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Abstract
By applying the mountain pass theorem and symmetric mountain pass theorem in
critical point theory, the existence of at least one or infinitely many homoclinic
solutions is obtained for the following p-Laplacian system:

d

dt
(
∣∣u̇(t)∣∣p–2u̇(t)) – a(t)∣∣u(t)∣∣q–pu(t) +∇W(t,u(t)) = 0,

where 1 < p < (q + 2)/2, q > 2, t ∈ R, u ∈R
N , a ∈ C(R,R) andW ∈ C1(R×R

N ,R) are
not periodic in t.
MSC: 34C37; 35A15; 37J45; 47J30

Keywords: homoclinic solutions; variational methods; weighted Lq–p+2 space;
p-Laplacian systems

1 Introduction
Consider homoclinic solutions of the following p-Laplacian system:

d
dt

(∣∣u̇(t)∣∣p–u̇(t)) – a(t)
∣∣u(t)∣∣q–pu(t) +∇W

(
t,u(t)

)
= , t ∈R, (.)

where  < p < (q+)/, q > , t ∈R, u ∈R
N , a :R →R,W :R×R

N →R. As usual, we say
that a solution u of (.) is a nontrivial homoclinic (to ) if u ∈ C(R,RN ) such that u �= ,
u(t) →  as t → ±∞.
When p = , (.) reduces to the following second-order Hamiltonian system:

ü(t) – a(t)
∣∣u(t)∣∣q–u(t) +∇W

(
t,u(t)

)
= , t ∈R. (.)

If we take p =  and q = , then (.) reduces to the following second-order Hamiltonian
system:

ü(t) – a(t)u(t) +∇W
(
t,u(t)

)
= , t ∈R. (.)

The existence of homoclinic orbits for Hamiltonian systems is a classical problem and
its importance in the study of the behavior of dynamical systems has been recognized by
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Poincaré []. Up to the year of , a few of isolated results can be found, and the only
method for dealingwith such a problemwas the small perturbation technique ofMelnikov.
Recently, the existence and multiplicity of homoclinic solutions and periodic solutions

for Hamiltonian systems have been extensively studied by critical point theory. For exam-
ple, see [–] and references therein. However, few results [, ] have been obtained in
the literature for system (.). In [], by introducing a suitable Sobolev space, Salvatore
established the following existence results for system (.) when q > .

Theorem A [] Assume that a and W satisfy the following conditions:

(A) Let q > , a(t) is a continuous, positive function on R such that for all t ∈R

a(t)≥ α|t|β , α > ,β > (q – )/.

(W) W ∈ C(R×R
N ,R) and there exists a constant μ > q such that

 < μW (t,x)≤ (∇W (t,x),x
)
, ∀(t,x) ∈R×R

N\{}.

(W) |∇W (t,x)| = o(|x|q–) as |x| →  uniformly with respect to t ∈R.
(W) There existsW ∈ C(RN ,R) such that

∣∣W (t,x)
∣∣ + ∣∣∇W (t,x)

∣∣ ≤ ∣∣W (x)
∣∣, ∀(t,x) ∈R×R

N .

Then problem (.) has one nontrivial homoclinic solution.

When W (t,x) is an even function in x, Salvatore [] obtained the following existence
theorem of an unbounded sequence of homoclinic orbits for problem (.) by the sym-
metric mountain pass theorem.

Theorem B [] Assume that a and W satisfy (A), (W)-(W) and the following condi-
tion:

(W) W (t, –x) =W (t,x), ∀(t,x) ∈R×R
N .

Then problem (.) has an unbounded sequence of homoclinic solutions.

In [], Chen and Tang improved Theorem A and Theorem B by relaxing conditions
(W) and (W) and removing condition (W). Motivated mainly by the ideas of [, –
], we will consider homoclinic solutions of (.) by themountain pass theorem and sym-
metric mountain pass theorem. Precisely, we obtain the following main results.

Theorem . Suppose that a and W satisfy the following conditions:

(A)′ Let  < p < (q + )/ and q > , a(t) is a continuous, positive function on R such that
for all t ∈ R

a(t) ≥ α|t|β , α > ,β > (q – p + )/p.

http://www.boundaryvalueproblems.com/content/2013/1/137
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(W) W (t,x) = W(t,x) – W(t,x), W,W ∈ C(R × R
N ,R), and there exists a constant

R >  such that


a(t)

∣∣∇W (t,x)
∣∣ = o

(|x|q–p+) as x→ 

uniformly in t ∈ (–∞, –R]∪ [R, +∞).
(W) There is a constant μ > q – p +  such that

 < μW(t,x)≤
(∇W(t,x),x

)
, ∀(t,x) ∈R×R

N\{}.

(W) W(t, ) =  and there exists a constant � ∈ (q – p + ,μ) such that

W(t,x)≥ ,
(∇W(t,x),x

) ≤ �W(t,x), ∀(t,x) ∈R×R
N .

Then problem (.) has one nontrivial homoclinic solution.

Theorem . Suppose that a and W satisfy (A)′, (W) and the following conditions:

(W)′ W (t,x) =W(t,x) –W(t,x),W,W ∈ C(R×R
N ,R), and


a(t)

∣∣∇W (t,x)
∣∣ = o

(|x|q–p+) as x → 

uniformly in t ∈R.
(W)′ W(t, ) =  and there exists a constant � ∈ (q – p + ,μ) such that

(∇W(t,x),x
) ≤ �W(t,x), ∀(t,x) ∈R×R

N .

Then problem (.) has one nontrivial homoclinic solution.

Theorem . Suppose that a and W satisfy (A)′ and (W)-(W). Then problem (.) has
an unbounded sequence of homoclinic solutions.

Theorem. Suppose that a andW satisfy (A)′, (W), (W)′, (W), (W)′.Then problem
(.) has an unbounded sequence of homoclinic solutions.

Remark . When p = , condition (A)′ reduces to condition (A).Obviously, Theorem .-
Theorem . generalize and improve Theorem A, Theorem B and the corresponding re-
sults in []. It is easy to see that our results hold true even if p = . To the best of our
knowledge, similar results for problem (.) cannot be seen in the literature; from this
point, our results are new.

Remark . If p =  and q = , then problem (.) reduces to problem (.). As pointed
out in [], TheoremA can be proved by replacing (A) with the more general assumption:
a(t)→ +∞ as |t| → +∞.

The rest of this paper is organized as follows. In Section , some preliminaries are pre-
sented andwe establish an embedding result. In Section ,we give the proofs of our results.
In Section , some examples are given to illustrate our results.
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2 Preliminaries
We set, for any real number ≤ h < +∞,

Lh = Lh
(
R,RN)

, L∞ = L∞(
R,RN)

with the usual norms

‖u‖h =
(∫

R

∣∣u(t)∣∣h dt)/h

, ‖u‖∞ =max
t∈R

∣∣u(t)∣∣.
Let

W ,p =W ,p(
R,RN)

=
{
u :R →R

N | u is absolutely continuous,u, u̇ ∈ Lp
(
R,RN)}

be the Sobolev space with the norm given by

‖u‖W ,p =
(∫

R

[∣∣u̇(t)∣∣p + ∣∣u(t)∣∣p]dt)/p

.

If σ is a positive, continuous function on R and  < s < +∞, let

Lsσ = Lsσ
(
R,RN ;σ

)
=

{
u ∈ Lloc

(
R,RN) ∣∣∣ ∫

R

σ (t)
∣∣u(t)∣∣s dt < +∞

}
.

Lsσ equipped with the norm

‖u‖s,σ =
(∫

R

σ (t)
∣∣u(t)∣∣s dt)/s

is a reflexive Banach space. When s = +∞, we set

L∞
σ = L∞

σ

(
R,RN ;σ

)
=

{
u

∣∣max
t∈R

σ (t)
∣∣u(t)∣∣ < +∞

}

with the norm given by

‖u‖∞,σ =max
t∈R

σ (t)
∣∣u(t)∣∣.

Set E =W ,p ∩ Lq–p+a , where a is the function given in condition (A)′. Then E with its
standard norm ‖ · ‖ is a reflexive Banach space. The functional ϕ corresponding to (.)
on E is given by

ϕ(u) =
∫
R

[

p
∣∣u̇(t)∣∣p + a(t)

q – p + 
∣∣u(t)∣∣q–p+ –W

(
t,u(t)

)]
dt, u ∈ E. (.)

Clearly, it follows from (W) or (W)′ that ϕ : E → R. By Theorem . of [], we can
deduce that the map

u→ a(t)
∣∣u(t)∣∣q–pu(t)

http://www.boundaryvalueproblems.com/content/2013/1/137
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is continuous from Lq–p+a in the dual space Lpa–/(q–p+) , where p =
q–p+
q–p+ . As the embeddings

E ⊂ W ,p ⊂ Lγ for all γ ≥ p are continuous, if (A)′ and (W) or (W)′ hold, then ϕ ∈
C(E,R) and one can easily check that

〈
ϕ′(u), v

〉
=

∫
R

[∣∣u̇(t)∣∣p–(u̇(t), v̇(t)) + a(t)
∣∣u(t)∣∣q–p(u(t), v(t))

–
(∇W

(
t,u(t)

)
, v(t)

)]
dt, u ∈ E. (.)

Furthermore, the critical points of ϕ in E are classical solutions of (.) with u(±∞) = .
To prove our results, we need the following generalization of the Lebesgue dominated

convergence theorem.

Lemma. [] Let {fn(t)} and {gn(t)} be two sequences of measurable functions on amea-
surable set A, and let

∣∣fn(t)∣∣ ≤ gn(t) for a.e. t ∈ A.

If

lim
n→∞ fn(t) = f (t), lim

n→∞ gn(t) = g(t) for a.e. t ∈ A

and

lim
n→∞

∫
A
gn(t)dt =

∫
A
g(t)dt < +∞,

then

lim
n→∞

∫
A
fn(t)dt =

∫
A
f (t)dt.

The following lemma is an improvement result of [] in which the author considered
the case p = .

Lemma . If a satisfies assumption (A)′, then

the embedding Lq–p+a ⊂ Lp is continuous. (.)

Moreover, there exists a Sobolev space Z such that

the embeddings Lq–p+a ⊂ Z ⊂ Lp are continuous, (.)

the embedding W ,p ∩ Z ⊂ Lp is compact. (.)

Proof Let θ = (q – p + )/(q – p + ), θ ′ = (q – p + )/p, we have

‖u‖pp =
∫
R

a–/θ
′
a/θ

′ |u|p dt

≤
(∫

R

a–θ/θ ′
dt

)/θ(∫
R

a|u|pθ ′
dt

)/θ ′

http://www.boundaryvalueproblems.com/content/2013/1/137
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= a
(∫

R

a|u|q–p+ dt
)p/q–p+

= a‖u‖pq–p+,a,

where from (A)′, a = (
∫
R
a–p/(q–p+) dt)(q–p+)/(q–p+) < +∞. Then (.) holds.

By (A)′, there exists a continuous positive function ρ such that ρ(t)→ +∞ as |t| → +∞
and

a =
(∫

R

ρθa–θ/θ ′
dt

)/θ

< +∞.

Since

‖u‖pp,ρ =
∫
R

ρ|u|p dt =
∫
R

ρa–/θ
′
a/θ

′ |u|p dt

≤
(∫

R

ρθa–θ/θ ′
dt

)/θ(∫
R

a|u|q–p+ dt
)/θ ′

= a‖u‖pq–p+,a,

(.) holds by taking Z = Lpρ .
Finally, as W ,p ∩ Z is the weighted Sobolev space 
,p(R,ρ, ), it follows from [] that

(.) holds. �

The following two lemmas are the mountain pass theorem and symmetric mountain
pass theorem, which are useful in the proofs of our theorems.

Lemma . [] Let E be a real Banach space and I ∈ C(E,R) satisfying (PS)-condition.
Suppose I() =  and:

(i) There exist constants ρ,α >  such that I∂Bρ () ≥ α.
(ii) There exists an e ∈ E\B̄ρ() such that I(e) ≤ .

Then I possesses a critical value c ≥ α which can be characterized as

c = inf
h∈�

max
s∈[,]

I
(
h(s)

)
,

where � = {h ∈ C([, ],E) | h() = ,h() = e} and Bρ() is an open ball in E of radius ρ

centered at .

Lemma . [] Let E be a real Banach space and I ∈ C(E,R) with I even. Assume that
I() =  and I satisfies (PS)-condition, (i) of Lemma . and the following condition:
(iii) For each finite dimensional subspace E′ ⊂ E, there is r = r(E′) >  such that I(u) ≤ 

for u ∈ E′\Br(), Br() is an open ball in E of radius r centered at .
Then I possesses an unbounded sequence of critical values.

Lemma . Assume that (W) and (W) or (W)′ hold. Then, for every (t,x) ∈R×R
N ,

(i) s–μW(t, sx) is nondecreasing on (, +∞);
(ii) s–�W(t, sx) is nonincreasing on (, +∞).

The proof of Lemma . is routine and we omit it.

http://www.boundaryvalueproblems.com/content/2013/1/137
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3 Proofs of theorems

Proof of Theorem . Step . The functional ϕ satisfies (PS)-condition. Let {un} ⊂ E satis-
fying ϕ(un) be bounded and ϕ′(un) →  as n → ∞. Hence, there exists a constant C > 
such that

∣∣ϕ(un)∣∣ ≤ C,
∥∥ϕ′(un)

∥∥
E∗ ≤ μC. (.)

It is well known [] that there exists a constant C >  such that

‖u‖∞ ≤ C‖u‖, u ∈ E. (.)

From (.), (.), (.), (W) and (W), we have

pC + pC‖un‖ ≥ pϕ(un) –
p
μ

〈
ϕ′(un),un

〉

=
μ – p

μ
‖u̇n‖pp + p

∫
R

[
W

(
t,un(t)

)
–


μ

(∇W
(
t,un(t)

)
,un(t)

)]
dt

– p
∫
R

[
W

(
t,un(t)

)
–


μ

(∇W
(
t,un(t)

)
,un(t)

)]
dt

+
(

p
q – p + 

–
p
μ

)∫
R

a(t)
∣∣un(t)∣∣q–p+ dt

≥ μ – p
μ

‖u̇n‖pp +
(

p
q – p + 

–
p
μ

)
‖un‖q–p+q–p+,a.

It follows from Lemma ., p < (q+)/, μ > q–p+ and the above inequalities that there
exists a constant C >  such that

‖un‖ ≤ C, n ∈N. (.)

Now we prove that un → u in E. Passing to a subsequence if necessary, it can be assumed
that un ⇀ u in E. From Lemma ., we have un → u in Lp. From (.) and (.), we have

‖un‖∞ ≤ C‖un‖ ≤ CC, un ∈ E. (.)

Inequality (.) implies that |un(t)| ≤ CC for all t ∈R. By (W), we know that

|∇W (t,x)|
a(t)|x|q–p+ →  as x → ,

which implies that for any given constant C > , there exists a constant C′ >  related to C
such that

|∇W (t,x)|
a(t)|x|q–p+ ≤ C′ for |x| ≤ C.

Hence, there exists a constant C >  such that

∣∣∇W (t,x)
∣∣ ≤ Ca(t)|x|q–p+ for |x| ≤ CC. (.)

http://www.boundaryvalueproblems.com/content/2013/1/137
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Hence, from (.), we have

∣∣∇W
(
t,un(t)

)
–∇W

(
t,u(t)

)∣∣p′

≤ [
Ca(t)

(∣∣un(t)∣∣q–p+ + ∣∣u(t)∣∣q–p+)]p′

≤ [
Cq–p+a(t)

∣∣un(t) – u(t)
∣∣q–p+ +C

(
 + q–p+

)
a(t)

∣∣u(t)∣∣q–p+]p′

≤ p
′(q–p+)Cp′

 a
p′
(t)

∣∣un(t) – u(t)
∣∣p′(q–p+) + p

′
Cp′


(
 + q–p+

)p′
ap

′
(t)

∣∣u(t)∣∣p′(q–p+)

:= gn(t), (.)

where p′ = p
p– . Moreover, since a(t) is a positive continuous function on R, p < q – p + 

and un(t)→ u(t) for almost every t ∈R, we have

lim
n→∞ gn(t) = p′

Cp′


(
 + q–p+

)p′
ap

′ (t)
∣∣u(t)∣∣p(q–p+) := g(t) for a.e. t ∈R

and

lim
n→∞

∫
R

gn(t)dt = lim
n→∞

∫
R

[
p

′(q–p+)Cp′
 a

p′
(t)

∣∣un(t) – u(t)
∣∣p′(q–p+)

+ p
′
Cp′


(
 + q–p+

)p′
ap

′
(t)

∣∣u(t)∣∣p′(q–p+)]dt
= p

′(q–p+)Cp′
 lim

n→∞

∫
R

ap
′
(t)

∣∣un(t) – u(t)
∣∣p′(q–p+) dt

+ p′
Cp′


(
 + q–p+

)p′ ∫
R

ap
′ (t)

∣∣u(t)∣∣p′(q–p+) dt

= p
′
Cp′


(
 + q–p+

)p′ ∫
R

ap
′
(t)

∣∣u(t)∣∣p′(q–p+) dt

=
∫
R

g(t)dt < +∞.

It follows from Lemma ., (.) and the above inequalities that

lim
n→∞

∫
R

∣∣∇W
(
t,un(t)

)
–∇W

(
t,u(t)

)∣∣p′
dt = .

This shows that

∇W (t,un)→ ∇W (t,u) in Lp
′(
R,RN)

. (.)

From (.), we have

〈
ϕ′(un) – ϕ′(u),un – u)

〉
=

∫
R

(∣∣u̇n(t)∣∣p–u̇n(t) – ∣∣u̇(t)∣∣p–u̇(t), u̇n(t) – u̇(t)
)
dt

+
∫
R

a(t)
(∣∣un(t)∣∣q–pun(t) – ∣∣u(t)∣∣q–pu(t))(un(t) – u(t)

)
dt

–
∫
R

(∇W
(
t,un(t)

)
–∇W

(
t,u(t)

)
,un(t) – u(t)

)
dt

http://www.boundaryvalueproblems.com/content/2013/1/137
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≥ ‖u̇n‖pp + ‖u̇‖pp – ‖u̇‖p‖u̇n‖p–p – ‖u̇n‖p‖u̇‖p–p

+
∫
R

a(t)
(∣∣un(t)∣∣q–pun(t) – ∣∣u(t)∣∣q–pu(t))(un(t) – u(t)

)
dt

–
∫
R

(∇W
(
t,un(t)

)
–∇W

(
t,u(t)

)
,un(t) – u(t)

)
dt

=
(‖u̇n‖p–p – ‖u̇‖p–p

)(‖u̇n‖p – ‖u̇‖p
)

+
∫
R

a(t)
(∣∣un(t)∣∣q–pun(t) – ∣∣u(t)∣∣q–pu(t))(un(t) – u(t)

)
dt

–
∫
R

(∇W
(
t,un(t)

)
–∇W

(
t,u(t)

)
,un(t) – u(t)

)
dt. (.)

It is easy to see that for any α >  there exists a constant C >  such that

(|x|α–x – |y|α–y)(x – y) ≥ C|x – y|α+, ∀x, y ∈R. (.)

Inequality (.) implies that

(‖u̇n‖p–p – ‖u̇‖p–p
)(‖u̇n‖p – ‖u̇‖p

) ≥ C′

∣∣‖u̇n‖p – ‖u̇‖p

∣∣p (.)

and

∫
R

a(t)
(∣∣un(t)∣∣q–pun(t) – ∣∣u(t)∣∣q–pu(t))(un(t) – u(t)

)
dt

≥ C′′


∫
R

a(t)
∣∣un(t) – u(t)

∣∣q–p+ dt, (.)

where C′
 and C′′

 are positive constants. Since ϕ′(un) →  as n → +∞, un ⇀ u in E and
the embeddings E ⊂ W ,p ⊂ Lγ for all γ ≥ p are continuous, it follows from Lemma .,
(.), (.), (.) and (.) that

‖u̇n‖p → ‖u̇‖p as n→ ∞ (.)

and

∫
R

a(t)
∣∣un(t)∣∣q–p+ dt →

∫
R

a(t)
∣∣u(t)∣∣q–p+ dt as n→ ∞. (.)

Hence, by (.) and (.), un → u in E. This shows that ϕ satisfies (PS)-condition.
Step . From (W), there exists δ ∈ (, ) such that

∣∣∇W (t,x)
∣∣ ≤ 

p
a(t)|x|q–p+ for |t| ≥ R, |x| ≤ δ. (.)

By (.), we have

∣∣W (t,x)
∣∣ ≤ 

p(q – p + )
a(t)|x|q–p+ for |t| ≥ R, |x| ≤ δ. (.)

http://www.boundaryvalueproblems.com/content/2013/1/137
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Let

C = sup

{
W(t,x)
a(t)

∣∣∣ t ∈ [–R,R],x ∈ R, |x| = 
}
. (.)

Set σ = min{/(p(q – p + )C + )/(μ–q+p–), δ} and ‖u‖ = σ /C := ρ , it follows from (.)
that

‖u‖∞ ≤ C‖u‖ ≤ σ ,

which shows that |u(t)| ≤ σ ≤ δ < . From Lemma .(i) and (.), we have

∫ R

–R
W

(
t,u(t)

)
dt ≤

∫
{t∈[–R,R]:u(t) �=}

W

(
t,

u(t)
|u(t)|

)∣∣u(t)∣∣μ dt
≤ C

∫ R

–R
a(t)

∣∣u(t)∣∣μ dt
≤ Cσ

μ–q+p–
∫ R

–R
a(t)

∣∣u(t)∣∣q–p+ dt
≤ 

p(q – p + )

∫ R

–R
a(t)

∣∣u(t)∣∣q–p+ dt. (.)

It follows from (W), (.), (.) that

ϕ(u) =

p

∫
R

∣∣u̇(t)∣∣pdt + ∫
R

a(t)
q – p + 

∣∣u(t)∣∣q–p+ dt – ∫
R

W
(
t,u(t)

)
dt

=

p
‖u̇‖pp +


q – p + 

‖u‖q–p+q–p+,a –
∫
R\[–R,R]

W
(
t,u(t)

)
dt –

∫ R

–R
W

(
t,u(t)

)
dt

≥ 
p
‖u̇‖pp +


q – p + 

‖u‖q–p+q–p+,a –
∫ R

–R
W

(
t,u(t)

)
dt

–
∫
R\[–R,R]


p(q – p + )

a(t)
∣∣u(t)∣∣q–p+ dt

≥ 
p
‖u̇‖pp +


q – p + 

‖u‖q–p+q–p+,a –


p(q – p + )

∫ R

–R
a(t)

∣∣u(t)∣∣q–p+ dt
–

∫
R\[–R,R]


p(q – p + )

a(t)
∣∣u(t)∣∣q–p+ dt

=

p
‖u̇‖pp +

p – 
p(q – p + )

‖u‖q–p+q–p+,a.

Therefore, we can choose a constant α >  depending on ρ such that ϕ(u) ≥ α for any
u ∈ E with ‖u‖ = ρ .
Step . From Lemma .(ii) and (.), we have for any u ∈ E

∫ 

–
W

(
t,u(t)

)
dt =

∫
{t∈[–,]:|u(t)|>}

W
(
t,u(t)

)
dt +

∫
{t∈[–,]:|u(t)|≤}

W
(
t,u(t)

)
dt

≤
∫

{t∈[–,]:|u(t)|>}
W

(
t,

u(t)
|u(t)|

)∣∣u(t)∣∣� dt + ∫ 

–
max
|x|≤

W(t,x)dt

http://www.boundaryvalueproblems.com/content/2013/1/137
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≤ ‖u‖�
∞

∫ 

–
max
|x|=

W(t,x)dt +
∫ 

–
max
|x|≤

W(t,x)dt

≤ C�

‖u‖�

∫ 

–
max
|x|=

W(t,x)dt +
∫ 

–
max
|x|≤

W(t,x)dt

= C‖u‖� +C, (.)

where C = C�


∫ 
–max|x|=W(t,x)dt, C =

∫ 
–max|x|≤W(t,x)dt. Take ω ∈ E such that

∣∣ω(t)∣∣ =
⎧⎨
⎩ for |t| ≤ ,

 for |t| ≥ 
(.)

and |ω(t)| ≤  for |t| ∈ (, ]. For s > , from Lemma .(i) and (.), we get

∫ 

–
W

(
t, sω(t)

)
dt ≥ sμ

∫ 

–
W

(
t,ω(t)

)
dt = Csμ, (.)

where C =
∫ 
–W(t,ω(t))dt > . From (W), (.), (.), (.), (.), we get for s > 

ϕ(sω) =
sp

p
‖ω̇‖pp +

sq–p+

q – p + 
‖ω‖q–p+q–p+,a +

∫
R

[
W

(
t, sω(t)

)
–W

(
t, sω(t)

)]
dt

≤ sp

p
‖ω̇‖pp +

sq–p+

q – p + 
‖ω‖q–p+q–p+,a +

∫ 

–
W

(
t, sω(t)

)
dt –

∫ 

–
W

(
t, sω(t)

)
dt

≤ sp

p
‖ω̇‖pp +

sq–p+

q – p + 
‖ω‖q–p+q–p+,a +Cs�‖ω‖� +C –Csμ. (.)

Since μ > � > q – p +  and C > , it follows from (.) that there exists s >  such that
‖sω‖ > ρ and ϕ(sω) < . Let e = sω(t), then e ∈ E, ‖e‖ = ‖sω‖ > ρ and ϕ(e) = ϕ(sω) < .
By Lemma ., ϕ has a critical value d > α given by

d = inf
g∈�

max
s∈[,]

ϕ
(
g(s)

)
, (.)

where

� =
{
g ∈ C

(
[, ],E

)
: g() = , g() = e

}
.

Hence, there exists u∗ ∈ E such that

ϕ
(
u∗) = d, ϕ′(u∗) = .

The function u∗ is a desired solution of problem (.). Since d > , u∗ is a nontrivial ho-
moclinic solution. The proof is complete. �

Proof of Theorem . In the proof of Theorem ., the condition W(t,x) ≥  in (W) is
only used in the proofs of (.) and Step . Therefore, we only need to prove that (.) and
Step  still hold if we use (W)′ and (W)′ instead of (W) and (W). We first prove that

http://www.boundaryvalueproblems.com/content/2013/1/137
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(.) holds. From (W), (W)′, (.), (.) and (.), we have

p(q – p + )C +
p(q – p + )Cμ

�
‖un‖

≥ p(q – p + )ϕ(un) –
p(q – p + )

�

〈
ϕ′(un),un

〉

=
(� – p)(q – p + )

�
‖u̇n‖pp

+ p(q – p + )
∫
R

[
W

(
t,un(t)

)
–

�

(∇W
(
t,un(t)

)
,un(t)

)]
dt

– p(q – p + )
∫
R

[
W

(
t,un(t)

)
–

�

(∇W
(
t,un(t)

)
,un(t)

)]
dt

+ p
(
 –

q – p + 
�

)∫
R

a(t)
∣∣un(t)∣∣q–p+ dt

≥ (� – p)(q – p + )
�

‖u̇n‖pp + p
(
 –

q – p + 
�

)
‖un‖q–p+q–p+,a,

which implies that there exists a constant C >  such that (.) holds. Next, we prove
Step  still holds. From (W)′, there exists δ ∈ (, ) such that

∣∣∇W (t,x)
∣∣ ≤ 

p
a(t)|x|q–p+ for t ∈R, |x| ≤ δ. (.)

By (.), we have

∣∣W (t,x)
∣∣ ≤ 

p(q – p + )
a(t)|x|q–p+ for t ∈R, |x| ≤ δ. (.)

Let  < σ ≤ δ and ‖u‖ = σ /C := ρ , it follows from (.) that

‖u‖∞ ≤ C‖u‖ ≤ σ ,

which shows that |u(t)| ≤ σ ≤ δ < . It follows from (.) and (.) that

ϕ(u) =

p

∫
R

∣∣u̇(t)∣∣p dt + ∫
R

a(t)
q – p + 

∣∣u(t)∣∣q–p+ dt – ∫
R

W
(
t,u(t)

)
dt

≥ 
p
‖u̇‖pp +


q – p + 

‖u‖q–p+q–p+,a –
∫
R


p(q – p + )

a(t)
∣∣u(t)∣∣q–p+ dt

=

p
‖u̇‖pp +

p – 
p(q – p + )

‖u‖q–p+q–p+,a.

Therefore, we can choose a constant α >  depending on ρ such that ϕ(u) ≥ α for any
u ∈ E with ‖u‖ = ρ . The proof of Theorem . is complete. �

Proof of Theorem . Condition (W) shows that ϕ is even. In view of the proof of The-
orem ., we know that ϕ ∈ C(E,R) and satisfies (PS)-condition and assumptions (i) of
Lemma .. Now, we prove that (iii) of Lemma .. Let E′ be a finite dimensional subspace

http://www.boundaryvalueproblems.com/content/2013/1/137
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of E. Since all norms of a finite dimensional space are equivalent, there exists c >  such
that

‖u‖ ≤ c‖u‖∞. (.)

Assume that dimE′ =m and {u,u, . . . ,um} is a base of E′ such that

‖ui‖ = c, i = , , . . . ,m. (.)

For any u ∈ E′, there exists λi ∈R, i = , , . . . ,m such that

u(t) =
m∑
i=

λiui(t) for t ∈R. (.)

Let

‖u‖∗ =
m∑
i=

|λi|‖ui‖. (.)

It is easy to see that ‖ · ‖∗ is a norm of E′. Hence, there exists a constant c′ >  such that
c′‖u‖∗ ≤ ‖u‖. Since ui ∈ E, by Lemma ., we can choose R > R such that

∣∣ui(t)∣∣ < c′δ
 + c′

, |t| > R, i = , , . . . ,m, (.)

where δ is given in (.). Let

� =

{ m∑
i=

λiui(t) : λi ∈R, i = , , . . . ,m;
m∑
i=

|λi| = 

}
=

{
u ∈ E′ : ‖u‖∗ = c

}
. (.)

Hence, for u ∈ �, let t = t(u) ∈R such that

∣∣u(t)∣∣ = ‖u‖∞. (.)

Then by (.)-(.), (.) and (.), we have

cc′ = cc′
m∑
i=

|λi| = c′
m∑
i=

|λi|‖ui‖ = c′‖u‖∗

≤ ‖u‖ ≤ c‖u‖∞ = c
∣∣u(t)∣∣

≤ c
m∑
i=

|λi|
∣∣ui(t)∣∣, u ∈ �. (.)

This shows that |u(t)| ≥ c′ and there exists i ∈ {, , . . . ,m} such that |ui (t)| ≥ c′, which
together with (.), implies that |t| ≤ R. Let R = R +  and

γ =min

{
W(t,x) : –R ≤ t ≤ R,

c′

/p
≤ |x| ≤ cC

}
. (.)

http://www.boundaryvalueproblems.com/content/2013/1/137
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Since W(t,x) >  for all t ∈ R and x ∈ R
N\{}, and W ∈ C(R × R

N ,R), it follows that
γ > . For any u ∈ E, from Lemma .(i) and (.), we have

∫ R

–R
W

(
t,u(t)

)
dt =

∫
{t∈[–R,R]:|u(t)|>}

W
(
t,u(t)

)
dt +

∫
{t∈[–R,R]:|u(t)|≤}

W
(
t,u(t)

)
dt

≤
∫

{t∈[–R,R]:|u(t)|>}
W

(
t,

u(t)
|u(t)|

)∣∣u(t)∣∣� dt + ∫ R

–R
max
|x|≤

W(t,x)dt

≤ ‖u‖�
∞

∫ R

–R
max
|x|=

W(t,x)dt +
∫ R

–R
max
|x|≤

W(t,x)dt

≤ C�

‖u‖�

∫ R

–R
max
|x|=

W(t,x)dt +
∫ R

–R
max
|x|≤

W(t,x)dt

= C‖u‖� +C, (.)

whereC = C�

∫ R
–R

max|x|=W(t,x)dt,C =
∫ R
–R

max|x|≤W(t,x)dt. Since u̇i ∈ Lp(R), i =
, , . . . ,m, it follows that there exists ε ∈ (, ) such that

∫ t–ε

t+ε

∣∣u̇i(s)∣∣ds ≤ (ε)/p
′
(∫ t–ε

t+ε

∣∣u̇i(s)∣∣p ds
)/p

≤ (ε)/p′ ‖u̇i‖p
≤ c′

p
for t ∈R, i = , , . . . ,m, (.)

where /p′ + /p = . Then, for u ∈ � with |u(t)| = ‖u‖∞ and t ∈ [t – ε, t + ε], it follows
from (.), (.), (.), (.) and (.) that

∣∣u(t)∣∣p =
∣∣u(t)∣∣p + p

∫ t

t

∣∣u(s)∣∣p–(u̇(s),u(s))ds
≥ ∣∣u(t)∣∣p – p

∫ t+ε

t–ε

∣∣u(s)∣∣p–∣∣u̇(s)∣∣ds
≥ ∣∣u(t)∣∣p – p

∣∣u(t)∣∣p–
∫ t+ε

t–ε

∣∣u̇(s)∣∣ds
≥ c′


∣∣u(t)∣∣p–

≥ c′p


. (.)

On the other hand, since ‖u‖ ≤ c for u ∈ �, then

∣∣u(t)∣∣ ≤ ‖u‖∞ ≤ Cc, t ∈R,u ∈ �. (.)

Therefore, from (.), (.) and (.), we have

∫ R

–R
W

(
t,u(t)

)
dt ≥

∫ t+ε

t–ε

W
(
t,u(t)

)
dt ≥ εγ for u ∈ �. (.)

http://www.boundaryvalueproblems.com/content/2013/1/137
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From (.) and (.), we have

∣∣u(t)∣∣ ≤
m∑
i=

|λi|
∣∣ui(t)∣∣ ≤ δ for |t| ≥ R,u ∈ �. (.)

By (.), (.), (.), (.), (.) and Lemma ., we have for u ∈ � and r > 

ϕ(ru) =
rp

p
‖u̇‖pp +

rq–p+

q – p + 
‖u‖q–p+q–p+,a +

∫
R

[
W

(
t, ru(t)

)
–W

(
t, ru(t)

)]
dt

≤ rp

p
‖u̇‖pp +

rq–p+

q – p + 
‖u‖q–p+q–p+,a + r�

∫
R

W
(
t,u(t)

)
dt – rμ

∫
R

W
(
t,u(t)

)
dt

=
rp

p
‖u̇‖pp +

rq–p+

q – p + 
‖u‖q–p+q–p+,a + r�

∫
R\(–R,R)

W
(
t,u(t)

)
dt

– rμ
∫
R\(–R,R)

W
(
t,u(t)

)
dt + r�

∫ R

–R
W

(
t,u(t)

)
dt

– rμ
∫ R

–R
W

(
t,u(t)

)
dt

≤ rp

p
‖u̇‖pp +

rq–p+

q – p + 
‖u‖q–p+q–p+,a – r�

∫
R\(–R,R)

W
(
t,u(t)

)
dt

– rμ
∫ R

–R
W

(
t,u(t)

)
dt + r�

∫ R

–R
W

(
t,u(t)

)
dt

≤ rp

p
‖u̇‖pp +

rq–p+

q – p + 
‖u‖q–p+q–p+,a +

r�

p(q – p + )

∫
R\(–R,R)

a(t)
∣∣u(t)∣∣q–p+ dt

+ r�
(
C‖u‖� +C

)
– εγ rμ

≤ rp

p
‖u̇‖pp +

rq–p+

q – p + 
‖u‖q–p+q–p+,a +

r�

p(q – p + )
‖u‖q–p+q–p+,a

+ r�
(
C‖u‖� +C

)
– εγ rμ

≤ rp

p
cp +

rq–p+

q – p + 
cq–p+ +

r�

p(q – p + )
cq–p+

+C(rc)� +Cr� – εγ rμ. (.)

Since μ > � > q – p +  > p, we deduce that there exists r = r(c, c′,C,C,R,R, ε,γ ) =
r(E′) >  such that

ϕ(ru) <  for u ∈ � and r ≥ r.

It follows that

ϕ(u) <  for u ∈ E′ and ‖u‖ ≥ cr,

which shows that (iii) of Lemma . holds. By Lemma ., ϕ possesses an unbounded
sequence {dn}∞n= of critical values with dn = ϕ(un), where un is such that ϕ′(un) =  for
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n = , , . . . . If {‖un‖} is bounded, then there exists C >  such that

‖un‖ ≤ C for n ∈N. (.)

By (.) and (.), we get

∣∣un(t)∣∣ ≤ CC for n ∈N. (.)

From (W), we can choose C >  and R > R such that

∣∣∇W (t,x)
∣∣ ≤ Ca(t)|x|q–p+ for |t| ≥ R, |x| ≤ CC,

which implies that

∣∣W (t,x)
∣∣ ≤ C

q – p + 
a(t)|x|q–p+ for |t| ≥ R, |x| ≤ CC. (.)

Hence, by (.) and (.), we have


p
‖u̇n‖pp +


q – p + 

‖un‖q–p+q–p+,a

= dn +
∫
R

W
(
t,un(t)

)
dt

= dn +
∫
R\[–R,R]

W
(
t,un(t)

)
dt +

∫ R

–R
W

(
t,un(t)

)
dt

≥ dn –
C

q – p + 

∫
R\[–R,R]

a(t)
∣∣un(t)∣∣q–p+ dt –

∫ R

–R

∣∣W(
t,un(t)

)∣∣dt
≥ dn –

C

q – p + 
‖un‖q–p+q–p+,a –

∫ R

–R
max

|x|≤CC

∣∣W (t,x)
∣∣dt,

which, together with (.), implies that

dn ≤ 
p
‖u̇n‖pp +

C + 
q – p + 

‖un‖q–p+q–p+,a +
∫ R

–R
max

|x|≤CC

∣∣W (t,x)
∣∣dt < +∞.

This contradicts the fact that {dn}∞n= is unbounded, and so {‖un‖} is unbounded. The proof
is complete. �

Proof of Theorem . In view of the proofs of Theorem . and Theorem ., the conclu-
sion of Theorem . holds. The proof is complete. �

4 Examples
Example . Consider the following system:

d
dt

(∣∣u̇(t)∣∣u̇(t)) – a(t)
∣∣u(t)∣∣u(t) +∇W

(
t,u(t)

)
= , a.e. t ∈ R, (.)

http://www.boundaryvalueproblems.com/content/2013/1/137
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where p = , q = , t ∈R, u ∈R
N , a ∈ C(R, (,∞)) and a satisfies (A)′. Let

W (t,x) = a(t)

( m∑
i=

ai|x|μi –
n∑
j=

bj|x|�j
)
,

where μ > μ > · · · > μm > � > � > · · · > �j > , ai,bj > , i = , . . . ,m, j = , . . . ,n. Let

W(t,x) = a(t)
m∑
i=

ai|x|μi , W(t,x) = a(t)
n∑
j=

bj|x|�j .

Then it is easy to check that all the conditions of Theorem . are satisfied with μ = μm

and � = �. Hence, problem (.) has an unbounded sequence of homoclinic solutions.

Example . Consider the following system:

d
dt

(∣∣u̇(t)∣∣–/u̇(t)) – a(t)
∣∣u(t)∣∣u(t) +∇W

(
t,u(t)

)
= , a.e. t ∈R, (.)

where p = /, q = /, t ∈R, u ∈R
N , a ∈ C(R, (,∞)) and a satisfies (A)′. Let

W (t,x) = a(t)
[
a|x|μ + a|x|μ – b(cos t)|x|� – b|x|�

]
,

where μ > μ > � > � > , a,a > , b,b > . Let

W(t,x) = a(t)
(
a|x|μ + a|x|μ

)
, W(t,x) = a(t)

[
b(cos t)|x|� + b|x|�

]
.

Then it is easy to check that all the conditions of Theorem . are satisfied withμ = μ and
� = �. Hence, by Theorem ., problem (.) has an unbounded sequence of homoclinic
solutions.
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