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1 Introduction andmain results
Consider the second-order Hamiltonian system

ü(t) +Au(t) +∇F
(
t,u(t)

)
=  a.e. t ∈R, (.)

whereA is anN ×N symmetric matrix and F :R×R
N → R is T-periodic in t and satisfies

the following assumption:

Assumption (A)′ F(t,x) is measurable in t for every x ∈ R
N and continuously differen-

tiable in x for a.e. t ∈ [,T], and there exist a ∈ C(R+,R+) and b : R+ → R
+ which is

T-periodic and b ∈ Lp(,T ;R+) with p >  such that

∣∣F(t,x)∣∣≤ a
(|x|)b(t), ∣∣∇F(t,x)

∣∣≤ a
(|x|)b(t)

for all x ∈R
N and a.e. t ∈ [,T].

When A = , system (.) reduces to the second-order Hamiltonian system

ü(t) +∇F
(
t,u(t)

)
=  a.e. t ∈ R. (.)

There have been many existence results for system (.) (for example, see [–] and
references therein). In , Rabinowitz [] obtained the nonconstant periodic solutions
for system (.) under the following AR-condition: there exist μ >  and L >  such that

 < μF(t,x)≤ (∇F(t,x),x
)
, ∀|x| ≥ L, t ∈ [,T].
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From then on, the condition has been used extensively in the literature; see [–] and
the references therein. In [], Fei also obtained the existence of nonconstant solutions for
system (.) under a kind of new superquadratic condition. Subsequently, Tao and Tang
[] gave the following more general one than Fei’s: there exist θ >  and μ > θ –  such
that

lim sup
|x|→∞

F(t,x)
|x|θ <∞ uniformly for a.e. t ∈ [,T], (.)

lim inf|x|→∞
(∇F(t,x),x) – F(t,x)

|x|μ >  uniformly for a.e. t ∈ [,T]. (.)

They also considered the existence of subharmonic solutions and obtained the following
result.

Theorem A (See [], Theorem ) Suppose that F satisfies
(A) F(t,x) is measurable in t for every x ∈R

N and continuously differentiable in x for
a.e. t ∈ [,T], and there exist a ∈ C(R+,R+) and b ∈ L(,T ;R+) such that

∣∣F(t,x)∣∣≤ a
(|x|)b(t), ∣∣∇F(t,x)

∣∣≤ a
(|x|)b(t)

for all x ∈R
N and a.e. t ∈ [,T]. Assume that (.), (.) and the following

conditions hold:

F(t,x)≥ , ∀(t,x) ∈ [,T]×R
N , (.)

lim|x|→

F(t,x)
|x| =  uniformly for a.e. t ∈ [,T], (.)

lim|x|→∞
F(t,x)
|x| >

π

T uniformly for a.e. t ∈ [,T]. (.)

Then system (.) has a sequence of distinct periodic solutions with period kjT satisfying
kj ∈ N and kj → ∞ as j → ∞.

Recently, Ma and Zhang [] considered the following p-Laplacian system:

(∣∣u′(t)
∣∣p–u′(t)

)′ +∇F
(
t,u(t)

)
=  a.e. t ∈ [,T], (.)

where p > . By using some techniques, they obtained the following more general result
than Theorem A.

Theorem B (See [], Theorem ) Suppose that F satisfies (A), (.) and (.) with  re-
placed by p, (.) and the following condition:

lim|x|→

F(t,x)
|x|p =  < lim|x|→∞

F(t,x)
|x|p uniformly for a.e. t ∈ [,T]. (.)

Then system (.) has a sequence of distinct periodic solutions with period kjT satisfying
kj ∈ N and kj → ∞ as j → ∞.
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When A =mωIN , where ω = π/T and IN is the unit matrix of order N . Ye and Tang
[] obtained the following result.

Theorem C (See [], Theorem ) Suppose that A =mωIN , F satisfies (A), (.), (.),
(.), (.) and the following conditions:

lim|x|→∞
F(t,x)
|x| >

 + m


ω uniformly for a.e. t ∈ [,T].

Then system (.) has a sequence of distinct periodic solutions with period kjT satisfying
kj ∈ N and kj → ∞ as j → ∞.

Recently, in [], we considered a more general case than that in [].We considered the
case that A only has  or li ω as its eigenvalues, where ω = π/T , li ∈ N, i = , . . . , r and
 ≤ r ≤ N . In [], we used the following condition which presents some advantages over
(.) and (.):
(H) there exist positive constants m, ζ , η and ν ∈ [, ) such that

(
 +


ζ + η|x|ν

)
F(t,x)≤ (∇F(t,x),x

)
, x ∈R

N , |x| >m a.e. t ∈ [,T].

In this paper, we consider some new cases which can be seen as a continuance of our
work in [].
Next, we state our main results. Assume that r ∈ N ∪ {} and r ≤ N . Let λi >  (i ∈

{, . . . , r}) and –λi <  (i ∈ {r + s + , . . . ,N}) be the positive and negative eigenvalues of A,
respectively, where r and s denote the number of positive eigenvalues and zero eigenval-
ues of A (counted by multiplicity), respectively. Moreover, we denote by q the number of
negative eigenvalues of A (counted by multiplicity). We make the following assumption:

Assumption (A) A has at least one nonzero eigenvalue and all positive eigenvalues are
not equal to lω for all l ∈N, where ω = π/T , that is, λi �= lω (i = , . . . , r) for all l ∈N.

The Assumption (A) implies that one can find li ∈ Z
+ := {, , , . . .} such that

li ω
 < λi < (li + )ω, i = , . . . , r. (.)

For the sake of convenience, we set

λi+ =max{λi|i = , . . . , r}, λi– =min{λi|i = , . . . , r},
λi+ =max{λi|i = r + s + , . . . ,N}, λi– =min{λi|i = r + s + , . . . ,N}.

Then

i+, i– ∈ {, . . . , r}, i+, i– ∈ {r + s + , . . . ,N}.

Corresponding to (.), we know that there exist li+ , li– ∈ Z
+ such that

li+ω
 < λi+ < (li+ + )ω, li–ω

 < λi– < (li– + )ω.

http://www.boundaryvalueproblems.com/content/2013/1/139
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Moreover, set

hi = (li + )ω – λi, i = , . . . , r,

and let hi =mini∈{,...,r}{hi}. Then i ∈ {, . . . , r}. Corresponding to (.), there exists li ∈
Z
+ such that

liω
 < λi < (li + )ω. (.)

Theorem . Assume that (A) holds and F satisfies (A)′, (.) and the following condi-
tions.
(H) For some k ∈N, assume that k satisfies

(
li +  –


k

)

ω ≤ λi < (li + )ω for all i ∈ {, . . . , r}. (.)

(H) There exist positive constants m, ζ , η and ν ∈ [, ) such that

(
 +


ζ + η|x|ν

)
F(t,x)≤ (∇F(t,x),x

)
, x ∈ R

N , |x| >m, a.e. t ∈ [,T].

(H) Assume that one of the following cases holds:
() when r > , s >  and r + s =N , there exist Lk >  and βk >min{ (li+)ω–λi

 , ω

k } such
that

F(t,x)≥ βk|x|, ∀x ∈R
N , |x| > Lk , a.e. t ∈ [,T], (.)

where li and λi are defined by (.);
() when r > , s >  and r + s <N , there exist Lk >  and βk >min{ (li+)ω–λi

 , ω

k ,
λi–
 }

such that (.) holds;
() when r > , s =  and r + s <N , there exist Lk >  and βk >min{ (li+)ω–λi

 , λi–
 } such

that (.) holds;
() when r > , s =  and r =N , there exist Lk >  and βk >

(li+)
ω–λi
 such that (.)

holds;
() when r = , s >  and s <N , there exist Lk >  and βk >min{ ω

k ,
λi–
 } such that (.)

holds;
() when r = , s =  and q =N , there exist Lk >  and βk >

λi–
 such that (.) holds;

(H) there exist lk >  and αk < σk
 such that

F(t,x)≤ αk|x| for all |x| ≤ lk and a.e. t ∈ [,T],

where

σk =min

{
min

i∈{,...,r}

{
(li + )ω – λi

(li + )ω + 

}
,

ω

ω + k

}
if (H) () holds;

σk =min

{
min

i∈{,...,r}

{
(li + )ω – λi

(li + )ω + 

}
,

ω

ω + k
,

λi–
 + λi+

}
if (H) () holds;
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σk ≡ σ =min

{
min

i∈{,...,r}

{
(li + )ω – λi

(li + )ω + 

}
,

λi–
 + λi+

}
if (H) () holds;

σk ≡ σ = min
i∈{,...,N}

{
(li + )ω – λi

(li + )ω + 

}
if (H) () holds;

σk =min

{
ω

ω + k
,

λi–
 + λi+

}
if (H) () holds;

σk ≡ σ =
λi–

 + λi+
if (H) () holds,

where σ implies that σk is independent of k.Then system (.) has a nonzero kT-periodic so-
lution. Especially, for cases (H)() and (H)(), system (.) has a nonconstant kT-periodic
solution.

Remark . For cases (H)()-(H)(), from (.) and (.), it is easy to see that the
number of k ∈ N satisfying (.) is finite. Let m ∈ K be the maximum integer satisfying
(.), where

K =
{
k ∈N | k satisfies (.)}.

Then K = {, , . . . ,m}. Hence, Theorem . implies that system (.) has nonzero kT-
periodic solutions (k = , , . . . ,m). For cases (H)() and (H)(), since r = , (.) holds
for every k ∈ N. Hence, Theorem . implies that system (.) has nonzero kT-periodic
solutions for every k ∈N.

Remark . In [], Costa and Magalhães studied the first-order Hamiltonian system

–Ju̇(t) +Au +∇H(t,u) =  a.e. t ∈ [,T]. (.)

They obtained that system (.) has a T = π periodic solution under the following non-
quadraticity conditions:

lim inf|x|→∞
(x,∇H(t,x)) – H(t,x)

|x|μ ≥ a >  uniformly for a.e. t ∈ [, π ], (.)

and the so-called asymptotic noncrossing conditions

λk– < lim inf|x|→∞
H(t,x)

|x| ≤ lim sup
|x|→∞

H(t,x)
|x| ≤ λk uniformly for a.e. t ∈ [, π ],

where λk– < λk are consecutive eigenvalues of the operator L = –Jd/dt–A. Moreover, they
also obtained system (.) has a nonzero T = π periodic solution under (.) and the
called crossing conditions

H(t,u) ≥ 

λk–|x| for all (t,u) ∈ [, π ]×R

N ,

lim sup
|x|→

H(t,x)
|x| ≤ α < λk < β ≤ lim inf|x|→∞

H(t,x)
|x| uniformly for t ∈ [, π ].
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One can also establish the similar results for the second-order Hamiltonian system (.).
Some related contents can be seen in []. It is worth noting that in [] and [], λk– < λk

are consecutive eigenvalues of the operator L = –Jd/dt – A or –d/dt + A. In our Theo-
rem . and Theorem ., we study the existence of subharmonic solutions for system (.)
from a different perspective. λi (i ∈ {, . . . , r}) in our theorems are the eigenvalues of the
matrix A. Obviously, it is much easier to seek the eigenvalue of a matrix. In Section , we
present an interesting example satisfying our Theorem . but not satisfying the theorem
in [].

Theorem . Suppose that (A) holds and F satisfies (A)′, (.), (H) and the following
conditions:

(H)′ when r = , s >  and s <N , there exist L >  and β > ω

 such that

F(t,x)≥ β|x|, ∀x ∈R
N , |x| > L, a.e. t ∈ [,T]; (.)

(H)′

lim|x|→

F(t,x)
|x| =  uniformly for a.e. t ∈ [,T].

Then system (.) has a sequence of distinct periodic solutions with period kjT satisfying
kj ∈ N and kj → ∞ as j → ∞.

In the final theorem, we present a result about the existence of subharmonic solutions
for system (.). Using a condition like (H) and similar to the argument of Remark . in
[], we can improve Theorem B.

Theorem . Suppose that F satisfies (A), (.) and the following conditions:
(H) there exist positive constants m, ζ , η and ν ∈ [,p) such that

(
p +


ζ + η|x|ν

)
F(t,x)≤ (∇F(t,x),x

)
, x ∈R

N , |x| >m a.e. t ∈ [,T];

(H)

lim|x|→

F(t,x)
|x|p =  < lim|x|→∞

F(t,x)
|x|p uniformly for a.e. t ∈ [,T].

Then system (.) has a sequence of distinct nonconstant periodic solutions with period kjT
satisfying kj ∈N and kj → ∞ as j → ∞.

2 Some preliminaries
Let

H
kT =

{
u :R →R

N |u be absolutely continuous,u(t) = u(t + kT) and u̇ ∈ L
(
[,kT]

)}
.

Then H
kT is a Hilbert space with the inner product and the norm defined by

〈u, v〉 =
∫ kT



(
u(t), v(t)

)
dt +

∫ kT



(
u̇(t), v̇(t)

)
dt

http://www.boundaryvalueproblems.com/content/2013/1/139
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and

‖u‖ =
[∫ kT



∣∣u(t)∣∣ dt + ∫ kT



∣∣u̇(t)∣∣ dt]/

for each u, v ∈H
kT . Let

ū =

kT

∫ kT


u(t)dt and ũ(t) = u(t) – ū.

Then one has

‖ũ‖∞ ≤ kT


∫ kT



∣∣u̇(t)∣∣ dt (Sobolev’s inequality),

‖ũ‖L ≤ kT

π

∫ kT



∣∣u̇(t)∣∣ dt (Wirtinger’s inequality)

(see Proposition . in []).

Lemma . If u ∈ H
kT , then

‖u‖∞ ≤
√
 + kT

kT
‖u‖,

where ‖u‖∞ =maxt∈[,kT] |u(t)|.

Proof Fix t ∈ [,kT]. For every τ ∈ [,kT], we have

u(t) = u(τ ) +
∫ t

τ

u̇(s)ds. (.)

Set

φ(s) =

⎧⎨
⎩s – t + kT

 , t – kT/ ≤ s≤ t,

t + kT
 – s, t ≤ s ≤ t + kT/.

Integrating (.) over [t – kT/, t + kT/] and using the Hölder inequality, we obtain

kT
∣∣u(t)∣∣ = ∣∣∣∣

∫ t+kT/

t–kT/
u(τ )dτ +

∫ t+kT/

t–kT/

∫ t

τ

u̇(s)dsdτ

∣∣∣∣
≤
∫ t+kT/

t–kT/

∣∣u(τ )∣∣dτ +
∫ t

t–kT/

∫ t

τ

∣∣u̇(s)∣∣dsdτ +
∫ t+kT/

t

∫ τ

t

∣∣u̇(s)∣∣dsdτ

=
∫ t+kT/

t–kT/

∣∣u(τ )∣∣dτ +
∫ t

t–kT/

(
s – t +

kT


)∣∣u̇(s)∣∣ds
+
∫ t+kT/

t

(
t +

kT


– s
)∣∣u̇(s)∣∣ds

=
∫ t+kT/

t–kT/

∣∣u(τ )∣∣dτ +
∫ t+kT/

t–kT/
φ(s)

∣∣u̇(s)∣∣ds

http://www.boundaryvalueproblems.com/content/2013/1/139
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≤ (kT)/
(∫ t+kT/

t–kT/

∣∣u(τ )∣∣ dτ

)/

+
(∫ t+kT/

t–kT/

[
φ(s)

] ds)/(∫ t+kT/

t–kT/

∣∣u̇(s)∣∣ ds)/

= (kT)/
(∫ t+kT/

t–kT/

∣∣u(τ )∣∣ dτ

)/

+
(kT)/


√


(∫ t+kT/

t–kT/

∣∣u̇(s)∣∣ ds)/

≤
(
kT +

(kT)



)/(∫ t+kT/

t–kT/

∣∣u(τ )∣∣ dτ +
∫ t+kT/

t–kT/

∣∣u̇(s)∣∣ ds)/

=
(
kT +

(kT)



)/(∫ kT



∣∣u(τ )∣∣ dτ +
∫ kT



∣∣u̇(s)∣∣ ds)/

.

Hence, we have

‖u‖∞ ≤
(


kT

+
kT


)/(∫ kT



∣∣u(s)∣∣ ds + ∫ kT



∣∣u̇(s)∣∣ ds)/

.

The proof is complete. �

Lemma . (see [, Lemma .]) Assume that F = F(t,x) : R × R
N → R is T-periodic

in t, F(t,x) is measurable in t for every x ∈R
N and continuously differentiable in x for a.e.

t ∈ [,T]. If there exist a ∈ C(R+,R+) and b ∈ Lp([,T],R+) (p > ) such that

∣∣∇F(t,x)
∣∣≤ a

(|x|)b(t), ∀x ∈R
N , a.e. t ∈ [,T], (.)

then

c(u) =
∫ kT


F
(
t,u(t)

)
dt

is weakly continuous and uniformly differentiable on bounded subsets of H
kT .

Remark . In [, Lemma .], F ∈ C(R,RN ). In fact, in its proof, it is not essential that
F is continuously differentiable in t.

We use Lemma . below due to Benci and Rabinowitz [] to prove our results.

Lemma . (see [] or [, Theorem .]) Let E be a real Hilbert space with E = E ⊕ E

and E = E⊥
 . Suppose that ϕ ∈ C(E,R) satisfies (PS)-condition, and

(I) ϕ(u) = /(�u,u) + b(u), where �u = �Pu + �Pu and �i : Ei → Ei bounded and
self-adjoint, i = , ;

(I) b′ is compact, and
(I) there exists a subspace Ẽ ⊂ E and sets S ⊂ E, Q ⊂ Ẽ and constants α > β such that

(i) S ⊂ E and ϕ|S ≥ α,
(ii) Q is bounded and ϕ|∂Q ≤ β ,
(iii) S and ∂Q link.

http://www.boundaryvalueproblems.com/content/2013/1/139
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Then ϕ possesses a critical value c ≥ α which can be characterized as

c = inf
h∈�

sup
u∈Q

ϕ
(
h(,u)

)
,

where

� ≡ {
h ∈ C

(
[, ]× E,E

)|h satisfies the following (�)-(�)
}
,

(�) h(,u) = u,
(�) h(t,u) = u for u ∈ ∂Q, and
(�) h(t,u) = eθ (t,u)�u +K(t,u), where θ ∈ C([, ]× E,R) and K is compact.

Remark . As shown in [], a deformation lemma can be proved with replacing the
usual (PS)-condition with condition (C), and it turns out that Lemma . holds true under
condition (C).We say ϕ satisfies condition (C), i.e., for every sequence {un} ⊂H

T , {un} has
a convergent subsequence if ϕ(un) is bounded and ( + ‖un‖)‖ϕ′(un)‖ →  as n→ ∞.

3 Proofs of theorems

Proof of Theorem . It follows from Assumption (A)′ that the functional ϕk on H
kT given

by

ϕk(u) =



∫ kT



∣∣u̇(t)∣∣ dt – 


∫ kT



(
Au(t),u(t)

)
dt –

∫ kT


F
(
t,u(t)

)
dt

is continuously differentiable. Moreover, one has

〈
ϕ′
k(u), v

〉
=
∫ kT



[(
u̇(t), v̇(t)

)
–
(
Au(t), v(t)

)
–
(∇F

(
t,u(t)

)
, v(t)

)]
dt

for u, v ∈ H
kT and the solutions of system (.) correspond to the critical points of ϕk

(see []).
Obviously, there exists an orthogonal matrix Q such that

QτAQ = B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ
. . .

λr


. . .


–λr+s+

. . .
–λN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(.)

Let u =Qw. Then by (.),

Qẅ(t) +AQw(t) +∇F
(
t,Qw(t)

)
=  a.e. t ∈ R.

http://www.boundaryvalueproblems.com/content/2013/1/139
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Furthermore

ẅ(t) +Q–AQw(t) +Q–∇F
(
t,Qw(t)

)
=  a.e. t ∈R,

that is,

ẅ(t) + Bw(t) +Q–∇F
(
t,Qw(t)

)
=  a.e. t ∈R. (.)

Let G(t,w) = F(t,Qw) and then ∇G(t,w) =Q–∇F(t,Qw(t)). Let

ψk(w) =



∫ kT



∣∣ẇ(t)∣∣ dt – 


∫ kT



(
Bw(t),w(t)

)
dt –

∫ kT


G
(
t,w(t)

)
dt.

Then the critical points of ψk correspond to solutions of system (.). It is easy to verify
that ϕk(u) = ψk(w) and G satisfies all the conditions of Theorem . and Theorem . if
F satisfies them. Hence, w is the critical point of ψk if and only if u = Qw is the critical
point of ϕk . Therefore, we only need to consider the special case that A = B is the diagonal
matrix defined by (.). We divide the proof into six steps.

Step : Decompose the space H
kT . Let

IN =

⎛
⎜⎜⎜⎜⎝



. . .



⎞
⎟⎟⎟⎟⎠ = (e, e, . . . , eN ).

Note that

H
kT ⊂

{ ∞∑
i=

(
ci cos ik–ωt + di sin ik–ωt

)|ci,di ∈ R
N , i = , ,  · · ·

}
.

Define

H–
kT =

{
u ∈ H

kT |u = u(t) =
r∑
i=

ei
kli∑
j=

(
cij cos jk–ωt + dij sin jk–ωt

)
, cij,dij ∈R

}
,

H
kT =

{
u ∈ H

kT |u = u(t) =
r+s∑
i=r+

ei
∞∑
j=

(
cij cos jk–ωt + dij sin jk–ωt

)
, cij,dij ∈R

}
,

H+
kT =

{
u ∈ H

kT |u = u(t) =
r∑
i=

ei
∞∑

j=kli+

(
cij cos jk–ωt + dij sin jk–ωt

)

+
N∑

i=r+s+

ei
∞∑
j=

(
cij cos jk–ωt + dij sin jk–ωt

)
, cij,dij ∈ R

}
.

Then H–
kT , H


kT and H+

kT are closed subsets of H
kT and

()

H
kT =H–

kT ⊕H
kT ⊕H+

kT ;
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()

Pk(u, v) = , ∀u ∈H–
kT , v ∈H

kT ⊕H+
kT , or

Pk(u, v) = , ∀u ∈H
kT , v ∈H–

kT ⊕H+
kT , or

Pk(u, v) = , ∀u ∈H+
kT , v ∈H–

kT ⊕H
kT ,

where

Pk(u, v) =
∫ kT



[(
u̇(t), v̇(t)

)
–
(
Au(t), v(t)

)]
dt, ∀u, v ∈ H

kT .

Let

H
kT =

{
u ∈ H

kT |u =
r+s∑
i=r+

ciei, ci ∈R

}
,

H
kT =

{
u ∈ H

kT |u = u(t) =
r+s∑
i=r+

ei
∞∑
j=

(
cij cos jk–ωt + dij sin jk–ωt

)
, cij,dij ∈R

}
,

H+
kT =

{
u ∈ H+

kT |u = u(t) =
r∑
i=

ei
kli+k–∑
j=kli+

(
cij cos jk–ωt + dij sin jk–ωt

)
, cij,dij ∈R

}
,

H+
kT =

{
u ∈H+

kT |u = u(t) =
r∑
i=

ei
∞∑

j=kli+k

(
cij cos jk–ωt + dij sin jk–ωt

)

+
N∑

i=r+s+

ei
∞∑
j=

(
cij cos jk–ωt + dij sin jk–ωt

)
, cij,dij ∈R

}
.

Then

H
kT =H

kT ⊕H
kT , H+

kT =H+
kT ⊕H+

kT , H
kT =H–

kT ⊕H
kT ⊕H

kT ⊕H+
kT ⊕H+

kT

and

Pk(u, v) = , ∀u ∈H+
kT ,∀v ∈ H+

kT .

Remark . When k = , it is easy to see H+
T = {}.

Step : Let

qk(u) =



∫ kT



[∣∣u̇(t)∣∣ – (Au(t),u(t))]dt.
Next we consider the relationship between qk(u) and ‖u‖ on those subspaces defined
above. We only consider the case that (H)() holds. For others, the conclusions are easy
to be seen from the argument of this case.
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(a) For ∀u ∈H–
kT , since

u = u(t) =
r∑
i=

ei
kli∑
j=

(
cij cos jk–ωt + dij sin jk–ωt

)
,

then

qk(u) =



∫ kT



[∣∣u̇(t)∣∣ – (Au(t),u(t))]dt
=




∫ kT



[( r∑
i=

ei
kli∑
j=

jk–ω
(
dij cos jk–ωt – cij sin jk–ωt

)
,

r∑
i=

ei
kli∑
j=

jk–ω
(
dij cos jk–ωt – cij sin jk–ωt

))

–

( r∑
i=

Aei
kli∑
j=

(
cij cos jk–ωt + dij sin jk–ωt

)
,

r∑
i=

ei
kli∑
j=

(
cij cos jk–ωt + dij sin jk–ωt

))]
dt

=



r∑
i=

∫ kT



{[ kli∑
j=

jk–ω
(
dij cos jk–ωt – cij sin jk–ωt

)]

– λi

[ kli∑
j=

(
cij cos jk–ωt + dij sin jk–ωt

)]}
dt

=
kT


r∑
i=

kli∑
j=

[(
jk–ω

) – λi
](
cij + d

ij
)

and

‖u‖ =
∫ kT



(∣∣u̇(t)∣∣ + ∣∣u(t)∣∣)dt = kT


r∑
i=

kli∑
j=

[(
jk–ω

) + 
](
cij + d

ij
)
.

Let

δ = min
i∈{,...,r}

{
λi – (liω)

(liω) + 

}
> .

Then

qk(u)≤ –
δ


‖u‖, ∀u ∈H–

kT . (.)

Remark . Obviously, if one of (H)() and (H)() holds, then H–
kT = {}. Hence,

qk(u) = , ∀u ∈H–
kT .
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(b) For ∀u ∈H+
kT ⊕H

kT , let

u = u(t) = u(t) + u(t) + u(t),

where

u(t) =
r∑
i=

ei
∞∑

j=kli+k

(
cij cos jk–ωt + dij sin jk–ωt

)
,

u(t) =
N∑

i=r+s+

ei
∞∑
j=

(
cij cos jk–ωt + dij sin jk–ωt

)
,

u(t) =
r+s∑
i=r+

ei
∞∑
j=

(
cij cos jk–ωt + dij sin jk–ωt

)
.

Then

qk(u) =



∫ kT



[∣∣u̇(t)∣∣ – (Au(t),u(t))]dt
=




∫ kT



[(
u̇(t) + u̇(t) + u̇(t), u̇(t) + u̇(t) + u̇(t)

)
–
(
Au(t) +Au(t) +Au(t),u(t) + u(t) + u(t)

)]
dt

=



∫ kT



[(
u̇(t), u̇(t)

)
+
(
u̇(t), u̇(t)

)
+
(
u̇(t), u̇(t)

)
–
(
Au(t),u(t)

)
–
(
Au(t),u(t)

)
–
(
Au(t),u(t)

)]
=
kT


[ r∑
i=

∞∑
j=kli+k

(
jk–ω

)(cij + d
ij
)
+

N∑
i=r+s+

∞∑
j=

(
jk–ω

)(cij + d
ij
)

+
r+s∑
i=r+

∞∑
j=

(
jk–ω

)(cij + d
ij
)

–
r∑
i=

λi

∞∑
j=kli+k

(
cij + d

ij
)
+

N∑
i=r+s+

λi

∞∑
j=

(
cij + d

ij
)]

=
kT


{ r∑
i=

∞∑
j=kli+k

[(
jk–ω

) – λi
](
cij + d

ij
)
+

N∑
i=r+s+

∞∑
j=

[(
jk–ω

) + λi
](
cij + d

ij
)

+
r+s∑
i=r+

∞∑
j=

(
jk–ω

)(cij + d
ij
)}

and

‖u‖ =
∫ kT



(∣∣u̇(t)∣∣ + ∣∣u(t)∣∣)dt
=
kT


{ r∑
i=

∞∑
j=kli+k

[(
jk–ω

) + 
](
cij + d

ij
)
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Zhang and Tang Boundary Value Problems 2013, 2013:139 Page 14 of 25
http://www.boundaryvalueproblems.com/content/2013/1/139

+
N∑

i=r+s+

∞∑
j=

[(
jk–ω

) + 
](
cij + d

ij
)

+
r+s∑
i=r+

∞∑
j=

[(
jk–ω

) + 
](
cij + d

ij
)}

.

Since for fixed i ∈ {, . . . , r},

f (j) =
(jk–ω) – λi

(jk–ω) + 
and g(j) =

(jk–ω)

(jk–ω) + 

are strictly increasing on j ∈N,

f (j) ≥ f (kli + k) =
(li + )ω – λi

(li + )ω + 
> , ∀j ≥ kli + k

and

g(j) ≥ g() =
(k–ω)

(k–ω) + 
=

ω

ω + k
> .

Moreover, it is easy to verify that

(jk–ω) + λi

(jk–ω) + 
≥ λi–

 + λi+
, ∀j ∈N∪ {}, i = r + s + , . . . ,N .

Let

σk =min

{
min

i∈{,...,r}

{
(li + )ω – λi

(li + )ω + 

}
,

ω

ω + k
,

λi–
 + λi+

}
.

Then

qk(u)≥ σk


‖u‖, ∀u ∈H+

kT ⊕H
kT . (.)

Remark . From the above discussion, it is easy to see the following conclusions:
(i) if (H)() holds, then (.) holds with

σk =min

{
min

i∈{,...,r}

{
(li + )ω – λi

(li + )ω + 

}
,

ω

ω + k

}
;

(ii) if (H)() holds, then (.) holds with

σk =min

{
min

i∈{,...,r}

{
(li + )ω – λi

(li + )ω + 

}
,

ω

ω + k
,

λi–
 + λi+

}
;

(iii) if (H)() holds, then (.) holds with

σk ≡ σ =min

{
min

i∈{,...,r}

{
(li + )ω – λi

(li + )ω + 

}
,

λi–
 + λi+

}
;
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(iv) if (H)() holds, then (.) holds with

σk ≡ σ = min
i∈{,...,N}

{
(li + )ω – λi

(li + )ω + 

}
;

(v) if (H)() holds, then (.) holds with

σk =min

{
ω

ω + k
,

λi–
 + λi+

}
;

(vi) if (H)() holds, then (.) holds with

σk ≡ σ =
λi–

 + λi+
.

(c) For ∀u ∈H+
kT , since

u =
r∑
i=

ei
kli+k–∑
j=kli+

(
cij cos jk–ωt + dij sin jk–ωt

)
,

qk(u) =
kT


r∑
i=

kli+k–∑
j=kli+

[(
jk–ω

) – λi
](
cij + d

ij
)

and

‖u‖ = kT


r∑
i=

kli+k–∑
j=kli+

[(
jk–ω

) + 
](
cij + d

ij
)
.

Obviously, when k = , u = . So q(u) = . When k > , it follows from

(
li +  –


k

)

ω ≤ λi < (li + )ω, ∀i ∈ {, . . . , r}

that

qk(u)≤ , ∀u ∈H+
kT . (.)

(d) Obviously, for ∀u ∈ H
kT , we have

qk(u) = , ∀u ∈H
kT . (.)

Step : Assume that (H)() holds. We prove that there exist ρk >  and bk >  such that

ϕk(u) ≥ bk > , ∀u ∈ (H+
kT ⊕H

kT
)∩ ∂Bρk .

Let

Ck =

√
 + kT

kT
.

http://www.boundaryvalueproblems.com/content/2013/1/139


Zhang and Tang Boundary Value Problems 2013, 2013:139 Page 16 of 25
http://www.boundaryvalueproblems.com/content/2013/1/139

Choosing ρk =min{, lk/Ck} >  and bk = ( σk
 –αk)ρ

k > , by Lemma ., (H) and (.), we
have, for all u ∈ (H+

kT ⊕H
kT )∩ ∂Bρk ,

ϕk(u) ≥ 


∫ kT



∣∣u̇(t)∣∣ dt – 


∫ kT



(
Au(t),u(t)

)
dt –

∫ kT


F
(
t,u(t)

)
dt

≥ σk


‖u‖ – αk

∫ kT



∣∣u(t)∣∣ dt
≥
(

σk


– αk

)
‖u‖

=
(min{mini∈{,...,r}{ (li+)ω–λi

(li+)ω+ }, ω

ω+k ,
λi–

+λi+
}


– αk

)
ρ
k .

For cases (H)() and (H)()-(H)(), correspondingly, by (H) and Remark ., similar
to the above argument, we can also obtain that

ϕk(u) ≥
(

σk


– αk

)
ρ
k > , ∀u ∈ (H+

kT ⊕H
kT
)∩ ∂Bρk .

Step : Let

Qk =
{
shk|s ∈ [, s]

}⊕ (
Bs ∩ (H–

kT ⊕H
kT ⊕H+

kT
))
,

where hk ∈H+
kT ⊕H

kT , s and s will be determined later. In this step, we prove ϕk|∂Qk ≤ .
We only consider the case that F satisfies (H)(). For other cases, the results can be seen
easily from the argument of case (H)().
Assume that F satisfies (H)(). Let

dk =min

{
(li + )ω – λi


,
ω

k
,
λi–


}
.

Case (i): if

dk := d =
(li + )ω – λi


,

then we choose

hk(t) = sin(li + )ωt · ei , ∀t ∈R.

Obviously, hk ∈H+
kT and ḣk(t) = (li + )ω cos(li + )ωt · ei , ∀t ∈R. Then

‖hk‖L =
kT

, ‖ḣk‖L =

kT(li + )ω


.

By (H)(), (.) and the periodicity of F , we have

F(t,x)≥ βk|x| – βkL̂k = (d + εk)|x| – βkL̂k , ∀x ∈R
N , a.e. t ∈ [,kT], (.)
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where εk = βk –d >  and L̂k >max{,Lk}. SinceH–
kT ⊕H

kT ⊕H+
kT is the finite dimensional

space, there exists a constant Kk >  such that

Kk‖u‖ ≤ ‖u‖L ≤ ‖u‖, ∀u ∈H–
kT ⊕H

kT ⊕H+
kT . (.)

By (.), (.), (.), (.) and (.), we know that for all s >  and u = u– + u + u+ ∈
H–

kT ⊕H
kT ⊕H+

kT ,

ϕk(shk + u) ≤ –
δ


∥∥u–∥∥ + s



∫ kT



∣∣ḣk(t)∣∣ dt – λis



∫ kT



∣∣hk(t)∣∣ dt
–
∫ kT


F
(
t, shk(t) + u(t)

)
dt

≤ –
δ


∥∥u–∥∥ + s


· kT(li + )ω


–

λis


· kT


– (d + εk)
∫ kT



∣∣shk(t) + u(t)
∣∣ dt + βkL̂kkT

= –
δ


∥∥u–∥∥ + s


· kT(li + )ω


–

λis


· kT


– (d + εk)
(
s‖hk‖L + ‖u‖L

)
+ βkL̂kkT

≤ –
δ


∥∥u–∥∥ +(kT(li + )ω


–

λikT


–
dkT


–
kTεk



)
s

– (d + εk)‖u‖L + βkL̂kkT

≤ –
kTεk


s – εk‖u‖L + βkL̂kkT

≤ –
kTεk


s – εkKk‖u‖ + βkL̂kkT . (.)

Hence,

ϕk(shk + u) ≤ , either s ≥ s or ‖u‖ ≥ s,

where

s =

√
βkL̂k
εk

, s =

√
βkL̂kkT
εkKk

.

Case (ii): if dk = ω/(k), then we choose

hk(t) = sink–ωt · er+ ∈H
kT , ∀t ∈R.

Then

ḣk(t) =
ω

k
cosk–ωt · er+, ∀t ∈R,

and

(Ahk ,hk) = , ‖hk‖L =
kT

, ‖ḣk‖L =

Tω

k
. (.)
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By (H)(), (.) and the periodicity of F , we have

F(t,x)≥ βk|x| – βkL̂k =
(

ω

k
+ ε′

k

)
|x| – βkL̂k , ∀x ∈R

N , a.e. t ∈ [,T], (.)

where L̂k > max{,Lk} and ε′
k = βk – ω

k . By (.), (.), (.), (.) and (.), we know
that for all s >  and u = u– + u + u+ ∈H–

kT ⊕H
kT ⊕H+

kT ,

ϕk(shk + u) ≤ –
δ


∥∥u–∥∥ + s



∫ kT



∣∣ḣk(t)∣∣ dt –
∫ kT


F
(
t, shk(t) + u

)
dt

≤ –
δ


∥∥u–∥∥ + s


· Tω

k
–
(

ω

k
+ ε′

k

)∫ kT



∣∣shk(t) + u(t)
∣∣ dt

+ βkL̂kkT

= –
δ


∥∥u–∥∥ + s


· Tω

k
–
(

ω

k
+ ε′

k

)(
s‖hk‖L + ‖u‖L

)
+ βkL̂kkT

= –
δ


∥∥u–∥∥ +(Tω

k
–
Tω

k
–
kTε′

k


)
s –

(
ω

k
+ ε′

k

)
‖u‖L

+ βkL̂kkT

≤ –
kTε′

k


s – ε′
k‖u‖L + βkL̂kkT

≤ –
kTε′

k


s – ε′
kKk‖u‖ + βkL̂kkT .

Hence,

ϕk(shk + u) ≤ , either s ≥ s or ‖u‖ ≥ s,

where

s =

√
βkL̂k
ε′
k

, s =

√
βkL̂kkT
ε′
kKk

.

Case (iii): if dk = λi–/, then we choose

hk =
√
kT

· ei– ∈H+
kT .

Then

ḣk = , (Ahk ,hk) = –λi–(hk ,hk), ‖hk‖L = .

By (H)(), (.) and the periodicity of F , we have

F(t,x)≥ βk|x| – βkL̂k =
(

λi–


+ ε′′
k

)
|x| – βkL̂k , ∀x ∈R

N , a.e. t ∈ [,kT], (.)
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where L̂k >max{
√
 + 

T ,Lk} and ε′′
k = βk – λi–/. By (.), (.), (.), (.) and (.), for

all s >  and u = u– + u + u+ ∈H–
kT ⊕H

kT ⊕H+
kT , we have

ϕk(shk + u) ≤ –
δ


∥∥u–∥∥ + s



∫ kT



∣∣ḣk(t)∣∣ dt + λi–s



∫ kT



∣∣hk(t)∣∣ dt
–
∫ kT


F
(
t, shk(t) + u(t)

)
dt

≤ –
δ


∥∥u–∥∥ + λi–s


–
(

λi–


+ ε′′
k

)∫ kT



∣∣shk(t) + u(t)
∣∣ dt + βkL̂kkT

= –
δ


∥∥u–∥∥ + λi–s


–
(

λi–


+ ε′′
k

)(
s‖hk‖L + ‖u‖L

)
+ βkL̂kkT

= –
δ


∥∥u–∥∥ +(λi–


–

λi–


– ε′′
k

)
s –

(
λi–


+ ε′′
k

)
‖u‖L + βkL̂kkT

≤ –ε′′
ks

 – ε′′
kKk‖u‖ + βkL̂kkT .

Hence,

ϕk(sek + u) ≤ , either s≥ s or ‖u‖ ≥ s,

where

s =

√
βkL̂kkT

ε′′
k

, s =

√
βkL̂kkT
ε′′
kKk

.

Combining cases (i), (ii) and (iii), if we let

s =max

{√
βkL̂k
εk

,

√
βkL̂k
ε′
k

,

√
βkL̂kkT

ε′′
k

}
,

s =max

{√
βkL̂kkT
εkKk

,

√
βkL̂kkT
ε′
kKk

,

√
βkL̂k

ε′′
kKk

}
,

then

ϕk(shk + u) ≤ , either s ≥ s or ‖u‖ ≥ s. (.)

By (.), (.), (.) and (.), for all u ∈H–
kT ⊕H

kT ⊕H+
kT , we have

ϕk(u) =



∫ kT



∣∣u̇(t)∣∣ dt – 


∫ kT



(
Au(t),u(t)

)
dt –

∫ kT


F
(
t,u(t)

)
dt

≤ –
δ


∥∥u–∥∥

≤ . (.)

Thus, it follows from (.) and (.) that ϕ|∂Qk ≤  < bk .
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Step : We prove that ϕk satisfies (C)-condition in H
kT . The proof is similar to that in

Theorem . in []. We omit it.
Step :We claim that ϕk has a nontrivial critical point uk ∈H

kT such that ϕk(uk) ≥ bk > .
Especially, we claim that, for cases (H)() and (H)(), since A is a positive semidefinite
matrix, (.) implies that uk is nonconstant.
In fact, it is easy to see that

qk(u) =


‖u‖ – 



∫ kT



(
(A + I)u(t),u(t)

)
dt

=


〈
(I –K)u,u)

〉
,

where K :H
kT →H

kT is the linear self-adjoint operator defined, using the Riesz represen-
tation theorem, by

∫ kT



(
(A + I)u(t), v(t)

)
dt =

〈
(Ku, v)

〉
, ∀u, v ∈H

T .

The compact imbedding of H
kT into C([,kT];RN ) implies that K is compact. In order to

use Lemma ., we let � = I –K and define �i : Ei → Ei, i = ,  by

〈�iu, v〉 =
〈
(I –K)u, v

〉
, u, v ∈ Ei,

where E =H+
kT ⊕H

kT and E =H–
kT ⊕H

kT ⊕H+
kT . Since K is a self-adjoint compact oper-

ator, it is easy to see that �i (i = , ) are bounded and self-adjoint. Let

b(u) = –
∫ kT


F
(
t,u(t)

)
dt.

Assumption (A)′ and Lemma . imply that b is weakly continuous and is uniformly dif-
ferentiable on bounded subsets of E =H

kT . Furthermore, by standard theorems in [], we
conclude that b′ is compact. Let Sk = (H+

kT ⊕H
kT )∩ ∂Bρk . Then Sk and ∂Qk link. Hence, by

Step -Step , Lemma . and Remark ., there exists a critical point uk ∈ H
kT such that

ϕk(uk) ≥ bk > , which implies that uk is nonzero. For cases (H)() and (H)(), since A
is a positive semidefinite matrix, it follows from (.) that uk is nonconstant. The proof is
complete. �

Proof of Theorem . Obviously, when r = , s >  and s < N , (H) holds for any k ∈ N.
Moreover, since (H)′ implies that (H)() and (H)′ implies that (H), system (.) has
kT-periodic solution for every k ∈N.
Let d = ω

 . Like the argument of case (ii) in the proof of Theorem ., choose

ek(t) = sink–ωter+ ∈H
kT , ∀t ∈R.

By (H)′, (.) and the T-periodicity of F , we have

F(t,x)≥ β|x| – βL =
(

ω


+ ε

)
|x| – βL, ∀x ∈R

N , a.e. t ∈ [,kT], (.)
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where ε = β – ω

 . In the proof of Theorem ., if we replace (.) with (.), then we
obtain

ϕk(sek + u) ≤ , either s≥ s or ‖u‖ ≥ s,

where

s =

√
βL

ε
=
√

βL

β – ω


, s =

√
βLkT
εKk

.

Note that s is independent of k. Hence, if uk is the critical point of ϕk , then it follows from
(.), (.), (.), the definitions of critical value c in Lemma . and Qk that

ϕk(uk) ≤ sup
u∈Qk

ϕk(u)

≤ sup
s∈[,s]

{
s



∫ kT



∣∣ėk(t)∣∣ dt – s



∫ kT



(
Aek(t), ek(t)

)
dt
}

≤ s


∫ kT



∣∣ėk(t)∣∣ dt
=

βLTω

k(β – ω
 )

≤ βLTω

(β – ω
 )

:=M. (.)

Hence, ϕk(uk) is bounded for any k ∈ N.
Obviously, we can find k ∈N/{} such that k > M

b
, then we claim that uk is distinct from

u for all k ≥ k. In fact, if uk = u for some k ≥ k, it is easy to check that

ϕk(uk) = kϕ(u) ≥ kb.

Then by (.), we have k ≤ k ≤ M
b
, a contradiction. We also can find k > max{k, kMbk }

such that ukk �= uk for all k ≥ k
k
. Otherwise, if ukk = uk for some k ≥ k, we have

ϕkk(ukk) = kϕk (uk ) ≥ kbk . Then by (.), we have k
k

≤ k ≤ M
bk

, a contradiction. In the
same way, we can obtain that system (.) has a sequence of distinct periodic solutions
with period kjT satisfying kj ∈ N and kj → ∞ as j → ∞. The proof is complete. �

Proof of Theorem . Except for verifying (C) condition, the proof is the same as in The-
orem B (that is Theorem  in []). To verify (C) condition, we only need to prove the
sequence {un} is bounded if ϕ(un) is bounded and ‖ϕ′(un)‖(‖ + ‖un‖) →  as n → +∞.
Other proofs are the same as in []. The proof of boundedness of {un} is essentially the
same as in Theorem . in [] except that  is replaced by p, H

kT by

W ,p
kT =

{
u :R→R

N |u is absolutely continuous,u(t) = u(t + T) and u̇ ∈ Lp
(
[,T]

)}
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equipped with the norm

‖u‖ =
(∫ kT



∣∣u(t)∣∣p dt + ∫ kT



∣∣u̇(t)∣∣p dt)/p

,

and

F(t,x)≥ βk|x|, ∀x ∈R
N , |x| > L

by

F(t,x)≥ ε|x|p, ∀x ∈R
N , |x| > L

for some ε > . So, we omit the details. �

4 Examples
Example . Let T = π and

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

.    
 .   
    
   – 
    –

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Thenω = , r = , λ = ., λ = ., λ = , λ = –, λ = –, λi+ =  and λi– = . Obviously,
the matrix A satisfies Assumption (A) and l = l =  such that

li ω
 < λi < (li + )ω, i = , .

It is easy to verify that (H) holds with k = , , . Let

F(t,x)≡ 
k

|x|
(


|x|/
+|x|/ –




)
a.e. t ∈ [,T].

Then F(t,x)≥  for all x ∈R
N and a.e. t ∈ [,T] and

lim|x|→

F(t,x)
|x| =


k

uniformly for a.e. t ∈ [,T], (.)

lim|x|→∞
F(t,x)
|x| =


k

uniformly for a.e. t ∈ [,T]. (.)

It is easy to verify that

(∇F(t,x),x
)
– F(t,x) =

 ln 
k

|x| · 
|x|/

+|x|/ · |x|/
( + |x|/) .
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Choose ξ = , η =  and ν = /. Moreover, obviously, there exists m >  such that
|x|/

+|x|/ >

 . Then

(∇F(t,x),x) – F(t,x)
F(t,x)

ξ+η|x|ν
=


 ln  · 

|x|/
+|x|/ · |x|/

+|x|/


|x|/

+|x|/ – 


> ln  > .

Hence, (H) holds.
When k = ,

min

{
(li + )ω – λi


,
ω

k
,
λi–


}
=



and σ = ..

By (.), we can find L >  such that

F(t,x)≥
(


–




)
|x| = 


|x|, ∀|x| > L, and a.e. t ∈ [,T].

Let β = 
 . Then (H)() holds with k = . Moreover, by (.), we can find l >  such that

F(t,x)≤
(




+




)
|x| ≈ .|x|, ∀|x| ≤ l and a.e. t ∈ [,T].

Let α = .. Then (H) holds. By Theorem ., we obtain that system (.) has a T-
periodic solution.
When k = ,

min

{
(li + )ω – λi


,
ω

k
,
λi–


}
=



and σ = ..

By (.), we can find L >  such that

F(t,x)≥
(


–




)
|x| ≈ .|x|, ∀|x| > L and a.e. t ∈ [,T].

Let β = .. Then (H)() holds with k = . Moreover, by (.), we can find l >  such
that

F(t,x)≤
(




+




)
|x| ≈ .|x|, ∀|x| ≤ l and a.e. t ∈ [,T].

Let α = .. Then (H) holds. Note that 
 < 

 =min{ (li+)ω–λi
 , ω

 , λi–
 }. So, when

k = , by Theorem ., we cannot judge that system (.) has a T-periodic solution. How-
ever, we can obtain that system (.) has a T-periodic solution.
When k = ,

min

{
(li + )ω – λi


,
ω

k
,
λi–


}
=




and σ = ..
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By (.), we can find L >  such that

F(t,x)≥
(




–




)
|x| ≈ .|x|, ∀|x| > L and a.e. t ∈ [,T].

Let β = .. Then (H)() holds with k = . Moreover, by (.), we can find l >  such
that

F(t,x)≤
(




+




)
|x| ≈ .|x|, ∀|x| ≤ l and a.e. t ∈ [,T].

Let α = .. Then (H) holds. Note that 
 < 

 = min{ (li+)ω–λi
 , ω

× ,
λi–
 } < 

 =

min{ (li+)ω–λi
 , ω

 , λi–
 }. So, when k = , by Theorem ., we cannot judge that system

(.) has T-periodic solution and T-periodic solution. However, we can obtain that sys-
tem (.) has a T-periodic solution. It is easy to verify that Example . does not satisfy
the theorem in [] even if k = .

Example . Let

A =

⎛
⎜⎝
  
 – 
  –

⎞
⎟⎠

and

F(t,x)≡ π

T |x|(e |x|/
+|x|/ – 

)
a.e. t ∈ [,T].

Then

lim|x|→

F(t,x)
|x| =  uniformly for a.e. t ∈ [,T],

lim|x|→∞
F(t,x)
|x| =

π

T (e – ) uniformly for a.e. t ∈ [,T].

Obviously, (A), (A)′, (.), (H)′ and (H)′ hold. Let ξ = , η =  and ν = 
 . Similar to the

argument in Example ., we obtain (H) also holds. Then by Theorem ., system (.)
has a sequence of distinct periodic solutions with period kjT satisfying kj ∈N and kj → ∞
as j → ∞.

Example . Let p =  and

F(t,x)≡ |x|p(e|x|p – 
)
= |x|(e|x| – 

)
a.e. t ∈ [,T].

Then (.) holds and

lim|x|→

F(t,x)
|x| = , lim|x|→∞

F(t,x)
|x| = +∞ uniformly for a.e. t ∈ [,T].
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Let ξ = , η =  and ν = /. Then it is easy to obtain that there existsm >  such that (H)
holds. By Theorem ., system (.) has a sequence of distinct periodic solutions with
period kjT satisfying kj ∈N and kj → ∞ as j → ∞. It is easy to see that Example . does
not satisfy (.). Hence, Theorem . improved Theorem B.
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