ + β|ϕ|φ, x ∈Rn, t > ,

–i ∂tϕ = �ϕ +μ|ϕ|ϕ + β|φ|ϕ, x ∈R
n, t > ,

φ = φ(x, t), ϕ = ϕ(x, t) ∈C,

φ(x, t),ϕ(x, t)→  as |x| → ∞, t > ,

(.)

whereμi > , i = , , β ∈R and n = , . The system (.) has applications inmany physical
problems, especially in nonlinear optics (see []). To obtain standingwave solutions of (.)
of the form φ(x, t) = eiλtu(x), ϕ(x, t) = eiλtv(x) with λ,λ > , the system (.) turns out to
be

⎧⎨
⎩–�u + λu = μu + βuv,

–�v + λv = μv + βvu.
(.)

Following thework [] by Lin andWei about the existence of ground states for the problem
(.), there are many results on the existence of ground states relevant to five parameters
(λ, λ, μ, μ and β); see [–] and the references therein. Later in [], assuming λ =
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λ = , Pomponio and Secchi established the existence of radially symmetric ground states
for (.) with general nonlinearities (f (u) and g(v)).
On the other hand, some authors considered the existence of ground states for non-

autonomous similar problems. We recall the results about non-autonomous case for two
subcases. For periodic case, in [] Szulkin and Weth referred that treating as periodic
Schrödinger equations, it is possible to deduce that there are ground states for the follow-
ing system using the method of Nehari manifold:

⎧⎨
⎩–�u + u =Gu(x,u, v),

–�v + v =Gv(x,u, v),
(.)

where G is periodic in x and satisfies some superlinear conditions in (u, v). For non-
periodic case, we refer to [, –] for instance. As we can observe, most of the previous
results on ground states for the non-periodic system have used the condition that there
exists a limit system (or the problem at infinity; for precise statement, refer to []). More-
over, the limit system is autonomous. Here wemainly deal with an asymptotically periodic
Schrödinger system which has a periodic non-autonomous limit system, roughly speak-
ing. In this paper, we are concerned with the existence of positive ground states for the
nonlinear Schrödinger system in W ,(RN )×W ,(RN ) (N ≥ )

⎧⎨
⎩–�u + ( + a(x))u = Fu(u, v) + λv,

–�v + ( + b(x))v = Fv(u, v) + λu,
(NLS)

where λ >  is a real parameter. For simplicity, we denote +∞ by ∞

* =

⎧⎨
⎩

N
N– , N ≥ ,

∞, N = .

Moreover, in what follows, the notation inf (sup) is understood as the essential infimum
(supremum). In the sequel, let a,b ∈ L∞(RN ) and F ∈ C(R,R) with F(, ) = , we always
assume that
(V) infRN { + a(x)} > λ, infRN { + b(x)} > λ,
(F) |∇F(u, v)| ≤ C( + |(u, v)|q–) for some C >  and  < q < ∗,
(F) |∇F(u, v)| = o(|(u, v)|) as |(u, v)| → ,
(F) ∀(u, v) 
= (, ), s > , s �→ ∇F(su,sv)(u,v)

s is strictly increasing,
(F) F(u,v)

u+v → ∞ as |(u, v)| → ∞,
(F) Fu(u, v)≥ , Fv(u, v)≥ , Fu(, v) = Fv(u, ) = , u≥ , v≥ ,
(F) F(u, v)≤ F(|u|, |v|), u, v ∈R.

(F)-(F) are similar to the conditions of the nonlinearities for the periodic system (.) as
considered in []. We divide the study of (NLS) into two cases as follows.
First, we consider the periodic case
(V) a(x) = a(x + y), b(x) = b(x + y), ∀x ∈R

N , y ∈ Z
N .

We have the following result.
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Theorem . Let (V), (V) and (F)-(F) hold. Then the system (NLS) has a positive
ground state.

Remark . It is observed that the system (NLS) with periodic a and b is a particular case
of the problem (.) with

G(x,u, v) = F(u, v) + λuv –


(
a(x)u + b(x)v

)
,

and G is periodic in x. The problem (.) is mentioned in [] when G is periodic in x.
However, in [] the conditions on the function G are not made explicit.

Next, we consider the asymptotically periodic case. We assume that there are functions
ap,bp ∈ L∞(RN ) satisfying (V) and (V) and a, b satisfies that
(V) lim|x|→∞ |a(x) – ap(x)| = , lim|x|→∞ |b(x) – bp(x)| = ,
(V) a ≤ ap, b ≤ bp.

We have the following result.

Theorem . Assume that ap and bp satisfy (V). Let (V), (V), (V) and (F)-(F) hold.
Then the system (NLS) has a positive ground state.

Remark . Conditions (V) and (V) imply that ap and bp satisfy (V).

In addition, we consider the following conditions:
(V) ap = bp := V , a + b≤ V ,
(F) Fu(u, v) = Fv(v,u), u > , v > .

We have the following result.

Theorem . Suppose that ap and bp satisfy (V) and (V). Let (V), (V), (V) and (F)-
(F) hold. Then the system (NLS) has a positive ground state.

Wewill proveTheorems ., . and . using themethod ofNeharimanifold.Wefirst re-
duce the problem of seeking for ground states of (NLS) into that of looking for minimizers
of the functional constrained on the Nehari manifold. Then we apply the concentration-
compactness principle to solve the minimization problem. Since the Nehari manifold for
(NLS) may not be smooth, in the same way as [], we will make use of the differential
structure of a unit sphere in W ,(RN ) × W ,(RN ) to find a (PS)c sequence (c is the infi-
mum of the functional constrained on the Nehari manifold). When (NLS) is periodic, we
will use the invariance of the functional under translation to recover the compactness of
the (PS)c sequence. When the system (NLS) is asymptotically periodic, the difficulty is to
recover the compactness for the (PS)c sequence. By comparing c with the infimum of the
functional of the related periodic limit system constrained on the corresponding Nehari
manifold, we will restore the compactness.
The paper is organized as follows. In Section  we give some preliminaries. In Section 

we introduce the variational setting. In Section  we consider the periodic case and prove
Theorem .. Section  is devoted to studying the asymptotically periodic case and show-
ing Theorems . and ..
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2 Notation and preliminaries
We use the following notation:
• For simplicity, we denote

∫
h :=

∫
RN h(x)dx and

∫
E h :=

∫
E h(x)dx, where E ⊂R

N is
measurable.

• X denotes the Sobolev spaceW ,(RN ) (N ≥ ), with the standard scalar product
〈u, v〉X =

∫
(∇u · ∇v + uv) and the norm ‖u‖X = 〈u,u〉X . H = X ×X with the norm

‖(u, v)‖H = ‖u‖X + ‖v‖X . When there is no possible misunderstanding, the subscripts
could be omitted.

• The usual norm in Lr(RN ) ( ≤ r ≤ ∞) will be denoted by | · |r .
• S = {(u, v) ∈H : ‖(u, v)‖ = }.
• For any � >  and z ∈R

N , B�(z) denotes the ball of radius � centered at z.
Note that a,b ∈ L∞(RN ) and F ∈ C(R,R). Then by conditions (F) and (F), the func-

tional

	(u, v) =



(
‖u‖ + ‖v‖ +

∫
a(x)u +

∫
b(x)v

)
– λ

∫
uv –

∫
F(u, v)

is of class C and its critical points are solutions of (NLS). Moreover, by (V) we have

μ
∥∥(u, v)∥∥ ≤ ‖u‖ + ‖v‖ +

∫
a(x)u +

∫
b(x)v – λ

∫
uv ≤ ν

∥∥(u, v)∥∥, (.)

with μ,ν > .
A solution (ũ, ṽ) of (NLS) is called a ground state if

	(ũ, ṽ) =min
{
	(u, v) : (u, v) ∈H \ {

(, )
}
,	′(u, v) = 

}
.

A ground state (u, v) such that u > , v >  (u≥ , v ≥ ) is called a positive (non-negative)
ground state. Below we give some lemmas useful for studying our problem.

Lemma . (F) and (F) imply that for all ε > , there exists Cε >  such that

∣∣∇F(u, v)
∣∣ ≤ ε

∣∣(u, v)∣∣ +Cε

∣∣(u, v)∣∣q– ∀u, v ∈ R. (.)

(F) and (F) yield that

F(u, v) > , F(u, v) <∇F(u, v)(u, v) ∀(u, v) 
= (, ). (.)

Moreover, (F) implies the function α(s) = 
∇F(su, sv)(su, sv) – F(su, sv) is increasing in

(,∞) for all u, v ∈R.

Proof The inequalities (.) and (.) are easily inferred from the corresponding assump-
tions. We just prove the last conclusion. Indeed, let s ≥ s > . Then by (F) we obtain

α(s) – α(s)

=


∇F(su, sv)(su, sv) –



∇F(su, sv)(su, sv) + F(su, sv) – F(su, sv)

http://www.boundaryvalueproblems.com/content/2013/1/13
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=
∫ s


t · ∇F(su, sv)(u, v)

s
dt –

∫ s


t · ∇F(su, sv)(u, v)

s
dt –

∫ s

s
∇F(tu, tv)(u, v)dt

=
∫ s


t ·

[∇F(su, sv)(u, v)
s

–
∇F(su, sv)(u, v)

s

]
dt

+
∫ s

s
t ·

[∇F(su, sv)(u, v)
s

–
∇F(tu, tv)(u, v)

t

]
dt ≥ . �

Lemma . Let (F) and (F) hold. Then 	′ is weakly sequentially continuous. Namely, if
(un, vn) ⇀ (u, v) in H , then 	′(un, vn) ⇀ 	′(u, v) in H .

Proof Suppose (un, vn)⇀ (u, v) inH . After passing to a subsequence, we assume (un, vn) →
(u, v) in Lqloc(R

N )× Lqloc(R
N ). By (F), we get

Fu(un, vn) → Fu(u, v), Fv(un, vn) → Fv(u, v) in L
q

q–
loc

(
R

N) × L
q

q–
loc

(
R

N)
.

Then for all (φ,ϕ) ∈ C∞
 (RN )×C∞

 (RN ), we have

∫
Fu(un, vn)φ →

∫
Fu(u, v)φ,

∫
Fv(un, vn)ϕ →

∫
Fv(u, v)ϕ.

So, one easily has that

〈
	′(un, vn), (φ,ϕ)

〉 → 〈
	′(u, v), (φ,ϕ)

〉
. (.)

Now, we claim that 	′(un, vn) is bounded inH . Indeed, for (h,k) ∈H , using (.) and the
Hölder inequality, we obtain that

∣∣∣∣
∫

Fu(un, vn)h
∣∣∣∣ ≤ C

∫ (|un| + |vn|
)|h| + C̄

∫ (|un|q– + |vn|q–
)|h|

≤ C
(|un| + |vn|

)|h| +CC̄
(|un|q–q + |vn|q–q

)|h|q
≤ C

(‖un‖ + ‖vn‖
)‖h‖ +CC̄

(‖un‖q– + ‖vn‖q–
)‖h‖ < C′‖h‖.

Similarly, we get | ∫ Fv(un, vn)k| ≤ C‖k‖. Then we easily have

∣∣〈	′(un, vn), (h,k)
〉∣∣ ≤ C

∥∥(h,k)∥∥.
Hence, 	′(un, vn) is bounded in H . Combining with the fact that C∞

 (RN ) × C∞
 (RN ) is

dense in H , we easily deduce that (.) holds for any (φ,ϕ) ∈ H . Therefore, 	′(un, vn) ⇀

	′(u, v) in H . �

3 Variational setting
This section is devoted to describing the variational framework for the study of ground
states for (NLS).
It is easy to see that	 is bounded neither from above nor frombelow. So, it is convenient

to consider 	 on the Nehari manifold that contains all nontrivial critical points of 	 and

http://www.boundaryvalueproblems.com/content/2013/1/13
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on which 	 turns out to be bounded from below. The Nehari manifoldM corresponding
to 	 is defined by

M =
{
(u, v) ∈H \ {

(, )
}
:
〈
	′(u, v), (u, v)

〉
= 

}
,

where

〈
	′(u, v), (u, v)

〉
= ‖u‖ + ‖u‖ +

∫
a(x)u +

∫
b(x)v – λ

∫
uv –

∫
∇F(u, v)(u, v).

Below we investigate the main properties of 	 onM.

Lemma . Let (F) and (F) hold. Then 	 is bounded from below on M by .

Proof Note that

	|M(u, v) =
∫ [



∇F(u, v)(u, v) – F(u, v)

]
. (.)

By (.) we have 	|M(u, v) > . �

Define the least energy of (NLS) onM by c := inf	|M , then c≥ . Next, we proveM is a
manifold. First, we give the following two lemmas, which will be important when proving
M is a manifold.

Lemma . Let (V) and (F)-(F) hold. Assume (un, vn) ⇀ (u, v) in H and (u, v) 
= (, ).
Then for any {tn} with tn >  and tn → ∞, we have

∫ F(tnun, tnvn)
tn

→ ∞.

Moreover, 	(tnun, tnvn) → –∞.

Proof Since (un, vn) ⇀ (u, v) in H , we assume that (un, vn) → (u, v) in Lloc(R
N )× Lloc(R

N ),
and (un, vn) → (u, v) a.e. on R

N for a subsequence. By (u, v) 
= (, ), there exists a positive
measure set � such that (u(x), v(x)) 
= (, ), ∀x ∈ �. Then tn|(un(x), vn(x))| → ∞, x ∈ �.
By (F) we have

∫
�

lim
F(tnun, tnvn)
tn(un + vn)

(
un + vn

)
= ∞.

Therefore, (.) and the Fatou lemma yield that

lim
∫ F(tnun, tnvn)

tn
= ∞.

Using (.) we have

	
(
tn(un, vn)

) ≤ tn


[
ν
(‖un‖ + ‖vn‖

)
–

∫ F(tnun, tnvn)
tn

]
→ –∞,

since {(un, vn)} is bounded in H . �

http://www.boundaryvalueproblems.com/content/2013/1/13
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Lemma . Let (V) and (F)-(F) hold. Then
(i) for each (u, v) ∈H \ {(, )}, there exists t(u,v) such that if g(u,v)(t) :=	(tu, tv), then

g ′
(u,v)(t) >  for  < t < t(u,v) and g ′

(u,v)(t) <  for t > t(u,v);
(ii) there exists ρ >  such that t(w,z) ≥ ρ for all (w, z) ∈ S;
(iii) for each compact subset W ⊂ S, there exists a constant CW such that t(u,v) ≤ CW for

all (u, v) ∈ W .

Proof (i) Note that

g ′
(u,v)(t) = t

[
‖u‖ + ‖v‖ +

∫
a(x)u +

∫
b(x)v – λ

∫
uv –

∫ ∇F(tu, tv)(u, v)
t

]
.

Using (F), we infer that when t is small enough, g ′
(u,v)(t) > . By Lemma . and (.), we

have

∫ ∇F(tu, tv)(u, v)
t

≥
∫ F(tu, tv)

t
→ ∞, t → ∞.

Then when t is large enough, g ′
(u,v)(t) < . Then g(u,v) has maximum points in (,∞). More-

over, from (F) one easily deduces that the critical point of g(u,v) is unique in (,∞), and
then it is the maximum point. We denote it by t(u,v). Then g ′

(u,v)(t) >  for  < t < t(u,v) and
g ′
(u,v)(t) <  for t > t(u,v).
(ii) If (u, v) ∈M, then

‖u‖ + ‖v‖ +
∫

a(x)u +
∫

b(x)v – λ
∫

uv =
∫

∇F(u, v)(u, v).

By (.) and (.), we get

μ
(‖u‖ + ‖v‖) ≤ ε

(|u| + |v|
)
+Cε

(|u|qq + |v|qq
) ≤ ε

(‖u‖ + ‖v‖)+CCε

(‖u‖q + ‖v‖q),
where ε >  is arbitrary. Then

‖u‖q– + ‖v‖q– ≥ C̃.

So, there exists ρ >  such that

‖u‖ + ‖v‖ ≥ ρ for all (u, v) ∈ M. (.)

Using (i), for (w, z) ∈ S, there exists t(w,z) >  such that g ′
(w,z)(t(w,z)) = . Then t(w,z)(w, z) ∈

M. Then (.) yields the conclusion (ii).
(iii) We argue by contradiction. Suppose that there exist a compact set W and a se-

quence {(un, vn)} such that {(un, vn)} ⊂ W ⊂ S and t(un ,vn) → ∞. Since W is compact,
there exists (u, v) ∈ W such that (un, vn) → (u, v) in H . Then Lemma . implies that
	(t(un ,vn)(un, vn)) → –∞. Contrary to Lemma . since t(un ,vn)(un, vn) ∈ M. This ends the
proof. �

http://www.boundaryvalueproblems.com/content/2013/1/13
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Remark . Lemma .(i) implies that for each (u, v) ∈ H \ {(, )}, there exists a unique
t(u,v) >  such that

t(u,v)(u, v) ∈M and 	
(
t(u,v)(u, v)

)
=max

t>
	(tu, tv). (.)

As a consequence of Lemma .(i), we can define the mapping m : S → M by m(u, v) =
t(u,v)(u, v). By Lemma ., [, Proposition .(b)] yields the following result.

Lemma . If (V) and (F)-(F) are satisfied, thenm is a homeomorphism between S and
M, and M is a manifold.

If M is a C manifold, we can make use of the differential structure of M to reduce the
problem of finding a ground state for (NLS) into that of looking for a minimizer of 	|M
and solve theminimizing problem.However, since F ∈ C(R,R),Mmay not be aC man-
ifold. Noting that M and S are homeomorphic, we will take advantage of the differential
structure of S to seek for ground states for (NLS) as []. Therefore, as in [], we intro-
duce the functional � : S →R defined by �(u, v) := 	(m(u, v)), and we have the following
conclusion.

Proposition . Let (V) and (F)-(F) hold. Then the following results hold:
(i) If {(wn, zn)} is a PS sequence for � , then {m(wn, zn)} is a PS sequence for 	.
(ii) (w, z) is a critical point of � if and only if m(w, z) is a nontrivial critical point of 	.

Moreover, infS � = infM 	.
(iii) A minimizer of 	|M is a solution of (NLS).

Proof As in the proof of [, Corollary .], we can show (i) and (ii). Now, we prove the
conclusion (iii). Indeed, let (u, v) ∈M such that	(u, v) = c. Then�(w, z) = c, where (w, z) =
m–(u, v) ∈ S. By the conclusion (ii), we have �(w, z) = infS � . So, � ′(w, z) = . Using the
conclusion (ii) again, we deduce that 	′(u, v) = . �

From the definition of a ground state, we translate the problem of looking for a ground
state for (NLS) into that of seeking for a solution for (NLS) which is a minimizer of 	|M .
By Proposition .(iii), in order to look for a ground state for (NLS), we just need to seek
for a minimizer of 	|M .

4 The periodic case
In this section, we consider the periodic case and prove Theorem .. In [], Szulkin and
Weth considered the existence of ground states for periodic single Schrödinger equations.
Treating as in [], we find ground states for a periodic case for the system (NLS). In ad-
dition, under conditions (F) and (F), we deduce that there are positive ground states.
From the statement in Section , it suffices to solve the minimizing problem. By conclu-

sions (i) and (ii) of Proposition ., we first make use of the minimizing sequence of � to
obtain a (PS)c sequence of	. Thenwe use the invariant of the functional under translation
of the form v �→ v(· – y), y ∈ Z

N to recover the compactness for the (PS)c sequence.

Proof of Theorem . Let (w̄n, z̄n) ∈ S be a minimizing sequence of � . By the Ekeland vari-
ational principle [, Theorem .], we may assume that � ′(w̄n, z̄n) → . Using Proposi-

http://www.boundaryvalueproblems.com/content/2013/1/13
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tion .(i), we have that 	′(un, vn) → , where (un, vn) =m(w̄n, z̄n) ∈ M. Proposition .(ii)
implies that 	(un, vn) = �(w̄n, z̄n) → infS � = c.
We claim that {(un, vn)} is bounded inH . Otherwise, suppose sn := ‖(un, vn)‖ → ∞ up to

a subsequence. Set (wn, zn) = (un ,vn)
‖(un ,vn)‖ . Then we assume (wn, zn) ⇀ (w, z) in H , (wn, zn) →

(w, z) in Lloc(R
N ) × Lloc(R

N ) and (wn, zn) → (w, z) a.e. on RN after passing to a subse-
quence. Moreover, the Sobolev embedding theorem implies that {(wn, zn)} is bounded in
Lq(RN ) × Lq(RN ), namely, {|wn|q + |zn|q} is bounded. Taking a subsequence, we suppose
|wn|q + |zn|q → A ∈ [,∞).
(i) If A = , then for any ε > , there exists K ∈ N such that |wn|qq + |zn|qq < Cε, for n > K .

Combining with (.), for n > K and s > , we have

∫
F(swn, szn) ≤ εs

(|wn| + |zn|
)
+ sqCCε

(|wn|qq + |zn|qq
)
< Cε.

Then
∫
F(swn, szn)→ . Hence, by (.) we get

c + on() =	(un, vn) ≥ 	(swn, szn) ≥ sμ


(‖wn‖ + ‖zn‖
)
–

∫
F(swn, szn) → sμ


,

a contradiction for s >
√

c
μ
.

(ii) If A 
= , then we can assume that wn 
→  in Lq(RN ). From the Lions compactness
lemma [, Lemma .], it follows that there exist δ >  and xn ∈R

N such that
∫
B(xn)

|wn| > δ. (.)

Since 	 andM are invariant by translation of the form v �→ v(·– y), y ∈ Z
N , translating wn

if necessary, we may assume {xn} is bounded. Since wn → w in Lloc(R
N ), then (.) implies

w 
= . Then from Lemma ., we deduce that 	(snwn, snzn) → –∞. This is impossible
since 	(snwn, snzn) = 	(un, vn) → c.
Hence, {(un, vn)} is bounded inH . Suppose that (un, vn) ⇀ (ǔ, v̌) inH , (un, vn)→ (ǔ, v̌) in

Lloc(R
N )×Lloc(R

N ) and (un, vn) → (ǔ, v̌) a.e. onR
N for a subsequence. Since	′(un, vn) →

, Lemma . yields 	′(ǔ, v̌) = .
We will show that (ǔ, v̌) 
= (, ). Similarly, suppose |un|q + |vn|q → B ∈ [,∞). If B = ,

then as before, combining with (.), we obtain that
∫ ∇F(un, vn)(un, vn) → . Hence, by

(.) we have

on() =
〈
	′(un, vn), (un, vn)

〉
≥ μ

(‖un‖ + ‖vn‖
)
–

∫
∇F(un, vn)(un, vn)

= μ
(‖un‖ + ‖vn‖

)
+ on().

Then (un, vn) → (, ) in H . This is impossible since (un, vn) ∈ M and (.) holds. There-
fore, B 
= . So, we can assume un 
→  in Lq(RN ). Then the Lions compactness lemma
implies that there exist yn ∈R

N , δ̃ >  such that

∫
B(yn)

|un| > δ̃. (.)

http://www.boundaryvalueproblems.com/content/2013/1/13
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As before, translating un if necessary, we may assume {yn} is bounded. Since (.) and
un → ǔ in Lloc(R

N ), we get ǔ 
= . Note that 	′(ǔ, v̌) = . So, (ǔ, v̌) ∈ M. Then by (.) we
get

c + on() = 	(un, vn)

=
∫ [



∇F(un, vn)(un, vn) – F(un, vn)

]

≥
∫ [



∇F(ǔ, v̌)(ǔ, v̌) – F(ǔ, v̌)

]
+ on()

= 	(ǔ, v̌) + on(), (.)

where (.) follows from the Fatou lemma and (.). Then	(ǔ, v̌) ≤ c. According to (ǔ, v̌) ∈
M, we have 	(ǔ, v̌) ≥ c. Thus, 	(ǔ, v̌) = c. Consequently, (ǔ, v̌) is a ground state of (NLS).
It remains to look for a positive ground state for (NLS). First, we can assume that

(ǔ, v̌) is non-negative. In fact, note that |∇u| = |∇|u|| and |∇v| = |∇|v|| for all
(u, v) ∈ H . Then (|ǔ|, |v̌|) ∈ H . Let τ >  be such that τ (|ǔ|, |v̌|) ∈ M. By (F) we easily
have that 	(τ |ǔ|, τ |v̌|) ≤ 	(τ ǔ, τ v̌). Moreover, 	(τ ǔ, τ v̌) ≤ 	(ǔ, v̌) since (ǔ, v̌) ∈ M. Then
	(τ |ǔ|, τ |v̌|) ≤ 	(ǔ, v̌). So, (τ |ǔ|, τ |v̌|) is also a minimizer of 	 on M. Then (τ |ǔ|, τ |v̌|) is
also a ground state of (NLS). Thus we can assume that (ǔ, v̌) is a non-negative ground state
for (NLS). Now, we claim that ǔ 
= , v̌ 
= . Indeed, if ǔ = , then from (F) and λ > , the
first equation of (NLS) yields that v̌ = . Then (ǔ, v̌) = (, ). This is impossible. So, ǔ 
= .
Similarly, v̌ 
= . By (F), applying the maximum principle to each equation of (NLS), we
infer that ǔ > , v̌ > . The proof is complete. �

5 The asymptotically periodic case
In this section, we will consider the asymptotically periodic case and prove Theorems .
and .. As in the proof of Theorem ., we first take advantage of theminimizing sequence
of � to find a (PS)c sequence of 	. In what follows, the important thing is to recover the
compactness for the (PS)c sequence. For this purpose, we need to estimate the functional
levels of the problem (NLS) and those of a related periodic problem of (NLS) (roughly
speaking, the limit system of (NLS) by (V))

⎧⎨
⎩–�u + ( + ap(x))u = Fu(u, v) + λv,

–�v + ( + bp(x))v = Fv(u, v) + λu.
(NLS)p

Hence, first we introduce some definitions and look for solutions for the problem (NLS)p.
The functional of (NLS)p is defined by

	p(u, v) =



(
‖u‖ + ‖v‖ +

∫
ap(x)u +

∫
bp(x)v

)
– λ

∫
uv –

∫
F(u, v).

The Nehari manifold of (NLS)p is

Mp =
{
(u, v) ∈H \ {

(, )
}
:
〈
	′

p(u, v), (u, v)
〉
= 

}
,

http://www.boundaryvalueproblems.com/content/2013/1/13
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and cp = infMp 	p is the least energy of (NLS)p onMp. Note that

	p|Mp (u, v) =
∫ [



∇F(u, v)(u, v) – F(u, v)

]
. (.)

As for c, we have cp ≥ .

Lemma . Suppose that ap, bp satisfy (V) and (V). Let (F)-(F) hold.Then the problem
(NLS)p has a positive ground state (u, v) ∈Mp such that 	p(u, v) = cp.

Proof As a corollary of Theorem ., we infer that the problem (NLS)p has a positive
ground state. Moreover, from the argument of Theorem ., we find that the ground state
of the problem (NLS)p we obtained is a minimizer of 	p onMp. �

The existence of a positive ground state for the problem (NLS)p implies that (NLS) has
a positive ground state when a = ap and b = bp. So, it remains to consider

a 
= ap or b 
= bp. (.)

Next, we prove that c < cp under some conditions.

Lemma . Suppose that ap, bp satisfy (V). Let (V), (V), (.) and (F)-(F) hold. Then
c < cp.

Proof Let (u, v) ∈ Mp be a positive ground state of (NLS)p such that 	p(u, v) = cp.
Assume t >  satisfies t(u, v) ∈M. By (V), we get

∫ [(
a(x) – ap(x)

)
u +

(
b(x) – bp(x)

)
v

] ≤ .

Then 	(tu, tv) ≤ 	p(tu, tv).
Replacing 	 and M by 	p and Mp respectively, (.) also holds. Noting that (u, v) ∈

Mp, we infer that

	p(tu, tv) ≤ 	p(u, v) and 	p(tu, tv) = 	p(u, v) if and only if t = . (.)

Therefore,

c≤ 	(tu, tv) ≤ 	p(tu, tv) ≤ 	p(u, v) = cp. (.)

If c < cp, we are done. Otherwise, c = cp. Then by (.) and (.), we get t =  and
	(u, v) = c. Then (u, v) is a ground state for (NLS). Note that (u, v) is a solution of
(NLS)p. From the first equations of (NLS) and (NLS)p, we infer that a = ap. Similarly, b = bp
contrary to (.). The proof is now complete. �

Lemma . Suppose that ap, bp satisfy (V) and (V). Let (V), (V), (.) and (F)-(F)
hold. Then c < cp.

http://www.boundaryvalueproblems.com/content/2013/1/13
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Proof Let (u, v) ∈ Mp be a positive ground state of (NLS)p such that 	p(u, v) = cp. By
(V) and (F), we find that (v,u) is also a minimizer of 	p on Mp. Let t, τ >  be such
that t(u, v), τ (v,u) ∈M. Using (V), we have

∫
(a(x) + b(x) – V (x))(u + v)≤ . Then

∫ [(
a(x) –V (x)

)
u +

(
b(x) –V (x)

)
v

] ≤  or
∫ [(

a(x) –V (x)
)
v +

(
b(x) –V (x)

)
u

] ≤ .

Without loss of generality, we assume that∫ [(
a(x) –V (x)

)
u +

(
b(x) –V (x)

)
v

] ≤ .

Then 	(tu, tv) ≤ 	p(tu, tv). Below we argue analogously with the proof of Lemma .
to infer that c < cp. This ends the proof. �

Now, we are ready to prove Theorems . and .. The proof is partially inspired by [],
where the authors dealt with Schrödinger-Poisson equations.

Proof of Theorem . As the argument of Theorem ., we infer that there exists a sequence
(un, vn) ∈M such that 	′(un, vn) →  and 	(un, vn) → c.
We claim that {(un, vn)} is bounded inH . Otherwise, suppose tn := ‖(un, vn)‖ → ∞ up to

a subsequence. Set (wn, zn) = (un ,vn)
‖(un ,vn)‖ . As in the proof of Theorem ., taking a subsequence,

we suppose |wn|q + |zn|q → A ∈ [,∞) and exclude the case that A = . So, A 
= , then we
can assume that wn 
→  in Lq(RN ). From the Lions compactness lemma, it follows that
there exist δ >  and yn ∈R

N such that∫
B(yn)

|wn| > δ.

Set w̃n = wn(· + yn) and z̃n = zn(· + yn). We assume that (w̃n, z̃n) ⇀ (w̃, z̃) in H , (w̃n, z̃n) →
(w̃, z̃) in Lloc(R

N )×Lloc(R
N ) and (w̃n, z̃n) → (w̃, z̃) a.e. onRN up to a subsequence. Then by

∫
B(yn)

|wn| > δ,

we obtain w̃ 
= . So, Lemma . implies that∫ F(tnw̃n, tnz̃n)
tn

→ ∞.

Then by (.), we get

 ≤ 	(un, vn)
‖(un, vn)‖

=



[‖un‖ + ‖vn‖ +
∫
a(x)un +

∫
b(x)vn – λ

∫
unvn

‖(un, vn)‖
]
–

∫ F(tnwn, tnzn)
tn

≤ ν


–

∫ F(tnw̃n, tnz̃n)
tn

→ –∞.

This is a contradiction.

http://www.boundaryvalueproblems.com/content/2013/1/13
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Hence, {(un, vn)} is bounded in H . Up to a subsequence, we assume that (un, vn) ⇀

(ũ, ṽ) in H , (un, vn) → (ũ, ṽ) in Lloc(R
N ) × Lloc(R

N ) and (un, vn) → (ũ, ṽ) a.e. on R
N . By

Lemma ., we have 	′(ũ, ṽ) = . Namely, (ũ, ṽ) is a solution of (NLS).
Belowweprove that (ũ, ṽ) 
= (, ).We argue by contradiction. Suppose that (ũ, ṽ) = (, ).

By (V), for any ε > , there exists r >  such that

∣∣a(x) – ap(x)
∣∣ < ε,

∣∣b(x) – bp(x)
∣∣ < ε for all |x| > r. (.)

Note that (ũ, ṽ) = (, ), after passing to a subsequence, we assume (un, vn) → (, ) in
L(Br())× L(Br()). So, for the above ε, there exists J ∈N such that for n > J, we have

∫
Br ()

un < ε,
∫
Br()

vn < ε.

Combining with (.), for n > J, we get

∣∣∣∣
∫ (

a(x) – ap(x)
)
un

∣∣∣∣ ≤
∫
Br()

∣∣a(x) – ap(x)
∣∣un + ε

∫
RN \Br ()

un <
(|a|∞ + |ap|∞

)
ε +Cε.

Then
∫
(a(x) – ap(x))un → . Similarly,

∫
(b(x) – bp(x))vn → . Therefore,

	p(un, vn) = 	(un, vn) + on(),
〈
	′

p(un, vn), (un, vn)
〉
=

〈
	′(un, vn), (un, vn)

〉
+ on().

Hence,

	p(un, vn) = c + on(),
〈
	′

p(un, vn), (un, vn)
〉
= on(). (.)

Let sn >  be such that sn(un, vn) ∈ Mp. We claim that sn ≥  for large n and sn → .
First, we prove that

lim sup
n→∞

sn ≤ . (.)

Otherwise, there exist δ >  and a subsequence of sn, still denoted by sn, such that sn ≥ +δ

for all n ∈N. From (.) we have

‖un‖ + ‖vn‖ +
∫

ap(x)un +
∫

bp(x)vn – λ
∫

unvn =
∫

∇F(un, vn)(un, vn) + on().

Moreover, by sn(un, vn) ∈Mp, we get

sn

[
‖un‖ + ‖vn‖ +

∫
ap(x)un +

∫
bp(x)vn – λ

∫
unvn

]

=
∫

∇F(snun, snvn)(snun, snvn).

Hence,

∫ [∇F(snun, snvn)(un, vn)
sn

–∇F(un, vn)(un, vn)
]
= on().

http://www.boundaryvalueproblems.com/content/2013/1/13
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By sn ≥  + δ and (F), we obtain

∫ [∇F(( + δ)un, ( + δ)vn)(un, vn)
 + δ

–∇F(un, vn)(un, vn)
]

≤ on(). (.)

Similar to the proof of Theorem ., if (un, vn) → (, ) in Lq(RN )×Lq(RN ), then (un, vn) →
(, ) in H . Contrary to (.), since (un, vn) ∈ M, therefore, (un, vn) 
→ (, ) in Lq(RN ) ×
Lq(RN ). Suppose un 
→  in Lq(RN ). Then from the Lions compactness lemma, it follows
that there exist xn ∈R

N and δ >  such that

∫
B(xn)

un > δ. (.)

We denote ūn and v̄n by ūn = un(· + xn) and v̄n = vn(· + xn). Similarly, we assume that
(ūn, v̄n) ⇀ (ū, v̄) in H , (ūn, v̄n) → (ū, v̄) in Lloc(R

N ) × Lloc(R
N ) and (ūn, ūn) → (ū, v̄) a.e. on

R
N up to a subsequence. By (.), we have

∫
B()

ūn > δ.

So, ū 
= . From (.), (F) and the Fatou lemma, we obtain

 <
∫ [∇F(( + δ)ū, ( + δ)v̄)(ū, v̄)

 + δ
–∇F(ū, v̄)(ū, v̄)

]
≤ ,

which is impossible. Consequently, (.) holds.
Now, we show that sn ≥  for large n. Indeed, on the contrary, passing to a subsequence,

we assume that sn < . Using (.) and (.), we have

cp ≤ 	p(snun, snvn) =
∫ [



∇F(snun, snvn)(snun, snvn) – F(snun, snvn)

]

≤
∫ [



∇F(un, vn)(un, vn) – F(un, vn)

]

= 	(un, vn) + on() = c + on(), (.)

where (.) follows from the fact that α is increasing in (,∞) by Lemma .. Then cp ≤ c,
contrary to Lemma .. Therefore, combining with (.), we may assume that

sn ≥ , for large n and lim
n→∞ sn = . (.)

For ε >  and  ≤ s≤ sn, using (.) we get

∣∣∣∣
∫

∇F(sun, svn)(un, vn)
∣∣∣∣ ≤ εsn

(|un| + |vn|
)
+Cεsq–n

(|un|qq + |vn|qq
)
. (.)

Combining (.) with (.), one easily has that

∫ [
F(snun, snvn) – F(un, vn)

]
=

∫ sn



[∫
∇F(sun, svn)(un, vn)dx

]
ds = on().
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Since ap,bp ∈ L∞(RN ) and {(un, vn)} is bounded, we get

sn – 


[
‖un‖ + ‖vn‖ +

∫
ap(x)un +

∫
bp(x)vn – λ

∫
unvn

]
= on().

Hence, 	p(snun, snvn) = 	p(un, vn) + on(). Then using (.), we have cp ≤ 	p(snun, snvn) =
c+on(). Then cp ≤ c. However, Lemma . implies that c < cp. This is a contradiction.Note
that this contradiction follows from the hypothesis that (ũ, ṽ) = (, ). So, (ũ, ṽ) 
= (, ).
Then (ũ, ṽ) ∈M.
It suffices to show that 	(ũ, ṽ) = c. By (.) we have

c + on() = 	(un, vn) =
∫ [



∇F(un, vn)(un, vn) – F(un, vn)

]

≥
∫ [



∇F(ũ, ṽ)(ũ, ṽ) – F(ũ, ṽ)

]
+ on()

= 	(ũ, ṽ) + on(), (.)

where the inequality (.) holds by (.) and the Fatou lemma. Then 	(ũ, ṽ) ≤ c. Accord-
ing to (ũ, ṽ) ∈ M, we have 	(ũ, ṽ) = c. Then (ũ, ṽ) is a ground state for (NLS). Below we
argue analogously with the proof of Theorem . to get a positive ground state for (NLS).
The proof is complete. �

Proof of Theorem . By Lemma ., repeating the argument of Theorem ., we show
the existence of a ground state for (NLS) and then look for a positive ground state as the
argument of Theorem .. �
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