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Abstract
A nonlinear partial differential equation, which includes the Novikov equation as a
special case, is investigated. The well-posedness of local strong solutions for the
equation in the Sobolev space Hs(R) with s > 3

2 is established. Although the H1-norm
of the solutions to the nonlinear model does not remain constant, the existence of its
local weak solutions in the lower order Sobolev space Hs(R) with 1≤ s≤ 3

2 is
established under the assumptions u0 ∈ Hs and ‖u0x‖L∞ <∞.
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1 Introduction
Novikov [] derived the integrable equation with cubic nonlinearities

ut – utxx + uux = uuxuxx + uuxxx, ()

which has been investigated by many scholars. Grayshan [] studied both the periodic
and the non-periodic Cauchy problem for Eq. () and discussed continuity results for the
data-to-solution map in the Sobolev spaces. A Galerkin-type approximation method was
used in Himonas and Holliman’s paper [] to establish the well-posedness of Eq. () in
the Sobolev space Hs(R) with s > 

 on both the line and the circle. Hone et al. [] ap-
plied the scattering theory to find non-smooth explicit soliton solutions with multiple
peaks for Eq. (). This multiple peak property is common with the Camassa-Holm and
Degasperis-Procesi equations (see [–]). A matrix Lax pair for Eq. () was acquired in [,
] and was shown to be related to a negative flow in the Sawada-Kotera hierarchy. Suf-
ficient conditions on the initial data to guarantee the formation of singularities in finite
time for Eq. () were given in Jiang and Li []. Mi and Mu [] obtained many dynamic
results for a modified Novikov equation with a peak solution. It is shown in Ni and Zhou
[] that the Novikov equation associated with the initial value is locally well-posed in
Sobolev space Hs with s > 

 by using the abstract Kato theorem. Two results about the
persistence properties of the strong solution for Eq. () are established in []. Tiglay []
proved the local well-posedness for the periodic Cauchy problem of the Novikov equation
in Sobolev space Hs(R) with s > 

 . The orbit invariants are used to show the existence of
a periodic global strong solution if the Sobolev index s ≥  and a sign condition holds.
For analytic initial data, the existence and uniqueness of analytic solutions for Eq. () are
obtained in []. Using the Littlewood-Paley decomposition and nonhomogeneous Besov
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spaces, Yan et al. [] proved that Eq. () is locally well-posed in the Besov space under
certain assumptions. For other methods to handle the Novikov equation and the related
partial differential equations, the reader is referred to [–] and the references therein.
We note that the coefficients of the terms uux, uuxuxx and uuxxx in the Novikov equa-

tion () are ,  and , respectively. Namely,  = +. This guarantees that the conservation
law of Eq. () holds

∫
R

(
u(t,x) + ux(t,x)

)
dx =

∫
R

(
u(,x) + ux(,x)

)
dx,

which takes a key role in obtaining various dynamic properties in the previous works.
Motivated by the desire to extend parts of local well-posedness results in [, , ], we

study the following model:

ut – utxx +muux = auuxuxx + buuxxx, ()

wherem, a and b >  are arbitrary constants. Clearly, lettingm = , a =  and b = , Eq. ()
becomes the Novikov equation ().
The objective of this paper is to investigate Eq. (). Since m, a and b >  are arbitrary

constants, we do not have the result that the H norm of the solution of Eq. () remains
constant. We will apply the Kato theorem for abstract differential equations to prove the
existence and uniqueness of local solutions for Eq. () subject to the initial value u(x) ∈
Hs(R) (s > 

 ). In addition, the existence of local weak solutions for Eq. () is established
in the lower-order Sobolev space Hs(R) with  ≤ s ≤ 

 under the assumptions u ∈ Hs(R)
and ‖ux‖L∞ < ∞.
The rest of this paper is organized as follows. The main results are given in Section .

The proof of a local well-posedness result is established in Section , while the existence
of local weak solutions is proved in Section .

2 Main results
Firstly, we state some notations.
The space of all infinitely differentiable functions φ(t,x) with compact support in

[,+∞) × R is denoted by C∞
 . Lp = Lp(R) ( ≤ p < +∞) is the space of all measurable

functions h such that ‖h‖pLp =
∫
R |h(t,x)|p dx < ∞. We define L∞ = L∞(R) with the stan-

dard norm ‖h‖L∞ = infm(e)= supx∈R\e |h(t,x)|. For any real number s, Hs = Hs(R) denotes
the Sobolev space with the norm defined by

‖h‖Hs =
(∫

R

(
 + |ξ |)s∣∣ĥ(t, ξ )∣∣ dξ

) 

< ∞,

where ĥ(t, ξ ) =
∫
R e

–ixξh(t,x)dx.
For T >  and nonnegative number s, C([,T);Hs(R)) denotes the Frechet space of all

continuousHs-valued functions on [,T).We set� = (–∂
x )


 . For simplicity, throughout

this article, we let c denote any positive constant which is independent of parameter ε.
Defining

φ(x) =

⎧⎨
⎩e


x– , |x| < ,

, |x| ≥ ,
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and setting φε(x) = ε–

 φ(ε– 

 x) with  < ε < 
 and uε = φε � u, we know that uε ∈ C∞

for any u ∈Hs, s >  (see []).
We consider the Cauchy problem for Eq. ()

⎧⎨
⎩ut – utxx +muux = auuxuxx + buuxxx,

u(,x) = u(x),
()

which is equivalent to

⎧⎨
⎩ut + buux = �–[(b –m)uux + a–b

 (uux)x +
b–a
 ux],

u(,x) = u(x).
()

Now, we give our main results for problem ().

Theorem  Let u(x) ∈ Hs(R) with s > 
 . Then the Cauchy problem () has a unique solu-

tion u(t,x) ∈ C([,T);Hs(R))∩C([,T);Hs–(R)), where T >  depends on ‖u‖Hs(R).

It follows from Theorem  that for each ε satisfying  < ε < 
 , the Cauchy problem

⎧⎨
⎩ut – utxx +muux = auuxuxx + buuxxx,

u(,x) = uε(x), x ∈ R,
()

has a unique solution uε(t,x) ∈ C∞([,Tε);H∞), in which Tε may depend on ε. However,
we shall show that under certain assumptions, there exist two constants c and T > , both
independent of ε, such that the solution of problem () satisfies ‖uεx‖L∞ ≤ c for any t ∈
[,T) and there exists a weak solution u(t,x) ∈ L([,T],Hs(R)) for problem (). These
results are summarized in the following two theorems.

Theorem  If u(x) ∈ Hs(R) with s ∈ [,  ] such that ‖ux‖L∞ < ∞. Let uε be defined as
in system (). Then there exist two constants c and T > , which are independent of ε, such
that the solution uε of problem () satisfies ‖uεx‖L∞ ≤ c for any t ∈ [,T).

Theorem  Suppose that u(x) ∈ Hs with  ≤ s ≤ 
 and ‖ux‖L∞ < ∞. Then there exists

a T >  such that problem () has a weak solution u(t,x) ∈ L([,T],Hs(R)) in the sense of
distribution and ux ∈ L∞([,T]× R).

3 Proof of Theorem 1
Consider the abstract quasi-linear evolution equation

dv
dt

+A(v)v = f (v), t ≥  and v() = v. ()

Let X and Y be Hilbert spaces such that Y is continuously and densely embedded in X,
and let Q : Y → X be a topological isomorphism. Let L(Y ,X) be the space of all bounded
linear operators from Y toX. IfX = Y , we denote this space by L(X).We state the following
conditions in which ρ, ρ, ρ and ρ are constants depending only on max{‖y‖Y ,‖z‖Y }.
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(I) A(y) ∈ L(Y ,X) for y ∈ X with

∥∥(
A(y) –A(z)

)
w

∥∥
X ≤ ρ‖y – z‖X‖w‖Y , y, z,w ∈ Y ,

and A(y) ∈G(X, ,β) (i.e., A(y) is quasi-m-accretive), uniformly on bounded sets in Y .
(II) QA(y)Q– = A(y) + B(y), where B(y) ∈ L(X) is bounded, uniformly on bounded sets

in Y . Moreover,

∥∥(
B(y) – B(z)

)
w

∥∥
X ≤ ρ‖y – z‖Y‖w‖X , y, z ∈ Y ,w ∈ X.

(III) f : Y → Y extends to a map from X into X, is bounded on bounded sets in Y , and
satisfies

∥∥f (y) – f (z)
∥∥
Y ≤ ρ‖y – z‖Y , y, z ∈ Y ,∥∥f (y) – f (z)

∥∥
X ≤ ρ‖y – z‖X , y, z ∈ X.

Kato theorem (see []) Assume that (I), (II) and (III) hold. If v ∈ Y , there is a maximal
T >  depending only on ‖v‖Y and a unique solution v to problem () such that

v = v(·, v) ∈ C
(
[,T);Y

) ∩C([,T);X)
.

Moreover, the map v → v(·, v) is a continuous map from Y to the space

C
(
[,T);Y

) ∩C([,T);X)
.

We set A(u) = bu∂x with constant b > , Y = Hs(R), X = Hs–(R), � = ( – ∂
x )


 , f (u) =

�–[(b –m)uux + a–b
 (uux)x +

b–a
 ux] and Q = �s. We know that Q is an isomorphism

of Hs onto Hs–. In order to prove Theorem , we only need to check that A(u) and f (u)
satisfy assumptions (I)-(III).

Lemma . The operator A(u) = bu∂x with u ∈Hs(R), s > 
 belongs to G(Hs–(R), ,β).

Lemma . Let A(u) = bu∂x with u ∈ Hs(R) and s > 
 . Then A(u) ∈ L(Hs(R),Hs–(R)) for

all u ∈Hs(R).Moreover,

∥∥(
A(u) –A(z)

)
w

∥∥
Hs– ≤ ρ‖u – z‖Hs–‖w‖Hs , u, z,w ∈ Hs(R). ()

Lemma . For s > 
 , u, z ∈ Hs(R) and w ∈ Hs–, it holds that B(u) = [�s,bu∂x]�–s ∈

L(Hs–) for u ∈Hs and

∥∥(
B(u) – B(z)

)
w

∥∥
Hs– ≤ ρ‖u – z‖Hs‖w‖Hs– . ()

The above three lemmas can be found in Ni and Zhou [].

Lemma . Let r and q be real numbers such that –r < q ≤ r. Then

‖uv‖Hq ≤ c‖u‖Hr‖v‖Hq if r >


,

‖uv‖Hr+q–/ ≤ c‖u‖Hr‖v‖Hq if r <


.
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This lemma can be found in [, ].

Lemma . Let u, z ∈ Hs with s > 
 and f (u) = �–[(b –m)uux + a–b

 (uux)x +
b–a
 ux].

Then f is bounded on bounded sets in Hs and satisfies

∥∥f (u) – f (z)
∥∥
Hs ≤ ρ‖u – z‖Hs , ()∥∥f (u) – f (z)

∥∥
Hs– ≤ ρ‖u – z‖Hs– . ()

Proof Using the algebra property of the space Hs (R) with s > 
 , we get

∥∥f (u) – f (z)
∥∥
Hs

≤ c
(∥∥u – z

∥∥
Hs– +

∥∥uux – zzx
∥∥
Hs– +

∥∥ux – zx
∥∥
Hs–

)
≤ c

(‖u – z‖Hs
[‖u‖Hs + ‖u‖Hs‖z‖Hs + ‖z‖Hs

]
+

∥∥u(
ux – zx

)
+ (u – z)zx

∥∥
Hs–

+ ‖ux – zx‖Hs–
[∥∥ux∥∥Hs– + ‖ux‖Hs–‖z‖Hs– + ‖z‖Hs–

])
≤ ρ‖u – z‖Hs , ()

which completes the proof of (). Using s–  > 
 and the first inequality in Lemma ., we

have

∥∥uux – zzx
∥∥
Hs–

≤ ∥∥u(
ux – zx

)
+ zx(u – z)

∥∥
Hs–

≤ ∥∥u(ux + zx)(ux – zx)
∥∥
Hs– + ‖u – z‖s–

∥∥zx∥∥Hs–

≤ c
∥∥u(ux + zz)

∥∥
Hs–‖u – z‖Hs– + ‖u – z‖s–‖zx‖Hs–

≤ c‖u – z‖Hs–
(‖u‖Hs + ‖z‖Hs

)
()

and

∥∥ux – zx
∥∥
Hs–

≤ ∥∥(ux – zx)
(
ux + uxzx + zx

)∥∥
Hs–

≤ c‖ux – zx‖Hs–
∥∥ux + uxzx + zx

∥∥
Hs–

≤ c‖u – z‖Hs–
(‖u‖Hs + ‖z‖Hs

)
. ()

Using () and () yields

∥∥f (u) – f (z)
∥∥
Hs–

≤ c
(∥∥u – z

∥∥
Hs– +

∥∥uux – zzx
∥∥
Hs– +

∥∥ux – zx
∥∥
Hs–

)
≤ c‖u – z‖Hs–

(
 + ‖u‖Hs– + ‖z‖Hs– + ‖u‖Hs + ‖z‖Hs

)
, ()

which completes the proof of inequality (). �
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Proof of Theorem  Using the Kato theorem, Lemmas ., ., . and Lemma ., we
know that system () or problem () has a unique solution

u(t,x) ∈ C
(
[,T);Hs(R)

) ∩C([,T);Hs–(R)
)
. �

4 Proofs of Theorems 2 and 3
Using the first equation of system () derives

d
dt

∫
R

(
u + ux

)
dx + (a – b)

∫
R
uux dx = ,

from which we have the conservation law

∫
R

(
u + ux

)
dx + (a – b)

∫ t



∫
R
uux dx =

∫
R

(
u + ux

)
dx. ()

Lemma . (Kato and Ponce []) If r ≥ , then Hr ∩ L∞ is an algebra.Moreover,

‖uv‖r ≤ c
(‖u‖L∞‖v‖r + ‖u‖r‖v‖L∞

)
,

where c is a constant depending only on r.

Lemma . (Kato and Ponce []) Let r > . If u ∈Hr ∩W ,∞ and v ∈Hr– ∩ L∞, then

∥∥[
�r ,u

]
v
∥∥
L ≤ c

(‖∂xu‖L∞
∥∥�r–v

∥∥
L +

∥∥�ru
∥∥
L‖v‖L∞

)
.

Lemma . Let s > 
 and the function u(t,x) is a solution of problem () and the initial

data u(x) ∈ Hs(R). Then the following results hold:

‖u‖H ≤ ‖u‖H(R)e
|a–b|


∫ t
 ‖ux‖L∞(R) dτ . ()

For q ∈ (, s – ], there is a constant c only depending onm, a and b such that

∫
R

(
�q+u

) dx
≤

∫
R

[(
�q+u

)]dx + c
∫ t


‖u‖Hq+

(‖ux‖L∞‖u‖L∞ + ‖ux‖L∞
)
dτ . ()

For q ∈ [, s – ], there is a constant c only depending onm, a and b such that

‖ut‖Hq ≤ c‖u‖Hq+
(‖u‖L∞‖u‖H + ‖u‖L∞‖ux‖L∞ + ‖ux‖L∞

)
. ()

Proof Using |uux| ≤ (u + ux), the Gronwall inequality and () derives ().
Using ∂

x = –� +  and the Parseval equality gives rise to

∫
R
�qu�q∂

x
(
u

)
dx = –

∫
R

(
�q+u

)
�q+(uux)dx + 

∫
R

(
�qu

)
�q(uux)dx.

http://www.boundaryvalueproblems.com/content/2013/1/134
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For q ∈ (, s – ], applying (�qu)�q to both sides of the first equation of system () and
integrating with respect to x by parts, we have the identity



d
dt

∫
R

((
�qu

) + (
�qux

))dx = –(m – b)
∫
R

(
�qu

)
�q(uux)dx

– b
∫
R

(
�q+u

)
�q+(uux)dx – b

∫
R
�qu�qux dx

+ (a – b)
∫
R
�qu�q(uuxuxx)dx. ()

We will estimate the terms on the right-hand side of () separately. For the first term, by
using the Cauchy-Schwarz inequality and Lemmas . and ., we have

∣∣∣∣
∫
R

(
�qu

)
�q(uux)dx

∣∣∣∣ =
∣∣∣∣
∫
R

(
�qu

)[
�q(uux) – u�qux

]
dx +

∫
R

(
�qu

)
u�qux dx

∣∣∣∣
≤ c‖u‖Hq

(
‖u‖L∞‖ux‖L∞‖u‖Hq + ‖ux‖L∞‖u‖L∞‖u‖Hq

)
+ ‖u‖L∞‖ux‖L∞

∥∥�qu
∥∥
L

≤ c‖u‖Hq‖u‖L∞‖ux‖L∞ . ()

Using the above estimate to the second term yields

∣∣∣∣
∫
R

(
�q+u

)
�q+(uux)dx

∣∣∣∣ ≤ c‖u‖Hq+‖u‖L∞‖ux‖L∞ . ()

Using the Cauchy-Schwarz inequality and Lemma ., we obtain

∣∣∣∣
∫
R

(
�qux

)
�q(uux)dx

∣∣∣∣ ≤ ∥∥�qux
∥∥
L

∥∥�q(uux)∥∥L

≤ c‖u‖Hq+
(‖u‖L∞

∥∥ux∥∥Hq + ‖u‖Hq
∥∥ux∥∥L∞

)
≤ c‖u‖Hq+

(‖u‖L∞‖ux‖L∞ + ‖ux‖L∞
)
. ()

For the last term in (), using u(ux)x = (uux)x – uxux results in∣∣∣∣
∫
R

(
�qu

)
�q(uuxuxx)dx

∣∣∣∣ ≤ 


∣∣∣∣
∫
R
�qux�q(uux)dx

∣∣∣∣ + 


∣∣∣∣
∫
R
�qu�q[uxux]dx

∣∣∣∣
= K +K. ()

For K, it follows from () that

K ≤ c‖u‖Hq+
(‖u‖L∞‖ux‖L∞ + ‖ux‖L∞

)
. ()

For K, applying Lemma . derives

K ≤ c‖u‖Hq
∥∥uxux∥∥Hq

≤ c‖u‖Hq
(‖ux‖L∞

∥∥ux∥∥Hq + ‖ux‖Hq
∥∥ux∥∥L∞

)
≤ c‖u‖Hq+‖ux‖L∞ . ()

http://www.boundaryvalueproblems.com/content/2013/1/134
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It follows from ()-() that there exists a constant c such that



d
dt

∫
R

[(
�qu

) + (
�qux

)]dx
≤ c‖u‖Hq+

(‖ux‖L∞‖u‖L∞ + ‖ux‖L∞
)
. ()

Integrating both sides of the above inequality with respect to t results in inequality ().
To estimate the norm of ut , we apply the operator ( – ∂

x )– to both sides of the first
equation of system () to obtain the equation

ut =
(
 – ∂

x
)–[–m


(
u

)
x +

b

∂
x
(
u

)
– b∂x

(
uux

)
+ (a – b)uuxuxx

]
. ()

Applying (�qut)�q to both sides of Eq. () for q ∈ [, s – ] gives rise to

∫
R

(
�qut

) dx
=

∫
R

(
�qut

)
�q–

[
∂x

(
–
m

u +

b

∂
x u

 – buux

)
+ (a – b)uuxuxx

]
dτ . ()

For the right-hand of Eq. (), we have

∣∣∣∣
∫
R

(
�qut

)(
 – ∂

x
)–

�q∂x

(
–
m

u – buux

)
dx

∣∣∣∣
≤ c‖ut‖Hq

(∫
R

(
 + ξ )q–[∫

R

[
–
m

û(ξ – η)̂u(η) – bûux(ξ – η)ûx(η)

]
dη

]) 


≤ c‖ut‖Hq‖u‖H‖u‖Hq+‖u‖L∞ . ()

Since

∫ (
�qut

)(
 – ∂

x
)–

�q∂
x
(
uux

)
dx = –

∫ (
�qut

)
�q(uux)dx

+
∫ (

�qut
)(
 – ∂

x
)–

�q(uux)dx, ()

using Lemma ., ‖uux‖Hq ≤ c‖(u)x‖Hq ≤ c‖u‖L∞‖u‖Hq+ and ‖u‖L∞ ≤ ‖u‖H , we have

∣∣∣∣
∫ (

�qut
)
�q(uux)dx

∣∣∣∣
≤ c‖ut‖Hq

∥∥uux∥∥Hq

≤ c‖ut‖Hq‖u‖L∞‖u‖H‖u‖Hq+ ()

and ∣∣∣∣
∫ (

�qut
)(
 – ∂

x
)–

�q(uux)dx
∣∣∣∣ ≤ c‖ut‖Hq‖u‖L∞‖u‖H‖u‖Hq+ . ()

http://www.boundaryvalueproblems.com/content/2013/1/134
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Using the Cauchy-Schwarz inequality and Lemma . yields

∣∣∣∣
∫
R

(
�qut

)(
 – ∂

x
)–

�q(uuxuxx)dx
∣∣∣∣

≤ c‖ut‖Hq‖uuxuxx‖Hq– ≤ c‖ut‖Hq
∥∥u(

ux
)
x

∥∥
Hq–

≤ c‖ut‖Hq
∥∥[
u
(
ux

)]
x – (u)xux

∥∥
Hq–

≤ c‖ut‖Hq
(∥∥uux∥∥Hq– +

∥∥uxux∥∥Hq–
)

≤ c‖ut‖Hq
(∥∥uux∥∥Hq +

∥∥uxux∥∥Hq
)

≤ c‖ut‖Hq‖u‖Hq+
(‖u‖L∞‖ux‖L∞ + ‖ux‖L∞

)
. ()

Applying ()-() into () yields the inequality

‖ut‖Hq ≤ c‖u‖Hq+
(‖u‖L∞‖u‖H + ‖u‖L∞‖ux‖L∞ + ‖ux‖L∞

)
()

for a constant c > . This completes the proof of Lemma .. �

Lemma . ([]) For s > , u ∈ Hs(R) and uε = φε � u, the following estimates hold for
any ε with  < ε < 



‖uεx‖L∞ ≤ c‖ux‖L∞ and ‖uε‖Hq ≤ c, if q ≤ s, ()

‖uε‖Hq ≤ cε
s–q
 , if q > s, ()

‖uε – u‖Hq ≤ cε
s–q
 , if q ≤ s, ()

‖uε – u‖Hs = o(), ()

where c is a constant independent of ε.

Proof of Theorem  Using notation u = uε and differentiating both sides of the first equa-
tion of problem () or Eq. () with respect to x give rise to

utx +
a – b


uux + buuxx

=
m – b


u +�–
[
b –m


u +
a – b


uux +

b – a


(
ux

)
x

]
. ()

Letting p >  be an integer and multiplying the above equation by (ux)p+ and then inte-
grating the resulting equation with respect to x yield the equality


p + 

d
dt

∫
R
(ux)p+ dx +

(a – b)(p + ) – b
p + 

∫
R
u(ux)p+ dx

=
m – b


∫
R
u(ux)p+ dx

+
∫
R
(ux)p+�–

[
b –m


u +
a – b


uux +

b – a


(
ux

)
x

]
dx. ()
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Applying the Hölder’s inequality yields


p + 

d
dt

∫
R
(ux)p+ dx

≤
{ |m – b|



(∫
R

∣∣u∣∣p+ dx) 
p+

+
(∫

R
|G|p+ dx

) 
p+

}(∫
R
|ux|p+ dx

) p+
p+

+
∣∣∣∣ (a – b)(p + ) – b

p + 

∣∣∣∣‖ux‖L∞‖u‖L∞
∫
R
|ux|p+ dx ()

or

d
dt

(∫
R
(ux)p+ dx

) 
p+

≤
{ |m – b|



(∫
R

∣∣u∣∣p+ dx) 
p+

+
(∫

R
|G|p+ dx

) 
p+

}

+
∣∣∣∣ (a – b)(p + ) – b

p + 

∣∣∣∣‖ux‖L∞‖u‖L∞
(∫

R
|ux|p+ dx

) 
p+

, ()

where

G = �–
[
b –m


u +
a – b


uux +

b – a


(
ux

)
x

]
.

Since ‖f ‖Lp → ‖f ‖L∞ as p→ ∞ for any f ∈ L∞ ∩ L, integrating both sides of the inequal-
ity () with respect to t and taking the limit as p → ∞ result in the estimate

‖ux‖L∞ ≤ ‖ux‖L∞ + c
∫ t



[
‖u‖L∞ + ‖G‖L∞ +

|a – b|


‖u‖L∞‖ux‖L∞

]
dτ , ()

where c only depends onm, a, b.
Using the algebraic property of Hs (R) with s > 

 and the inequality () yields

‖u‖L∞ ≤ ‖u‖H ≤ ‖u‖Hec
∫ t
 ‖ux‖ dτ ()

and

‖G‖L∞ ≤ c‖G‖
H


+

= c
∥∥∥∥�–

[
b –m


u +
a – b


uux +

b – a


(
ux

)
x

]∥∥∥∥
H


+

≤ c
(∥∥u∥∥H +

∥∥uux∥∥H +
∥∥ux∥∥H

)
≤ c

(‖u‖H + ‖u‖H
(
 + ‖ux‖L∞

))
≤ cec

∫ t
 ‖ux‖ dτ

(
 + ‖ux‖L∞

)
, ()

where c is a constant independent of ε. From (), we have

∫ t


‖G‖L∞ dτ ≤ c

∫ t


ec

∫ τ
 ‖ux‖ dζ

(
 + ‖ux‖L∞

)
dτ . ()
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It follows from () and () that

‖ux‖L∞ ≤ ‖ux‖L∞ + c
∫ t



[
ec

∫ τ
 ‖ux‖ dζ

(
 + ‖ux‖L∞

)
+  + ‖ux‖L∞

]
dτ . ()

It follows from the contraction mapping principle that there is a T >  such that the
equation

‖W‖L∞ = ‖ux‖L∞ + c
∫ t



[(
 + ‖W‖L∞

)
exp

(
c
∫ τ


‖W‖L∞ dς

)
+  + ‖W‖L∞

]
dτ

has a unique solution W ∈ C[,T]. Using the theorem presented on p. in Li and Olver
[] yields that there are constants T >  and c > , which are independent of ε, such that
‖ux‖L∞ ≤ W (t) for arbitrary t ∈ [,T], which leads to the conclusion of Theorem . �

Using Theorem , (), () and (), notation uε = u and Gronwall’s inequality results
in the inequalities

‖uε‖Hq ≤ c exp
[∫ t



(‖uεx‖L∞‖uε‖L∞ + ‖uεx‖L∞
)
dτ

]
≤ c

and

‖uεt‖Hr ≤ ‖uε‖Hr+
(‖uε‖L∞‖uε‖H + ‖uε‖L∞‖uεx‖L∞ + ‖uεx‖L∞

) ≤ c,

where q ∈ (, s], r ∈ (, s – ] and t ∈ [,T). It follows from Aubin’s compactness theorem
that there is a subsequence of {uε}, denoted by {uεn}, such that {uεn} and their tempo-
ral derivatives {uεnt} are weakly convergent to a function u(t,x) and its derivative ut in
L([,T],Hs) and L([,T],Hs–), respectively.Moreover, for any real number R > , {uεn}
is convergent to the function u strongly in the space L([,T],Hq(–R,R)) for q ∈ (, s] and
{uεnt} converges to ut strongly in the space L([,T],Hr(–R,R)) for r ∈ [, s – ].

Proof of Theorem  From Theorem , we know that {uεnx} (εn → ) is bounded in the
space L∞. Thus, the sequences {uεn}, {uεnx}, {uεnx} and {uεnx} are weakly convergent to u,
ux, ux and ux in L([,T],Hr(–R,R)) for any r ∈ [, s – ), separately. Hence, u satisfies
the equation

–
∫ T



∫
R
u(gt – gxxt)dxdt

=
∫ T



∫
R

(
m

ugx –

b

ugxxx +

a – b


uxg –
a – b


uuxgx

)
dxdt ()

with u(,x) = u(x) and g ∈ C∞
 . Since X = L([,T]× R) is a separable Banach space and

{uεnx} is a bounded sequence in the dual space X∗ = L∞([,T] × R) of X, there exists a
subsequence of {uεnx}, still denoted by {uεnx}, weakly star convergent to a function v in
L∞([,T] × R). As {uεnx} weakly converges to ux in L([,T] × R), it results that ux = v
almost everywhere. Thus, we obtain ux ∈ L∞([,T]× R). �
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