
Tharwat et al. Boundary Value Problems 2013, 2013:132
http://www.boundaryvalueproblems.com/content/2013/1/132

RESEARCH Open Access

Approximation of eigenvalues of
discontinuous Sturm-Liouville problems with
eigenparameter in all boundary conditions
Mohammed M Tharwat1*, Ali H Bhrawy1,2 and Abdulaziz S Alofi1

*Correspondence:
zahraa26@yahoo.com
1Department of Mathematics,
Faculty of Science, King Abdulaziz
University, Jeddah, Saudi Arabia
2Permanent address: Department of
Mathematics, Faculty of Science,
Beni-Suef University, Beni-Suef,
Egypt

Abstract
In this paper, we apply a sinc-Gaussian technique to compute approximate values of
the eigenvalues of Sturm-Liouville problems which contain an eigenparameter
appearing linearly in two boundary conditions, in addition to an internal point of
discontinuity. The error of this method decays exponentially in terms of the number
of involved samples. Therefore the accuracy of the new technique is higher than that
of the classical sinc method. Numerical worked examples with tables and illustrative
figures are given at the end of the paper.
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1 Introduction
By a sampling theoremwemean a representation of a certain function in terms of its values
at a discrete set of points. In communication theory, it means a reconstruction of a signal
(information) in terms of a discrete set of data. This has several applications, especially in
the transmission of information. If the signal is band-limited, the sampling process can be
done via the celebrated Whittaker-Kotel’nikov-Shannon (WKS) sampling theorem [–].
By a band-limited signal with bandwidth τ , τ > , wemean a function in the Paley-Wiener
space

Bτ :=
{
f entire,

∣∣f (λ)∣∣ ≤ Ceτ |�λ|,
∫
R

∣∣f (λ)∣∣ dλ

}
. (.)

The WKS sampling theorem is a fundamental result in information theory. It states that
any f ∈Bτ can be reconstructed from its sampled values f (xk), where xk = kπ/τ and k ∈ Z,
by the formula

f (x) =
∑
k∈Z

f (xk) sinc(τx/π – k), x ∈R, (.)

where

sinc(x) :=

⎧⎨⎩ sinπx
πx , x ∈R \ {},

, x = ,
(.)
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and the series converges absolutely and uniformly on any finite interval of R. Expansion
(.) is used in several approximation problemswhich are known as sincmethods; see, e.g.,
[–]. In particular the sinc-method is used to approximate eigenvalues of boundary value
problems; see, for example, [–]. The sinc-method has a slow rate of decay at infinity,
which is as slow as O(|x–|). There are several attempts to improve the rate of decay. One
of the interesting ways is to multiply the sinc-function in (.) by a kernel function; see,
e.g., [–]. Let h ∈ (,π/τ ] and γ ∈ (,π – hτ ). Assume that � ∈Bγ such that �() = ,
then for f ∈ Bτ we have the expansion, []

f (x) =
∞∑

n=–∞
f (nh) sinc

(
h–πx – nπ

)
�

(
h–x – n

)
. (.)

The speed of convergence of the series in (.) is determined by the decay of |�(x)|. But
the decay of an entire function of exponential type cannot be as fast as e–c|x| as |x| −→ ∞,
for some positive c []. In [], Qian has introduced the following regularized sampling
formula. For h ∈ (,π/τ ], N ∈ N and r > , Qian defined the operator []

(Gh,Nf )(x) =
∑

n∈ZN (x)

f (nh)Sn
(
h–πx

)
G

(
x – nh√
rh

)
, x ∈R, (.)

where G(t) := exp(–t), which is called the Gaussian function, Sn(h–πx) := sinc(h–πx –
nπ ), ZN (x) := {n ∈ Z : |[h–x] – n| ≤ N} and [x] denotes the integer part of x ∈ R; see also
[, ]. Qian also derived the following error bound. If f ∈ Bτ , h ∈ (,π/τ ] and a :=
min{r(π – hτ ), (N – )/r} ≥ , then [, ]

∣∣f (x) – (Gh,Nf )(x)
∣∣ ≤ 

√
τπ‖f ‖
πa

(√
πa + e/r

)
e–a

/, x ∈ R. (.)

In [] Schmeisser and Stenger extended the operator (.) to the complex domain C. For
τ > , h ∈ (,π/τ ] and ω := (π – hτ )/, they defined the operator []

(Gh,Nf )(z) :=
∑

n∈ZN (z)

f (nh)Sn
(

πz
h

)
G

(√
ω(z – nh)√

Nh

)
, (.)

where ZN (z) := {n ∈ Z : |[h–
z + /] – n| ≤ N} and N ∈ N. Note that the summation
limits in (.) depend on the real part of z. Schmeisser and Stenger [] proved that if f is
an entire function such that

∣∣f (ξ + iη)
∣∣ ≤ φ

(|ξ |)eτ |η|, ξ ,η ∈R, (.)

where φ is a non-decreasing, non-negative function on [,∞) and τ ≥ , then for h ∈
(,π/τ ), ω := (π – hτ )/, N ∈ N, |�z| <N , we have

∣∣f (z) – (Gh,Nf )(z)
∣∣

≤ 
∣∣sin(h–πz)∣∣φ(|
z| + h(N + )

) e–ωN
√

πωN
βN

(
h–�z), z ∈C, (.)
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where

βN (t) := cosh(ωt) +
eωt/N

√
πωN[ – (t/N)]

+



[
eωt

eπ (N–t) – 
+

e–ωt

eπ (N+t) – 

]
. (.)

The amplitude error arises when the exact values f (nh) of (.) are replaced by the ap-
proximations f̃ (nh). We assume that f̃ (nh) are close to f (nh), i.e., there is ε >  sufficiently
small such that

sup
n∈Zn(z)

∣∣f (nh) – f̃ (nh)
∣∣ < ε. (.)

Let h ∈ (,π/τ ), ω := (π – hτ )/ and N ∈ N be fixed numbers. The authors in [] proved
that if (.) holds, then for |�z| <N , we have

∣∣(Gh,Nf )(z) – (Gh,N f̃ )(z)
∣∣ ≤ Aε,N (�z), (.)

where

Aε,N (�z) = εe–ω/N ( +
√
N/ωπ ) exp

(
(ω + π )h–|�z|). (.)

It is well known that many topics in mathematical physics require the investigation of the
eigenvalues and eigenfunctions of Sturm-Liouville type boundary value problems. There-
fore, the Sturmian theory is one of the most actual and extensively developing fields of
theoretical and applied mathematics. Particularly, in recent years, highly important re-
sults in this field have been obtained for the case when the eigenparameter appears not
only in the differential equation but also in the boundary conditions. The literature on
such results is voluminous, and we refer to [–] and corresponding bibliography cited
therein. In particular, [, , , ] contain many references to problems in physics and
mechanics. Our task is to use formula (.) to compute the eigenvalues numerically of the
differential equation

–y′′(x,μ) + q(x)y(x,μ) = μ
y(x,μ), x ∈ [

–, )∪ (, 
]
, (.)

with boundary conditions

L(y) :=
(
α′
μ

 – α
)
y(–,μ) –

(
α′
μ

 – α
)
y

′(–,μ) = , (.)

L(y) :=
(
β ′
μ

 + β
)
y(,μ) –

(
β ′
μ

 + β
)
y

′(,μ) = , (.)

and transmission conditions

L(y) := γy
(
–,μ

)
– δy

(
+,μ

)
= , (.)

L(y) := γy
′(–,μ)

– δy
′(+,μ)

= , (.)

where μ is a complex spectral parameter; q(x) is a given real-valued function, which is
continuous in [–, ) and (, ] and has a finite limit q(±) = limx→± q(x); γi, δi, αi, βi, α′

i ,
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β ′
i (i = , ) are real numbers; γi = , δi =  (i = , ); γγ = δδ and

det

(
α′
 α

α′
 α

)
> , det

(
β ′
 β

β ′
 β

)
> . (.)

The eigenvalue problem (.)-(.) when (α′
,α′

) = (, ) = (β ′
,β ′

) is a Sturm-Liouville
problem which contains an eigenparameter μ in two boundary conditions, in addition
to an internal point of discontinuity. In [], Tharwat proved that the eigenvalue prob-
lem (.)-(.) has a denumerable set of real and simple eigenvalues using techniques
similar to those established in [, , ], where also sampling theorems have been es-
tablished. Tharwat et al., in [], computed the eigenvalues of the problem (.)-(.) by
using the sinc method. In the sinc method, the basic idea is as follows: The eigenvalues
are characterized as the zeros of an analytic function F(μ) which can be written in the
form F(μ) = K(μ) + U(μ), where K(μ) (known part) is the function for the case q ≡ .
The ingenuity of the approach is in trying to choose the function F(μ) so that U(μ) ∈ Bτ

(unknown part) and can be approximated by the WKS sampling theorem if its values at
some equally spaced points are known; see [–].
Our goal in this paper is to improve the results presented in Tharwat et al. [] with the

least conditions. In this paper we use the sinc-Gaussian sampling formula (.) to compute
eigenvalues of (.)-(.) numerically. As is expected, the newmethod reduced the error
bounds remarkably; see the examples at the end of this paper. Also here, we use the same
idea but the unknown partU(μ) is an entire function of exponential type and satisfies (.),
that is, U(μ) is not necessary L-function. Then we approximate the U(μ) using (.) and
obtain better results. We would like to mention that the papers in computing eigenvalues
by the sinc-Gaussian method are few; see [, , ]. In Section  we derive the sinc-
Gaussian technique to compute the eigenvalues of (.)-(.) with error estimates. The
last section involves some illustrative examples.

2 Treatment of the eigenvalue problem (1.14)-(1.18)
In this section we derive approximate values of the eigenvalues of the eigenvalue problem
(.)-(.). Recall that the problem (.)-(.) has a denumerable set of real and simple
eigenvalues, cf. []. Let

y(x,μ) =

⎧⎨⎩y(x,μ), x ∈ [–, ),

y(x,μ), x ∈ (, ]

denote the solution of (.) satisfying the following initial conditions:

(
y(–,μ) y(+,μ)
y′
(–,μ) y′

(+,μ)

)
=

(
μα′

 – α
γ
δ
y(–,μ)

μα′
 – α

γ
δ
y′
(–,μ)

)
. (.)

Since y(·,μ) satisfies (.), (.) and (.), then the eigenvalues of problem (.)-(.)
are the zeros of the characteristic determinant, cf. [],

�(μ) :=
(
β ′
μ

 + β
)
y(,μ) –

(
β ′
μ

 + β
)
y

′
(,μ). (.)
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According to [], see also [–], the function �(μ) is an entire function of μ where
zeros are real and simple. We aim to approximate �(μ) and hence its zeros, i.e., the eigen-
values, by using (.). The idea is to split �(μ) into two parts, one is known and the other
is unknown, but is an entire function of exponential type and satisfies (.). Then we ap-
proximate the unknown part using (.) to get the approximate �(μ) and then compute
the approximate zeros. By using the method of variation of constants, we can see that the
solution y(·,μ) satisfies the Volterra integral equations, cf. [],

y(x,μ) =
(
–α +μα′


)
cos

[
μ(x + )

]
–

(
–α +μα′


) 
μ
sin

[
μ(x + )

]
+ (Ty)(x,μ), (.)

y(x,μ) =
γ

δ
y

(
–,μ

)
cos[μx] +

γ

δ
y

′

(
–,μ

) sin[μx]
μ

+ (Ty)(x,μ), (.)

where T and T are the Volterra operators

(Ty)(x,μ) :=
∫ x

–

sin[μ(x – t)]
μ

q(t)y(t,μ)dt, (.)

(Ty)(x,μ) :=
∫ x



sin[μ(x – t)]
μ

q(t)y(t,μ)dt. (.)

Differentiating (.) and (.), we obtain

y
′
(x,μ) = –

(
–α +μα′


)
μ sin

[
μ(x + )

]
–

(
–α +μα′


)
cos

[
μ(x + )

]
+ (T̃y)(x,μ), (.)

y
′
(x,μ) = –

γ

δ
μy

(
–,μ

)
sin[μx] +

γ

δ
y

′

(
–,μ

)
cos[μx] + (T̃y)(x,μ), (.)

where T̃ and T̃ are the Volterra-type integral operators

(T̃y)(x,μ) :=
∫ x

–
cos

[
μ(x – t)

]
q(t)y(t,μ)dt, (.)

(T̃y)(x,μ) :=
∫ x


cos

[
μ(x – t)

]
q(t)y(t,μ)dt. (.)

Define ϑi(·,μ) and ϑ̃i(·,μ), i = , , to be

ϑi(x,μ) := Tiyi(x,μ), ϑ̃i(x,μ) := T̃iyi(x,μ). (.)

In the following, we make use of the known estimates []

| cos z| ≤ e|�z|,
∣∣∣∣ sin zz

∣∣∣∣ ≤ c
 + |z|e

|�z|, (.)
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where c is some constant (we may take c � . cf. []). For convenience, we define the
constants

q :=
∫ 

–

∣∣q(t)∣∣dt, q :=
∫ 



∣∣q(t)∣∣dt, c :=max
(|α|, |α|, |α′

|, |α′
|

)
,

c := exp(cq), c :=  + ccq,

c := ( + c)
[ |γ|

|δ| c +
|γ|
|δ| c( + cq)

]
,

c := exp(cq), c :=  + cqc.

(.)

As in [], we split �(μ) into two parts via

�(μ) :=K(μ) + U (μ), (.)

where K(μ) is the known part

K(μ) :=
(
β ′
μ

 + β
)[(

μα′
 – α

)(γ

δ
cos μ –

γ

δ
sin μ

)
–

(
μα′

 – α
)(γ

δ
+

γ

δ

)
cosμ

sinμ

μ

]
+

(
β ′
μ

 + β
)[(

μα′
 – α

)(γ

δ
+

γ

δ

)
μ cosμ sinμ

+
(
μα′

 – α
)(γ

δ
cos μ –

γ

δ
sin μ

)]
(.)

and U (μ) is the unknown one

U (μ) := γ

δ

[(
β ′
μ

 + β
)
cosμ +

(
β ′
μ

 + β
)
μ sinμ

]
ϑ

(
–,μ

)
+

(
β ′
μ

 + β
)
ϑ(,μ)

+
γ

δ

[(
β ′
μ

 + β
) sinμ

μ
–

(
β ′
μ

 + β
)
cosμ

]
ϑ̃

(
–,μ

)
–

(
β ′
μ

 + β
)
ϑ̃(,μ). (.)

Then the function U (μ) is entire in μ for each x ∈ [, ] for which, cf. [],∣∣U (μ)∣∣ ≤ φ
(|μ|)e|�μ|, μ ∈C, (.)

where

φ
(|μ|) :=M

(
 + |μ|), (.)

and

M := cc( + c)q
[
cc

|γ|
|δ| + c

|γ|
|δ|

]
+ cccq(c + cc),

c :=max
{|β|, |β|,

∣∣β ′

∣∣, ∣∣β ′


∣∣}. (.)

Then U (μ) is an entire function of exponential type τ = . In the following, we let μ ∈ R

http://www.boundaryvalueproblems.com/content/2013/1/132
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since all eigenvalues are real. Now we approximate the function U (μ) using the operator
(.) where h ∈ (,π/) and ω := (π – h)/ and then, from (.), we obtain

∣∣U (μ) – (Gh,NU )(μ)
∣∣ ≤ Th,N (μ), (.)

where

Th,N (μ) := 
∣∣sin(h–πμ

)∣∣φ(|
μ| + h(N + )
) e–ωN
√

πωN
βN (), μ ∈ R. (.)

The samples U (nh) = �(nh) –K(nh), n ∈ ZN (μ) cannot be computed explicitly in the gen-
eral case. We approximate these samples numerically by solving the initial-value prob-
lems defined by (.) and (.) to obtain the approximate values Ũ (nh), n ∈ ZN (μ), i.e.,
Ũ (nh) = �̃(nh) –K(nh). Here we use a computer algebra system, Mathematica, to ob-
tain the approximate solutions with the required accuracy. However, a separate study for
the effect of different numerical schemes and the computational costs would be interest-
ing. Accordingly, we have the explicit expansion

(Gh,N Ũ )(μ) :=
∑

n∈ZN (μ)

Ũ (nh)Sn
(

πμ

h

)
G

(√
ω(μ – nh)√

Nh

)
. (.)

Therefore we get, cf. (.),∣∣(Gh,NU )(μ) – (Gh,N Ũ )(μ)
∣∣ ≤ Aε,N (), μ ∈R. (.)

Now let �̃N (μ) :=K(μ) + (Gh,N Ũ )(μ). From (.) and (.) we obtain∣∣�(μ) – �̃N (μ)
∣∣ ≤ Th,N (μ) +Aε,N (), μ ∈R. (.)

Let μ∗ be an eigenvalue and μN be its desired approximation, i.e., �(μ∗) =  and
�̃N (μN ) = . From (.) we have |�̃N (μ∗)| ≤ Th,N (μ∗) +Aε,N (). Define the curves

a±(μ) = �̃N (μ)± Th,N (μ) +Aε,N (). (.)

The curves a+(μ), a–(μ) trap the curve of �(μ) for suitably large N . Hence the closure
interval is determined by solving a±(μ) = , which gives an interval

Iε,N := [a–,a+].

It is worthwhile to mention that the simplicity of the eigenvalues guarantees the existence
of approximate eigenvalues, i.e., the μN ’s for which �̃N (μN ) = . Next we estimate the
error |μ∗ –μN | for the eigenvalue μ∗.

Theorem . Let μ∗ be an eigenvalue of (.)-(.) and μN be its approximation. Then,
for μ ∈R, we have the following estimate:

∣∣μ∗ –μN
∣∣ < Th,N (μN ) +Aε,N ()

inf
ζ∈Iε,N

|�′(ζ )| , (.)

where the interval Iε,N is defined above.

http://www.boundaryvalueproblems.com/content/2013/1/132
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Proof Replacing μ by μN in (.), we obtain

∣∣�(μN ) –�
(
μ∗)∣∣ < Th,N (μN ) +Aε,N (), (.)

where we have used �̃N (μN ) = �(μ∗) = . Using the mean value theorem yields that for
some ζ ∈ Jε,N := [min(μ∗,μN ),max(μ∗,μN )],∣∣(μ∗ –μN

)
�′(ζ )

∣∣ ≤ Th,N (μN ) +Aε,N (), ζ ∈ Jε,N ⊂ Iε,N . (.)

Since μ∗ is simple and N is sufficiently large, then infζ∈Iε,N |�′(ζ )| > , and we get (.).
�

3 Examples
This section includes two examples illustrating the sinc-Gaussian method. All exam-
ples are computed in [] with the classical sinc-method. It is clearly seen that the sinc-
Gaussian method gives remarkably better results. We indicate in these two examples the
effect of the amplitude error in the method by determining enclosure intervals for differ-
ent values of ε. We also indicate the effect of N and h by several choices. We would like to
mention that Mathematica has been used to obtain the exact values for these examples
where eigenvalues cannot computed concretely. Mathematica is also used in rounding
the exact eigenvalues, which are square roots. Each example is exhibited via figures that
accurately illustrate the procedure near to some of the approximated eigenvalues. More
explanations are given below.

Example  Consider the boundary value problem

–y′′(x,μ) + q(x)y(x,μ) = μ
y(x,μ), x ∈ [–, )∪ (, ], (.)

μ
y(–,μ) + y

′(–,μ) = , μ
y(,μ) – y

′(,μ) = , (.)

y
(
–,μ

)
– y

(
+,μ

)
= , y

′(–,μ)
– y

′(+,μ)
= . (.)

Here β ′
 = β = α′

 = α = , β = β ′
 = α = α′

 = , γ = δ = , γ = δ = 
 and

q(x) =

⎧⎨⎩–, x ∈ [–, ),

–, x ∈ (, ].
(.)

The characteristic function is

�(μ) =
√

 +μ
√
 +μ

[
sin

√
 +μ

(
–
√
 +μ

(
μ –μ – 

)
cos

√
 +μ

–μ( + μ) sin√
 +μ

)
–

√
 +μ cos

√
 +μ

(
–μ

√
 +μ cos

√
 +μ

+
(
μ –μ – 

)
sin

√
 +μ

)]
. (.)

The function K(μ) will be

K(μ) = –μ
(
 +μ) sinμ. (.)

http://www.boundaryvalueproblems.com/content/2013/1/132
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Table 1 The approximation μk,N and the exact solutionμk for different choices of h and N

μk

μ1 μ2 μ3 μ4

Exact μk 0.579603114810978 1.7849838948888357 3.238647349751419 4.770562335590527
μk,N h = 0.5,

ω = 1.0708
N = 10 0.5795964187714981 1.7849867099956038 3.2386476744424746 4.770562422264749
N = 20 0.5796031144857375 1.7849838950724857 3.2386473497857042 4.770562335603019

h = 0.1,
ω = 1.4708

N = 10 0.5796031130499404 1.7849838962430518 3.2386473440949666 4.770562334447039
N = 20 0.579603114810984 1.7849838948888386 3.2386473497514174 4.770562335590528

Table 2 Absolute error |μk –μk,N|
μk

μ1 μ2 μ3 μ4

h = 0.5 N = 10 6.69604× 10–6 2.81511× 10–6 3.24691× 10–7 8.66742× 10–8

N = 20 3.25241× 10–10 1.8365× 10–10 3.4285× 10–11 1.24922× 10–11

h = 0.1 N = 10 1.76104× 10–9 1.35422× 10–9 5.65645× 10–9 1.14349× 10–9

N = 20 5.9952× 10–15 2.88658× 10–15 1.77636× 10–15 8.88178× 10–16

Table 3 For N = 20 and h = 0.1, the exact solutions μk are all inside the interval [a–,a+] for
different values of ε

μk

μ1 μ2 μ3 μ4

Exact μk 0.579603114810978 1.7849838948888357 3.238647349751419 4.770562335590527
Iε,N , ε = 10–2 [0.5346366, 0.6204846] [1.7756360, 1.7941072] [3.23662663, 3.2406609] [4.7698996, 4.7712244]
Iε,N , ε = 10–5 [0.5795603, 0.5796458] [1.7849746, 1.7849931] [3.2386453, 3.2386493] [4.7705616, 4.7705630]

Figure 1 The enclosure interval dominating μ1 for h = 0.1, N = 20 and ε = 10–2.

http://www.boundaryvalueproblems.com/content/2013/1/132
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Figure 2 The enclosure interval dominating μ1 for h = 0.1, N = 20 and ε = 10–5.

Figure 3 The enclosure interval dominating μ4 for h = 0.1, N = 20 and ε = 10–2.

As is clearly seen, eigenvalues cannot be computed explicitly. Tables , ,  indicate the
application of our technique to this problem and the effect of ε. By exact we mean the
zeros of �(μ) computed by Mathematica.
Figures  and  illustrate the enclosure intervals dominating μ for N = , h = . and

ε = –, ε = –, respectively. The middle curve represents �(μ), while the upper and
lower curves represent the curves of a+(μ), a–(μ), respectively. We notice that when ε =
–, all two curves are almost identical. Similarly, Figures  and  illustrate the enclosure
intervals dominating μ for h = ., N =  and ε = –, ε = –, respectively.

Example  Consider the boundary value problem

–y′′(x,μ) + q(x)y(x,μ) = μ
y(x,μ), x ∈ [–, )∪ (, ], (.)

y(–,μ) +μ
y

′(–,μ) = , y(,μ) +μ
y

′(,μ) = , (.)

y
(
–,μ

)
– y

(
+,μ

)
= , y

′(–,μ)
– y

′(+,μ)
= , (.)
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Figure 4 The enclosure interval dominating μ4 for h = 0.1, N = 20 and ε = 10–5.

Table 4 The approximation μk,N and the exact solutionμk for different choices of h and N

μk

μ1 μ2 μ3 μ4

Exact μk 0.587187167726 1.67733212404 3.0531892794846156 4.648369480494567
μk,N h = 0.8,

ω = 0.770796
N = 25 0.58719581492 1.677332017694 3.053189335065 4.648369489163
N = 40 0.587187168173 1.677332124046 3.053189279486 4.648369480494

h = 0.3,
ω = 1.2708

N = 25 0.587187167726 1.677332124049 3.05318927948 4.64836948049
N = 40 0.587187167726 1.677332124049 3.0531892794846154 4.648369480494567

Table 5 Absolute error |μk –μk,N|
μk

μ1 μ2 μ3 μ4

h = 0.8 N = 25 8.6472× 10–6 1.06355× 10–7 5.55809× 10–8 8.66884× 10–9

N = 40 4.47627× 10–10 2.99827× 10–12 2.33413× 10–12 3.41061× 10–13

h = 0.3 N = 25 1.12133× 10–13 6.83897× 10–14 3.55271× 10–15 4.440895× 10–15

N = 40 5.55112× 10–16 2.22045× 10–16 1.965× 10–16 5.56× 10–16

Table 6 For N = 40 and h = 0.3, the exact solutions μk are all inside the interval [a–,a+] for
different values of ε

μk

μ1 μ2 μ3 μ4

Exact μk 0.5871871677260395 1.677332124049779 3.05318927948461569256 4.6483694804945678959
Iε,N , ε = 10–2 [0.5356541, 0.6313038] [1.6721084, 1.6824381] [3.0527867, 3.0535913] [4.6483196, 4.6484193]
Iε,N , ε = 10–5 [0.5871398, 0.5872345] [1.6773269, 1.6773372] [3.0531888, 3.0531896] [4.64836943, 4.64836953]

http://www.boundaryvalueproblems.com/content/2013/1/132
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Figure 5 The enclosure interval dominating μ2 for h = 0.3, N = 40 and ε = 10–2.

Figure 6 The enclosure interval dominating μ2 for h = 0.3, N = 40 and ε = 10–5.

where α = β = , α′
 = β ′

 = –, β ′
 = β = α = α′

 = , γ = δ = , γ = δ = 
 and

q(x) =

⎧⎨⎩–, x ∈ [–, ),

x, x ∈ (, ].
(.)

The function K(μ) will be

K(μ) =
( +μ) sinμ

μ
. (.)

The characteristic determinant of the problem is

�(μ) = –
π√

 +μ

(
–
(
Bi

[
 –μ] +μBi′

[
 –μ])

× (
Ai′

[
–μ](μ

√
 +μ cos

[√
 +μ

]
+ sin

[√
 +μ

])
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Figure 7 The enclosure interval dominating μ3 for h = 0.3, N = 40 and ε = 10–2.

Figure 8 The enclosure interval dominating μ3 for h = 0.3, N = 40 and ε = 10–5.

+Ai
[
–μ](–√

 +μ cos
[√

 +μ
]
+μ( +μ) sin[√ +μ

]))
+

(
Ai

[
 –μ] +μAi′

[
 –μ])

× (
Bi′

[
–μ](μ

√
 +μ cos

[√
 +μ

]
+ sin

[√
 +μ

])
+Bi

[
–μ](–√

 +μ cos
[√

 +μ
]
+μ( +μ) sin[√ +μ

])))
, (.)

whereAi[z] andBi[z] are Airy functions, andAi′[z] andBi′[z] are derivatives of Airy func-
tions. As in the above example, the three tables (Tables , , ) indicate the application of
our technique to this problem and the effect of ε.
Here Figures {, }, {, } illustrate the enclosure intervals dominating μ and μ for

h = ., N =  and ε = –, ε = –, respectively.
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4 Conclusion
With a simple analysis, and with values of solutions of initial value problems computed
at a few values of the eigenparameter, we have computed the eigenvalues of discontinu-
ous Sturm-Liouville problems which contain an eigenparameter appearing linearly in two
boundary conditions, with a certain estimated error. The method proposed is a shooting
procedure, i.e., the problem is reformulated as two initial value ones, due to the interior
discontinuity, of size two and a miss-distance is defined at the right end of the interval of
integration whose roots are the eigenvalues to be computed. The unknown part U (μ) of
the miss-distance can be written in terms of a function which is an entire function of ex-
ponential type. Therefore, we propose to approximate such term by means of a truncated
cardinal series with sampling values approximated by solving numerically corresponding
suitable initial value problems. Finally, in Section  we introduced two instructive exam-
ples. The computations show that, as compared to the classical sampling expansion in
[], the variant with the Gaussian multiplier provides a strikingly high improvement of
the accuracy.
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