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Abstract
Under Neumann or Dirichlet boundary conditions, the stability of a class of delayed
impulsive Markovian jumping stochastic fuzzy p-Laplace partial differential equations
(PDEs) is considered. Thanks to some methods different from those of previous
literature, the difficulties brought by fuzzy stochastic mathematical model and
impulsive model have been overcome. By way of the Lyapunov-Krasovskii functional,
Itô formula, Dynkin formula and a differential inequality, new LMI-based global
stochastic exponential stability criteria for the above-mentioned PDEs are established.
Some applications of the obtained results improve some existing results on neural
networks. And some numerical examples are presented to illustrate the effectiveness
of the proposed method due to the significant improvement in the allowable upper
bounds of time delays.
MSC: 34D20; 34D23; 34B45; 34B37; 34K20

Keywords: differential inequality; Laplace diffusion; Markovian jumping

1 Introduction
In this paper, we are concerned with the following delayed impulsive Markovian jumping
stochastic fuzzy p-Laplace partial differential equations (PDEs):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dvi(t,x) = [
∑m

k=
∂

∂xk
(Dik(t,x, v)|∇vi(t,x)|p– ∂vi

∂xk
)

–bi(vi(t,x)) +
∧n

j= ĉij(r(t))Fj(vj(t,x))

+
∨n

j= čij(r(t))Fj(vj(t,x)) +
∧n

j= d̂ij(r(t))Gj(vj(t – τj(t),x))

+
∨n

j= ďij(r(t))Gj(vj(t – τj(t),x))]dt

+
∑n

j= σij(vj(t,x), vj(t – τj(t)),x)dwj(t),

for all t ≥ , t �= tk ,x ∈ �,

v(t+,x) =Mk(r(t))v(t–,x) +N (r(t))h(v(t– – τ (t),x)), t = tk ,k = , , . . . ,

v(θ ,x) = φ(θ ,x), (θ ,x) ∈ [–τ , ]× �,

(.)

equipped with the boundary condition

B
[
vi(t,x)

]
= , (t,x) ∈ [–τ , +∞)× ∂�, i = , , . . . ,n, (.a)
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where p >  is a positive scalar, � ∈ Rm is a bounded domain with a smooth bound-
ary ∂� of class C by �, v(t,x) = (v(t,x), v(t,x), . . . , vn(t,x))T ∈ Rn. The smooth functions
Djk(t,x, v) ≥ . Denote τ (t) = (τ(t), τ(t), . . . , τn(t))T , and τj(t) ( ≤ τj(t) ≤ τ ) corresponds
to the transmission delays at time t. v(t – τ (t),x) = (v(t – τ(t),x), v(t – τ(t),x), . . . , vn(t –
τn(t),x))T ∈ Rn. tk is called impulsive moment, satisfying  < t < t < · · · < tk < · · · with
limk→∞ tk = ∞. v(t+k ,x) and v(t–k ,x) denote the left-hand and right-hand limits at tk , re-
spectively. h(v(t–k – τ (t),x)) = (h(v(t–k – τ(tk))),h(v(t–k – τ(tk))), . . . ,hn(vn(t–k – τn(tk))))T ,
and hj(vj(t–k – τj(tk))) is the impulsive perturbation at time tk . We always assume v(t+k ,x) =
v(tk ,x). bj(vj(t,x)), Fj(vj(t,x)) and Gj(vj(t,x)) are continuous functions.

∧
and

∨
denote

the fuzzy AND and OR operation, respectively. Each wj(t) is scalar standard Brownian
motion defined on a complete probability space (�,F ,P) with a natural filtration {Ft}t≥.
The noise perturbation σij : R × R → R is a Borel measurable function. {r(t), t ≥ } is a
right-continuous Markov process on the probability space which takes values in the finite
space S = {, , . . . ,N} with generator � = {πij} given by

P
(
r(t + δ) = j | r(t) = i

)
=

⎧⎨⎩πijδ + o(δ), j �= i,

 + πijδ + o(δ), j = i,

where πij ≥  is transition probability rate from i to j (j �= i) and πii = –
∑s

j=,j �=i πij, δ > 
and limδ→ o(δ)/δ = . In addition, the transition rates of the Markovian chain are con-
sidered to be partially available, namely, some elements in transition rates matrix �

are time-invariant but unknown. For notational clarity, we denote S = Sikn ∪ Siun with
Sikn � {j, if πij is known} and Siun � {j, if πij is unknown, and j �= i} for a given i ∈ S. �i is
a nonnegative scalar, satisfying �i ≥ maxj∈Siun πij for any given i ∈ S. In mode r(t) = r ∈ S =
{, , . . . ,N}, we denote ĉij(r(t)) = ĉ(r)ij , d̂ij(r(t)) = d̂(r)

ij , čij(r(t)) = č(r)ij and ďij(r(t)) = ď(r)
ij . Be-

sides, impulse parameters matrices Mk(r(t)) and N (r(t)) are denoted by Mkr and Nr for
convenience. The boundary condition (.a) is called the Dirichlet boundary condition
if B[vi(t,x)] = vi(t,x), and the Neumann boundary condition if B[vi(t,x)] = ∂vi(t,x)

∂ν
, where

∂vi(t,x)
∂ν

= ( ∂vi(t,x)
∂x

, ∂vi(t,x)
∂x

, . . . , ∂vi(t,x)
∂xm )T denotes the outward normal derivative on ∂�.

Remark . PDEs (.) own a wide range of physics and engineering backgrounds. They
admit the following three Cohen-Grossberg neural networks (CGNNs) as their special
cases.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv(t,x) = {∇ · (D(t,x, v) ◦ ∇pv(t,x)) –A(v(t,x))[B(v(t,x)) –Cf (v(t,x))

–Dg(v(t – τ (t),x))]}dt + σ (v(t,x), v(t – τ (t)))dw(t)

for all t ≥ , t �= tk ,x ∈ �,

v(t+k ,x) =Mkv(t–k ,x) +N h(v(t–k – τ (tk),x)), k = , , . . . ,

v(θ ,x) = φ(θ ,x), (θ ,x) ∈ [–τ (t), ]× �,

(.)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂v(t,x)
∂t =Dv(t,x) –A(v(t,x))[B(v(t,x)) –Cf (v(t,x)) –Dg(v(t – τ (t),x))],

for all t ≥ t, t �= tk ,x ∈ �,

v(t+k ,x) =Mkv(t–k ,x) +N h(v(t–k – τ (tk),x)), k = , , . . . ,

v(θ ,x) = φ(θ ,x), (θ ,x) ∈ [–τ (t), ]× �,

(.)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi(t) = {–ai(xi(t))[bi(xi(t)) –∧n
j= ĉijfj(xj(t)) –

∨n
j= čijfj(xj(t))

–
∧n

j= d̂ijgj(xj(t – τ )) –
∨n

j= ďijgj(xj(t – τ ))]}dt
+
∑n

j= σij(xj(t),xj(t – τ ))dwj(t),

x(t+k ) =Mkx(t–k ) +N h(v(t–k – τ (tk))), k = , , . . . ,

xi(t) = φi(t), –τ ≤ t ≤ ,

(.)

where D(t,x, v) ◦ ∇pv(t,x) denotes the Hadamard product of matrix D(t,x, v) and ∇pv
(see, [] or []), and D(t,x, v) = (Djk(t,x, v))n×m satisfies Djk(t,x, v) ≥  for all j, k, (t, x, v).
σ (v(t,x), v(t – τ (t))) = (σij(vj(t,x), vj(t – τj(t))))n×n, and w(t) = (w(t),w(t), . . . ,wn(t))T .
Throughout this paper, for the mode r(t) = r ∈ S = {, , . . . ,N}, we denote C(r(t)) = Cr =
(c(r)ij )n×n, and D(r(t)) = Dr = (d(r)

ij )n×n. v(t,x) = (v(t,x),v(t,x), . . . ,vn(t,x))T , and
vj(t,x) =

∑m
k=

∂
∂xk

( ∂vj(t,x)
∂xk

). x(t) = (x(t),x(t), . . . ,xn(t))T ∈ Rn.

The stability of p-Laplace diffusion stochastic CGNNs (.) was discussed by Xiongrui
Wang, Ruofeng Rao and Shouming Zhong in  [], and the stability of deterministic
system (.) was investigated by Xinhua Zhang, Shulin Wu and Kelin Li in  []. Im-
pulsive fuzzy CGNNs with nonlinear p-Laplace diffusion has never been studied as far as
we know, and such a situation motivates our present study. Both the nonlinear p-Laplace
diffusion and fuzzy mathematical model bring a great difficulty in setting up LMI criteria
for the stability, and the stochastic functional differential equations model with nonlinear
diffusion makes it harder. To study the stability of fuzzy CGNNs with diffusion, we have
to construct a Lyapunov-Krasovskii functional in a non-matrix form (see, e.g., []). But
stochastic mathematical formulae are always described in matrix forms. Furthermore, an
impulsive model makes it harder. Recently, some new methods were employed to study
the exponential stability for Markovian jumping, fuzzy neural networks in some related
literature (see, e.g., [–]). Inspired by some methods and the idea of [, ] and the other
above-mentioned papers, we overcame the difficulties brought by the Markovian jump-
ing fuzzy impulsive model. By way of the Lyapunov-Krasovskii functional, Itô formula,
Dynkin formula, the variational methods in Sobolev space W ,p(�) (Lemma .), and a
differential inequality, new LMI-based global exponential stability criteria for the above-
mentioned PDEs are established; we obtain an LMI-based global stochastic exponential
stability criterion of PDEs (.). Some applications to neural networks improve some ex-
isting results, which are illustrated by some numerical examples thanks to the significant
improvement in the allowable upper bounds of time delays.

2 Preliminaries
Throughout this paper, we always assume that the following five conditions hold.
(H) There exists a positive definite diagonal matrix B = diag(B,B, . . . ,Bn) such that

bj(r)
r

≥ Bj, ∀j = , , . . . ,n, and  �= r ∈ R.

(H) There exist positive definite diagonal matrices F = diag(F,F, . . . ,Fn),
G = diag(G,G, . . . ,Gn) and H = diag(H,H, . . . ,Hn) such that

∣∣Fj(r) – Fj(r)
∣∣≤ Fj|r – r|,

∣∣Gj(r) –Gj(r)
∣∣≤ Gj|r – r|,
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∣∣hj(r) – hj(r)
∣∣≤ Hj|r – r|

for all r, r ∈ R, j = , , . . . ,n.
(H) There exist nonnegative symmetric matrices U = (μij)n×n and V = (νij)n×n such

that

trace
[
σT (u, v)σ (u, v)

]≤ uTUu + vTVv,

where u, v ∈ Rn, σ (u, v) = (σij(u, v))n×n.
(H) bj() = Fj() =Gj() = hj() = , σij(, )≡ , i, j = , , . . . ,n.
It is obvious from (H) that system (.) admits a zero solution v(t,x; ) ≡  corre-

sponding to the initial data φ = . For simplicity, we write v(t,x;φ) = v(t,x). Denote
B(v(t,x)) = (b(v(t,x)),b(v(t,x)), . . . ,bn(vn(t,x)))T , F(v(t,x)) = (F(v(t,x)),F(v(t,x)),
. . . ,Fn(vn(t,x)))T , G(v(t,x)) = (G(v(t,x)), . . . ,Gn(vn(t,x)))T . Denote σ (t) = σ (v(t,x), v(t –
τ (t),x)) for short.
For convenience’s sake, we introduce the following standard notations similar to those

of [].
L(R× �), LF

(
[–τ , ]× �;Rn), Q = (qij)n×n >  (< ), Q = (qij)n×n ≥  (≤ ), Q ≥ Q

(Q ≤ Q), Q >Q (Q <Q), λmax(�), λmin(�), the identity matrix I and the
symmetric terms ∗.

In addition, we denote |C| = (|cij|)n×n for any matrix C = (cij)n×n; |u(t,x)| = (|u(t,x)|,
|u(t,x)|, . . . , |un(t,x)|)T for any u(t,x) = (u(t,x),u(t,x), . . . ,un(t,x))T .
Next, we give the following lemma, which is completely similar to [, Lemma .]. It can

be derived by the Gauss formula (see, e.g., []).

Lemma . ([, Lemma .], [, Lemma ]) Let P = diag(p,p, . . . ,pn) be a positive defi-
nite matrix, and let v be a solution of system (.) with the boundary condition (.a). Then
we have∫

�

vTP
(∇ · (D(t,x, v) ◦ ∇pv

))
dx

= –
m∑
k=

n∑
j=

∫
�

pjDjk(t,x, v)|∇vj|p–
(

∂vj
∂xk

)

dx

=
∫

�

(∇ · (D(t,x, v) ◦ ∇pv
))TPvdx.

3 Main results
Theorem . Assume that p > . If the following three conditions hold:
(C) there exist a sequence of positive scalars αr (r ∈ S) and positive definite diagonal

matrices Pr = diag(pr,pr, . . . ,prn) (r ∈ S) such that the following LMI conditions
hold:

�r > , r ∈ S, (.)

Pr < αrI, r ∈ S, (.)

http://www.boundaryvalueproblems.com/content/2013/1/133
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where matrices Ĉr = (ĉ(r)ij )n×n, D̂r = (d̂(r)
ij )n×n, Čr = (č(r)ij )n×n, Ďr = (ď(r)

ij )n×n,
|d̂(r)| =maxi,j |d̂(r)

ij |, G =maxj Gj, |ď(r)| =maxi,j |ď(r)
ij |, and

�r = –
(∑
j∈Srkn

πrjPj + �r
∑
j∈Srun

Pj – PrB + Pr
(|Ĉr| + |Čr|

)
F + F

(∣∣ĈT
r
∣∣ + ∣∣ČT

r
∣∣)Pr

+ n
(∣∣d̂(r)∣∣ + ∣∣ď(r)∣∣)GPr + αrU

)
;

(C) a > b ≥ , where a =minr∈S( λmin�r
λmaxPr ), b =maxr∈S( λmax(αrV+n(|d̂(r)|+|ď(r)|)GλmaxPr)

λminPr
);

(C) there exists a constant δ >  such that infk∈Z(tk – tk–) > δτ , δτ > ln(ρeλτ ) and

λ – ln(ρeλτ )
δτ

> , where ρ =max{,aj + bjeλτ } with aj ≡ supr,j(
λmax(|MT

jr |Pr |Mjr |)
λminPr

),

bj ≡maxr∈S( λmax(H|N T
r |Pr |Nr |H)

λminPr
) for all j ∈ Z = {, , . . .}, and λ >  is the unique

solution of the equation λ = a – beλτ .
Then the null solution of impulsive Markovian jumping stochastic fuzzy system (.) is

globally stochastically exponentially stable in the mean square with the convergence rate

 (λ – ln(ρeλτ )

δτ
).

Proof Consider the Lyapunov-Krasovskii functional

V
(
t, v(t), r

)
=
∫

�

n∑
i=

privi (t,x)dx, ∀r ∈ S,

where v(t,x) = (v(t,x), v(t,x), . . . , vn(t,x))T is a solution for stochastic fuzzy system (.).
Sometimes we may denote v(t,x) by v, vi(t,x) by vi, and σ (v(t,x), v(t – τ (t),x)) by σ (t) for
simplicity.
Let L be the weak infinitesimal operator. Then it follows by Lemma . that

LV
(
t, v(t), r

)
= – 

m∑
k=

n∑
i=

∫
�

priDik(t,x, v)|∇vi|p–
(

∂vi
∂xk

)

dx

– 
n∑
i=

∫
�

privi

[
bi(vi) –

n∧
j=

ĉ(r)ij Fj(vj) –
n∨
j=

č(r)ij Fj(vj)

–
n∧
j=

d̂(r)
ij Gj

(
vj
(
t – τ (t),x

))
–

n∨
j=

ď(r)
ij Gj

(
vj
(
t – τ (t),x

))]
dx

+
∫

�

vT
∑
j∈S

πrjPjv dx +
∫

�

trace
(
σT (t)Prσ (t)

)
dx. (.)

On the other hand, we have


n∑
i=

pri|vi|
n∑
j=

∣∣d̂(r)
ij
∣∣Gj
∣∣vj(t – τ (t),x

)∣∣
≤ vT

(
n
∣∣d̂(r)∣∣GPr

)
v + vT

(
t – τ (t),x

)(
n
∣∣d̂(r)∣∣αrG

)
v
(
t – τ (t),x

)
, (.)

http://www.boundaryvalueproblems.com/content/2013/1/133
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n∑
i=

pri|vi|
n∑
j=

∣∣ď(r)
ij
∣∣Gj
∣∣vj(t – τ (t),x

)∣∣
≤ vT

(
n
∣∣ď(r)∣∣GPr

)
v + vT

(
t – τ (t),x

)(
n
∣∣ď(r)∣∣αrG

)
v
(
t – τ (t),x

)
. (.)

From πrr <  and the definition of �r , it is clear that
∑

j∈S πrjPj ≤ ∑
j∈Srkn πrjPj +

�r
∑

j∈Srun Pj.
So, we can conclude by (H)-(H)

LV
(
t, v(t), r

)≤ ∫
�

∣∣vT ∣∣(∑
j∈Srkn

πrjPj + �r
∑
j∈Srun

Pj – PrB + Pr
(|Ĉr| + |Čr|

)
F

+ n
(∣∣d̂(r)∣∣ + ∣∣ď(r)∣∣)GPr + αrU

)
|v|dx

+
∫

�

αr
[
vT
(
t – τ (t),x

)(
V + n

(∣∣d̂(r)∣∣ + ∣∣ď(r)∣∣)G)v(t – τ (t),x
)]
dx. (.)

Completely similar to (.)-(.) in [], we can get by the Itô formula

D+V
(
t, v(t), r

)≤ –
∫

�

∣∣vT ∣∣�r|v|dx

+
∫

�

αr
[
vT
(
t – τ (t),x

)(
V + n

(∣∣d̂(r)∣∣ + ∣∣ď(r)∣∣)G)v(t – τ (t),x
)]
dx

≤ –min
r∈S

(
λmin�r

λmaxPr

)
V
(
t, v(t), r

)
+max

r∈S

(
λmax(αrV + n(|d̂(r)| + |ď(r)|)GλmaxPr)

λminPr

)[
V
(
t, v(t), r

)]
τ
. (.)

Owing to V (t, v(t), r) =
∫
�

|vT |Pr|v|dx, we can get

V
(
tk , v(tk), r

)
=
∫

�

vT (tk ,x)Prv(tk ,x)dx

=
∫

�

(
Mkrv

(
t–k ,x

)
+Nrh

(
v
(
t–k – τ (tk),x

)))TPr
(
Mkrv

(
t–k ,x

)
+Nrh

(
v
(
t–k – τ (tk),x

)))
dx

≤ λmax(|MT
kr|Pr|Mkr|)

λminPr
V
(
t–k , v

(
t–k
)
, r
)

+
λmax(H|N T

r |Pr|Nr|H)
λminPr

∫
�

∣∣vT(t–k – τ (tk),x
)∣∣Pr

∣∣v(t–k – τ (tk),x
)∣∣dx

≤ akV
(
t–k , v

(
t–k
)
, r
)
+ bk

[
V
(
t–k , v

(
t–k
)
, r
)]

τ
. (.)

From (C), it is not difficult to conclude that ρk+ekλτ ≤ e(δ–λ)τ eδtk , where λ, ak , bk , ρ are
defined in (C), and so ρ =maxk∈Z{,ak + bkeλτ }. Then, by (C), the differential inequality
lemma ([, Lemma .]) yields EV (t) ≤ ρ[EV ()]τ e–(λ–

ln(ρeλτ )
δτ

)t , or

(λminPr)E
∥∥v(t)∥∥ ≤ ρ

(
λmaxPr sup

–τ≤s≤
E
∥∥φ(s)∥∥)e–(λ– ln(ρeλτ )

δτ
)t , (.)

http://www.boundaryvalueproblems.com/content/2013/1/133
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i.e.,

E
∥∥v(t)∥∥ ≤ ρ

[
max
r∈S

(
λmaxPr

λminPr

)
sup

–τ≤s≤
E
∥∥φ(s)∥∥]e–(λ– ln(ρeλτ )

δτ
)t . (.)

Therefore, we can see by the definition of global stochastic exponential stability (see, e.g.,
[]) that the null solution of impulsiveMarkovian jumping stochastic fuzzy system (.) is
globally stochastically exponentially stable in the mean square with the convergence rate

 (λ – ln(ρeλτ )

δτ
). �

Particularly for the case of p = , we get from the Poincaré inequality (see, e.g., [,
Lemma .]) that λ

∫
�

|vi(t,x)| dx ≤ ∫
�

|∇vi(t,x)| dx, where λ is the lowest positive
eigenvalue of the boundary value problem

⎧⎨⎩–ϕ(t,x) = λϕ(t,x), x ∈ �,

B[ϕ(t,x)] = , x ∈ ∂�.

Theorem . Let p = , and D = infi,k,(t,xv)Dik(t,x, v). Then all the conclusions of The-
orem . are true if its conditions are satisfied except that the �r is replaced by �r =
–(–λDPr +

∑
j∈Srkn πrjPj + �r

∑
j∈Srun Pj – PrB + Pr(|Ĉr| + |Čr|)F + F(|ĈT

r | + |ČT
r |)Pr +

n(|d̂(r)| + |ď(r)|)GPr + αrU).

Proof Indeed, if p = , we can get by the Poincaré inequality

– 
m∑
k=

n∑
i=

∫
�

priDik(t,x, v)|∇vi|p–
(

∂vi
∂xk

)

dx

= –
m∑
k=

n∑
i=

∫
�

priDik(t,x, v)
(

∂vi
∂xk

)

dx

≤ –D

∫
�

n∑
i=

pri
m∑
k=

(
∂vi
∂xk

)

dx≤ –λD

∫
�

vTPrvdx.

Then, by (.), we can similarly complete the rest of the proof by way of the methods in
(.)-(.). �

4 Applications of main results in neural networks
Let B(v(t,x)) = A(v(t,x))B(v(t,x)) with A(v(t,x)) = diag(a(v(t,x)),a(v(t,x)), . . . ,an(vn(t,
x))) and B(v(t,x)) = (b(v(t,x)),b(v(t,x)), . . . ,bn(vn(t,x)))T ∈ Rn, F(v(t,x)) = A(v(t,x))×
f (v(t,x)), and G(v(t,x)) = A(v(t,x))g(v(t,x)) satisfy the following.

(H∗) There exist positive definite diagonal matrices A = diag(a,a, . . . ,an) and A =
diag(a,a, . . . ,an) such that

 < ai ≤ ai(r)≤ ai

for all r ∈ R, i = , , . . . ,n.

http://www.boundaryvalueproblems.com/content/2013/1/133
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(H∗) There exists a positive definite diagonal matrix B = diag(B,B, . . . ,Bn) such that

bj(r)
r

≥ Bj, ∀j = , , . . . ,n, and  �= r ∈ R.

(H∗) There exist positive definite diagonal matrices F = diag(F,F, . . . ,Fn), G = diag(G,
G, . . . ,Gn) and H = diag(H,H, . . . ,Hn) such that

∣∣fj(r) – fj(r)
∣∣≤ Fj|r – r|,

∣∣gj(r) – gj(r)
∣∣≤ Gj|r – r|,∣∣hj(r) – hj(r)

∣∣≤ Hj|r – r|,

for all r, r ∈ R, j = , , . . . ,n.
(H∗) There exist nonnegative symmetric matrices U = (μij)n×n and V = (νij)n×n such that

trace
[
σT (u, v)σ (u, v)

]≤ uTUu + vTVv,

where u, v ∈ Rn, σ (u, v) = (σij(u, v))n×n.
(H∗) bj() = fj() = gj() = hj() = , σij(, ) ≡ , i, j = , , . . . ,n.

Applying our main results to Cohen-Grossberg neural networks (CGNNs), we can con-
clude the following corollary from Theorem . directly.

Corollary . If the following three conditions hold:
(D) there exist a positive scalar α and a positive definite diagonal matrix P such that

the following LMI conditions hold:

� = –
(
–PAB + PA

(|Ĉ| + |Č|)F + F
(∣∣ĈT ∣∣ + ∣∣ČT ∣∣)AP

+ n
(|d̂| + |ď|)GPA + αU

)
> , (.)

P < αI, (.)

where matrices Ĉ = (ĉij)n×n, D̂ = (d̂ij)n×n, Č = (čij)n×n, Ď = (ďij)n×n, |d̂| =maxi,j |d̂ij|,
A =maxi ai, G =maxj Gj , |ď| =maxi,j |ďij|;

(D) a > b ≥ , where a = λmin�
λmaxP , b =

λmax(αV+n(|d̂|+|ď|)AGλmaxP)
λminP

;
(D) there exists a constant δ >  such that infk∈Z(tk – tk–) > δτ , δτ > ln(ρeλτ ) and

λ – ln(ρeλτ )
δτ

> , where ρ =max{,aj + bjeλτ } with aj ≡ supj∈Z(
λmax(|MT

j |P|Mj|)
λminP

),

bj ≡ λmax(H|N T |P|N |H)
λminP

for all j ∈ Z = {, , . . .}, and λ >  is the unique solution of the
equation λ = a – beλτ .

Then the null solution of impulsive stochastic fuzzy system (.) is globally stochastically
exponentially stable in the mean square with the convergence rate 

 (λ – ln(ρeλτ )
δτ

).

Remark . Corollary . not only extends [, Theorem .] fromnon-impulsive stochas-
tic fuzzy CGNNs to impulsive stochastic fuzzy CGNNs, but also improves the criterion
of [, Theorem .] from the non-matrix form to the more condensed matrix form, which
can be efficiently tested and verified by computer Matlab LMI toolbox.

If Markovian jumping and fuzzy factors are ignored, we can conclude the following
corollary.

http://www.boundaryvalueproblems.com/content/2013/1/133


Rao and Pu Boundary Value Problems 2013, 2013:133 Page 9 of 14
http://www.boundaryvalueproblems.com/content/2013/1/133

Corollary . Assume that p > . If the following three conditions hold:
(E) there exist a sequence of positive scalars α and positive definite diagonal matrices P

such that the following LMI conditions hold:

�̃ > , (.)

P < αI, (.)

where matrices C = (cij)n×n, D = (dij)n×n, |d| =maxi,j |dij|, A =maxi ai,
G =maxj Gj, and �̃ = –(–PAB + PA|C|F + F|CT |AP + n|d|GPA + αU);

(E) a > b ≥ , where a = λmin�̃
λmaxP , b =

λmax(αV+n|d|AGλmaxP)
λminP

;
(E) there exists a constant δ >  such that infk∈Z(tk – tk–) > δτ , δτ > ln(ρeλτ ) and

λ – ln(ρeλτ )
δτ

> , where ρ =max{,aj + bjeλτ } with aj ≡ supj∈Z(
λmax(|MT

j |P|Mj|)
λminP

),

bj ≡maxr∈S( λmax(H|N T |P|N |H)
λminP

) for all j ∈ Z = {, , . . .}, and λ >  is the unique
solution of the equation λ = a – beλτ ,

then the null solution of impulsive stochastic system (.) is globally stochastically exponen-
tially stable in the mean square with the convergence rate 

 (λ – ln(ρeλτ )
δτ

).

Remark. If lettingN = , system (.) was investigated by []. However, LMIs criterion
of Corollary . is more feasible and effective than that of [, Theorem .]. In fact, we
know from the Schur complement theorem that the LMI condition of [, Theorem .] is
equivalent to the inequality ϒ = PAB – PA|C||C|TAP – PA|D||D|TAP – F – PU –
P > , where the term PA|C||CT |AP actually makes parameters amplify against –ϒ < 
if λminA >  or λmin|C| > . In other words, Corollary . can judge what [, Theorem .]
cannot do, which may be illustrated by Example . (below).

Corollary . If the following three conditions hold:
(F) there exist a positive scalar α and a positive definite diagonal matrix P such that the

following LMI conditions hold:

� > , (.)

where matrices C = (cij)n×n, D = (dij)n×n, |d| =maxi,j |dij|, A =maxi ai,
G =maxj Gj, and � = –(–λPD – PAB + PA|C|F + F|CT |AP + n|d|GPA);

(F) a > b ≥ , where a = λmin�
λmaxP , b =

λmax(n|d|AGλmaxP)
λminP

;
(F) there exists a constant δ >  such that infk∈Z(tk – tk–) > δτ , δτ > ln(ρeλτ ) and

λ – ln(ρeλτ )
δτ

> , where ρ =max{,aj + bjeλτ } with aj ≡ supj∈Z(
λmax(|MT

j |P|Mj|)
λminP

),

bj ≡maxr∈S( λmax(H|N T |P|N |H)
λminP

) for all j ∈ Z = {, , . . .}, and λ >  is the unique
solution of the equation λ = a – beλτ ,

then the null solution of impulsive deterministic system (.) is globally stochastically ex-
ponentially stable in the mean square with the convergence rate 

 (λ – ln(ρeλτ )
δτ

).

Remark . For the same reason as in Remark ., the LMI (.) of Corollary . is more
feasible and effective than that of [, Theorem.], whichmay be illustrated by a numerical
example below (Example .).

http://www.boundaryvalueproblems.com/content/2013/1/133


Rao and Pu Boundary Value Problems 2013, 2013:133 Page 10 of 14
http://www.boundaryvalueproblems.com/content/2013/1/133

5 Numerical examples
In this section, two examples are given to illustrate that the criteria of Corollary . and
Corollary . can judge what some existing criteria cannot do. The third numerical exam-
ple is presented to illustrate the effectiveness of our main results (Theorems .-.).

Example . Consider impulsive system (.) with the following parameters:

A = diad(., .), A = diag(., .), B = diag(, ),

F = diag(., .), M = diag(., .).
(.)

In this section, we denote

[a,b; c,d] =

(
a b
c d

)
.

Assume, in addition, G = diag(, ), D = diag(., .), N = diag(., .),
C = [.,–.;–., .], D = [., –.;–., .], H = F , Mk ≡ M, ∀k =
, , . . . . v = (v(t,x), v(t,x))T ∈ R, x = (x,x)T ∈ � = {(x,x)T ∈ R : |xj| <

√
, j = , }.

Assume that the boundary condition is the Dirichlet boundary one, and then λ = π =
. (see, e.g., []). Assume that the lower limit of the time interval between impulses
infk∈Z(tk – tk–) = . From the differential inequality lemma [, Lemma .] we know that
δτ <  and δ > , and hence the upper limit of time delay τ < .
With the above data, one can use computerMatlab LMI toolbox to solve the LMI (C) of

[, Theorem .], and obtain tmin = –. < , P = diag(., .). Next, we need
verify (C) in [, Theorem .]. However, a direct computation derives ã = λmin�

λmaxP = .
. =

. < . = .
. =

λmax(G)
λminP

= b, which implies ã < b̃. Hence, [, Theorem .] cannot
judge the stability of impulsive system (.) with the above data.
However, we can solve LMI (.) by Matlab LMI toolbox, and obtain tmin = –.,

P = diag(., .). Further computation yields a = λmin�
λmaxP = .

. = ., b =
λmax(n|d|AGλmaxP)

λminP
= .

. = ., and hence a > b ≥ . In addition, a direct calculation
derives ρ =maxj{,aj + bjeλτ } = .. Let δ = ., τ = ., and then δτ = . <
 = infk∈Z(tk – tk–), λ = ., δτ – ln(ρeλτ ) = . >  and λ – ln(ρeλτ )

δτ
= . > .

All the conditions (F)-(F) of Corollary . are satisfied, then by Corollary . the null
solution of impulsive deterministic system (.) is globally stochastically exponentially sta-
ble in the mean square with the convergence rate . and the allowable upper bound
of time delays τ = ..

Example . Under the Neumann boundary condition, we consider stochastic system
(.) with the data (.) and the following parameters:

G = diag(., .), D(t, v,x) = [., .; ., .],

C = [.,–.;–., .], D = [., –.;–., .],

U = diag(., .), V = [, ; , ] = N .

Let τ (t) ≡ τ , and then μ = . Now, one can use Matlab LMI toolbox to solve the LMI
condition of [, Theorem .] and obtain tmin = –. < , P = diag(.,.),

http://www.boundaryvalueproblems.com/content/2013/1/133
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P = diag(.,.). Further computation yields thatmin{ λminϒ̃
λmaxP

, ( –μ)} = . <
. = λmaxG

λminP
, which implies that the condition (C) of [, Theorem .] is not satisfied.

Hence, the stability of system (.) with the above data cannot be judged by [, Theo-
rem .].
However, we solve LMIs (.)-(.), and obtain tmin = –. < , α = .,

P = diag(., .). Moreover, we can get by direct computation that a = . >
. = b, and ρ = .. Let τ = ., δ = . so that δτ = . <  = infk∈Z(tk –
tk–), δτ – ln(ρeλτ ) = . >  and λ – ln(ρeλτ )

δτ
= . > . All (E)-(E) of Corol-

lary . are satisfied, then by Corollary . the null solution of impulsive stochastic sys-
tem (.) is globally stochastically exponentially stable in the mean square with the con-
vergence rate . and the allowable upper bound of time delays τ = ..

Example . Consider impulsive stochastic Markovian jumping fuzzy system (.) with
the following parameters:

D(t,x, v) = [., .; .,.], B = diag(, ), F = diag(., .),

H =G = F , U = diag(., .) = V = Nr ,

Mkr ≡ diag(., .), ∀r ∈ S = {, , },k = , , . . . .

In addition, Ĉ = [., –.;–., .] = D̂, Č = [.,–.;–., .] =
Ď, Ĉ = [.,–.;–., .] = D̂, Č = [.,–.;–., .] = Ď, Ĉ =
[.,–.;–., .] = D̂, Č = [.,–.;–., .] = Ď.
The two cases of the transition rates matrices are considered as follows:

Case (): � =

⎛⎜⎝–. . .
. –. .
. . –.

⎞⎟⎠ , Case (): � =

⎛⎜⎝–. ? ?
. –. .
. . –.

⎞⎟⎠ ,

v = (v(t,x), v(t,x))T ∈ R, x = (x,x)T ∈ � = {(x,x)T ∈ R : |xj| <
√
, j = , }. Assume

that the boundary condition is the Dirichlet boundary one, and then λ = π = ..
Assume that the lower limit of the time interval between pulses infk∈Z(tk – tk–) = . From
the differential inequality lemma (see, [] or [, Lemma .]), we know that δτ <  and
δ > , and hence the upper limit of time delay τ <  (see, Remark .).
Now one can use Matlab LMI toolbox to solve the LMI conditions (.)-(.) of The-

orem . for Case () and p > , and obtain tmin = –. < , and α = .,
α = ., α = ., P = diag(., .), P = diag(., .), P =
diag(.,.).
Moreover, a direct computation derives a = ., b = .. So, the condition (C)

a > b ≥  holds in this case.
By the definition of aj, bj, further computation derives ρ = maxj{,aj + bjeλτ } = ..

Let τ =  and δ = .. Then solving the equation λ = a – beλτ yields λ = .. By
these data, one can calculate that δτ = . <  = infk∈Z(tk – tk–), δτ – ln(ρeλτ ) =
. >  and λ– ln(ρeλτ )

δτ
= . > , which implies the condition (C) of Theorem .

holds. By Theorem ., the null solution of impulsiveMarkovian jumping stochastic fuzzy
system (.) is globally stochastically exponentially stable in themean square with the con-
vergence rate . and the allowable upper bounds of time delays τ = .

http://www.boundaryvalueproblems.com/content/2013/1/133
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Assume that the boundary condition is the Dirichlet boundary one, and then λ =
π = . (see, e.g., []). Similarly, we can solve the corresponding conditions of
Theorem . for Case () and p = , and obtain tmin = –. < , α = .,
α = ., α = ., and P = diag(., .), P = diag(.,.),
P = diag(., .).
Similarly, we can calculate and obtain a = ., b = ., ρ = ..
Let δ = . and τ = ., and then λ = ., δτ = . < , δτ – ln(ρeλτ ) =

. >  and λ – ln(ρeλτ )
δτ

= . > . By Theorem ., the null solution of impulsive
Markovian jumping stochastic fuzzy system (.) with p =  is stochastically exponen-
tially stable in themean square with the convergence rate . and the allowable upper
bounds of time delays τ = ..
Obviously in Case () we can assume � = .. Next, we employ Matlab LMI toolbox

to solve LMI conditions (.)-(.) of Theorem . for Case () and p > , and obtain
tmin = –. < , α = ., α = ., α = ., P = diag(., .),
P = diag(., .), P = diag(., .). So, a = ., b = ., ρ = ..
Let δ = . and τ = ., and then λ = ., δτ = . < , δτ – ln(ρeλτ ) =

. >  and λ – ln(ρeλτ )
δτ

= . > . By Theorem ., the null solution of impulsive
Markovian jumping stochastic fuzzy system (.) is stochastically exponentially stable in
the mean square with the convergence rate . and the allowable upper bounds of
time delays τ = ..
Similarly, we can solve the corresponding conditions of Theorem . for Case () and

p = , and obtain tmin = –. < , α = ., α = ., α = ., and P =
diag(., .), P = (., .), P = (.,.), and then a = ., b =
., ρ = .. Let δ = . and τ = ., and then λ = ..
Further computation yields δτ = . < , δτ – ln(ρeλτ ) = . >  and λ –

ln(ρeλτ )
δτ

= . > . By Theorem ., the null solution of impulsive Markovian jumping
stochastic fuzzy system (.) with p =  is stochastically exponentially stable in the mean
square with the convergence rate . and the allowable upper bounds of time delays
τ = ..
Table  shows that the upper bounds of time delay decrease when there exist unknown

elements of a transition rates matrix. This means that unknown elements of transition
rates bring a great difficulty in judging the stability.
In some related literature [, ], their impulsive assumption isMT

k PMk < P. However,
our impulse matrix Mk may not satisfy the assumption of decreasing impulse. In all the
above numerical examples, impulsive parameters matrices Mk satisfy λminMk = . >  so
that MT

k PMk > P. Thereby, the increasing impulse not only brings some unstable factors
to CGNNs, but also limits the time-delays’ upper limit τ < infk∈Z(tk – tk–) (see [] or [,
Lemma .]).

Table 1 Allowable upper bounds of time delays and the convergence rate

Theorem 3.1 (p > 1) Theorem 3.2 (p = 2)

Case (1) Case (2) Case (1) Case (2)

Upper bound τ 14 13.5 14.1 13.6
Convergence rate 0.00185 0.00565 0.00145 0.0048
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Remark . The parameters of impulsive deterministic system (.) do not satisfy the
conditions of [, Theorem .] so that we are not sure whether system (.) is stable, for
the conditions of [, Theorem .] are only sufficient ones, not necessary for the stabil-
ity of system (.). However, we can conclude the stability by our Corollary ., which
implies that Corollary . allows for more effectiveness and less conservatism than [,
Theorem .]. By the same token as in Remark ., Corollary . is better than [, Theo-
rem .].

Remark . Table  shows that the diffusion plays a positive role in the criterion of Theo-
rem ., which admits a wider range of time delays. Table  also illustrates the effectiveness
and less conservatism of Theorems .-. due to the significant improvement in the al-
lowable upper bounds of time delays.

Remark . Finding a solution x to the LMI system A(x) < B(x) is called the feasibil-
ity problem. So, in Examples .-., the system is feasible if tmin < , and infeasible if
tmin >  (see [, Remark ()] for detail).
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