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Abstract
This paper investigates the well-posedness of a boundary value problem on the
semiaxis for a class of third-order operator-differential equations whose principal part
has multiple real characteristics. We obtain sufficient conditions for the existence and
uniqueness of the solution of a boundary value problem in the Sobolev-type space
W3

2 (R+;H). These conditions are expressed in terms of the operator coefficients of the
investigated equation. We find relations between the estimates of the norms of
intermediate derivatives operators in the subspaceW3

2 (R+;H) and the solvability
conditions. Furthermore, we calculate the exact values of these norms. The results are
illustrated with an example of the initial-boundary value problems for partial
differential equations.
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1 Introduction
The paper is dedicated to the formulation and study of the well-posedness of a boundary
value problem for a class of third-order operator-differential equations with a real and real
multiple characteristic. Note that the differential equationswhose characteristic equations
have real different or real multiple roots find a wide application in modeling problems
of mechanics and engineering, such as problems of heat mass transfer and filtration [],
dynamics of arches and rings [], etc.
Suppose that H is a separable Hilbert space with a scalar product (x, y), x, y ∈ H , A is a

self-adjoint positive definite operator onH (A = A∗ ≥ cE, c > , E is the identity operator),
andHγ (γ ≥ ) is the scale of Hilbert spaces generated by the operator A, i.e.,Hγ =D(Aγ ),
(x, y)γ = (Aγ x,Aγ y), x, y ∈ D(Aγ ). For γ =  we consider that H = H , (x, y) = (x, y), x, y ∈
H . Here the operatorAγ is determined from the spectral decomposition of the operatorA,
i.e.,

Aγ =
∫ +∞

c
σγ dEσ , γ ≥ ,

where Eσ is the resolution of the identity for A.
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By L(R;H) we denote the Hilbert space of all vector-functions u(t) defined on R =
(–∞, +∞) with values in H and the norm

‖u‖L(R;H) =
(∫ +∞

–∞

∥∥u(t)∥∥ dt
)/

.

Similarly, we define the space L(R+;H), where R+ = [,+∞),

L(R+;H) =
{
u(t) : ‖u‖L(R+;H) =

(∫ +∞



∥∥u(t)∥∥ dt
)/

< +∞
}
.

Define the following spaces:

W 
 (R;H) =

{
u(t) :

du(t)
dt

∈ L(R;H),Au(t) ∈ L(R;H)
}
,

W 
 (R+;H) =

{
u(t) :

du(t)
dt

∈ L(R+;H),Au(t) ∈ L(R+;H)
}

(for more details about these spaces, see [, Ch.]). Here and further, the derivatives are
understood in the sense of distributions (see []).
The spacesW 

 (R;H) andW 
 (R+;H) become Hilbert spaces with respect to the norms

‖u‖W
 (R;H) =

(∫ +∞

–∞

(∥∥∥∥d
u(t)
dt

∥∥∥∥


+
∥∥Au(t)

∥∥
)
dt

)/

and

‖u‖W
 (R+;H) =

(∫ +∞



(∥∥∥∥d
u(t)
dt

∥∥∥∥


+
∥∥Au(t)

∥∥
)
dt

)/

,

respectively.
Consider the following subspaces ofW 

 (R+;H):

◦
W 

 (R+;H) =
{
u(t) : u(t) ∈W 

 (R+;H),
dnu()
dtn

= ,n = , , 
}
,

◦
W 

 (R+;H ; , ) =
{
u(t) : u(t) ∈W 

 (R+;H),u() =
du()
dt

= 
}
.

By the theorem on intermediate derivatives, both of these spaces are complete [].
Now let us state the boundary value problem under study.
In theHilbert spaceH , we consider the following third-order operator-differential equa-

tion whose principal part has multiple characteristic:

(
–
d
dt

+A
)(

d
dt

+A
)

u(t) +A
du(t)
dt

+A
du(t)
dt

= f (t), t ∈ R+, (.)

where f (t) ∈ L(R+;H), A is the self-adjoint positive definite operator defined above, and
A, A are linear, in general, unbounded operators on H . Assuming u(t) ∈ W 

 (R+;H), we
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attach to equation (.) boundary conditions at zero of the form

diu()
dti

= , i = , . (.)

Definition . If the vector function u(t) ∈ W 
 (R+;H) satisfies equation (.) almost ev-

erywhere in R+, then it is called a regular solution of equation (.).

Definition . If for any f (t) ∈ L(R+;H) there exists a regular solution of equation (.)
satisfying the boundary conditions (.) in the sense of relation limt→ ‖A/–i diu(t)

dti ‖ = ,
i = ,  and the following inequality holds:

‖u‖W
 (R+;H) ≤ const‖f ‖L(R+;H),

then we say that problem (.), (.) is regularly solvable.

The solvability of boundary value problems for operator-differential equations has been
studied by many authors. Among such works, we should especially mention the papers by
Gasymov, Kostyuchenko, Gorbachuk, Dubinskii, Shkalikov, Mirzoev, Jakubov, Aliev and
their followers (see, e.g., [–]) that are close to our paper. Allowing to treat both ordinary
and partial differential operators from the same point of view, these equations are also in-
teresting from the aspect that the well-posedness of boundary value problems for them
is closely related to the spectral theory of polynomial operator pencils [] (for compre-
hensive survey, see Shkalikov []). And, of course, well-posed solvability of the Cauchy
problem and non-local boundary value problems for operator-differential equations as
well as related spectral problems (see, e.g., Shkalikov [], Gorbachuk andGorbachuk [],
Agarwal et al. []) are also of great interest.
In this paper, we obtain conditions for the regular solvability of boundary value prob-

lem (.) (.), which are expressed only in terms of the operator coefficients of equa-
tion (.). We also show the relationship between these conditions and the exact esti-
mates for the norms of intermediate derivatives operators in the subspaces

◦
W 

 (R+;H) and
◦
W 

 (R+;H ; , ) with respect to the norm of the operator generated by the principal part of
equation (.). Mirzoev [] was the first who paid detailed attention to such relation (for
more details about the calculation of the norms of intermediate derivatives operators, see
[]). To estimate these norms, he used the method of factorization of polynomial opera-
tor pencils which depend on a real parameter. Further these results have been developed
in [, ].
It should be noted that all the above-mentioned works, unlike equation (.), consider

the operator-differential equations with a simple characteristic. Although similar matters
of solvability and related problems have already been studied for fourth-order operator-
differential equations whose principal parts have multiple characteristic (see, for exam-
ple, [, ], also [] and some references therein), but they have not been studied for
odd order operator-differential equations with multiple characteristic, including those of
third-order. One of the goals of the present paper is to fill this gap.
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2 Equivalent norms and conditional theorem on solvability of boundary value
problem (1.1), (1.2)

We show that the norm of the operator generated by the principal part of equation (.) is
equivalent to the initial norm ‖u‖W

 (R+;H) on the space
◦
W 

 (R+;H ; , ).

Let P denote the operator acting from the space
◦
W 

 (R+;H ; , ) to the space L(R+;H)
as follows:

Pu(t) ≡
(
–
d
dt

+A
)(

d
dt

+A
)

u(t), u(t) ∈ ◦
W 

 (R+;H ; , ).

Then the following theorem holds.

Theorem . The operator P is an isomorphism between the spaces
◦
W 

 (R+;H ; , ) and
L(R+;H).

Proof First, we note that if ξ ∈H/, then e–tAξ ∈W 
 (R+;H) and if η ∈H/, then tAe–tAη ∈

W 
 (R+;H) (see, e.g., []), where e–tA is the strongly continuous semi-group of bounded

operators generated by the operator –A.
Obviously, the homogeneous equation Pu(t) =  has only the trivial solution in

◦
W 

 (R+;H ; , ). But the equation Pu(t) = f (t) for any f (t) ∈ L(R+;H) has a solution
u(t) ∈ ◦

W 
 (R+;H ; , ) of the form

u(t) =
∫ +∞


G(t – s)f (s)ds –



(E + tA)

∫ +∞


e–(t+s)A

(
A–f (s)

)
ds,

where

G(t – s) =



⎧⎨
⎩
(E + (t – s)A)e–(t–s)AA– if t – s > ,

e(t–s)AA– if t – s < .

In fact, such a solution u(t) satisfies the equation

(
–
d
dt

+A
)(

d
dt

+A
)

u(t) = f (t)

and the conditions at zero u() = du()
dt = , therefore, it belongs to W 

 (R+;H) (see, e.g.,
[, ]).
Let us now show the boundedness of the operator P. We have

‖Pu‖L(R+;H) =
∥∥∥∥
(
–
d
dt

+A
)(

d
dt

+A
)

u
∥∥∥∥


L(R+;H)

=
∥∥∥∥–d

u
dt

–A
du
dt

+A du
dt

+Au
∥∥∥∥


L(R+;H)

=
∥∥∥∥d

u
dt

∥∥∥∥


L(R+;H)
+

∥∥∥∥Adu
dt

∥∥∥∥


L(R+;H)
+

∥∥∥∥A du
dt

∥∥∥∥


L(R+;H)
+

∥∥Au
∥∥
L(R+;H)

+ Re
(
du
dt

,A
du
dt

)
L(R+;H)

– Re
(
du
dt

,A du
dt

)
L(R+;H)
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– Re
(
du
dt

,Au
)
L(R+;H)

– Re
(
A
du
dt

,A du
dt

)
L(R+;H)

– Re
(
A
du
dt

,Au
)
L(R+;H)

+ Re
(
A du

dt
,Au

)
L(R+;H)

. (.)

Since u(t) ∈ ◦
W 

 (R+;H ; , ),

Re
(
du
dt

,A
du
dt

)
L(R+;H)

= –
∥∥∥∥A/ du()

dt

∥∥∥∥


,

Re
(
du
dt

,A du
dt

)
L(R+;H)

= –
∥∥∥∥Adu

dt

∥∥∥∥


L(R+;H)
, Re

(
du
dt

,Au
)
L(R+;H)

= ,

Re
(
A
du
dt

,A du
dt

)
L(R+;H)

= ,

Re
(
A
du
dt

,Au
)
L(R+;H)

= –
∥∥∥∥A du

dt

∥∥∥∥


L(R+;H)
,

Re
(
A du

dt
,Au

)
L(R+;H)

= ,

then (.) takes the form

‖Pu‖L(R+;H) = ‖u‖W
 (R+;H) + 

∥∥∥∥Adu
dt

∥∥∥∥


L(R+;H)
+ 

∥∥∥∥A du
dt

∥∥∥∥


L(R+;H)
–

∥∥∥∥A/ du()
dt

∥∥∥∥


.

Further, by theorems on intermediate derivatives and traces [, Ch.], we obtain

‖Pu‖L(R+;H) ≤ const‖u‖W
 (R+;H).

Thus, the operator P is bounded and bijective from the space
◦
W 

 (R+;H ; , ) to the
space L(R+;H). Therefore, due to the Banach inverse operator theorem, P is an isomor-
phism between these spaces. The theorem is proved. �

Corollary . It follows from Theorem . that the norm ‖Pu‖L(R+;H) on the space
◦
W 

 (R+;H ; , ) is equivalent to the initial norm ‖u‖W
 (R+;H).

Before we state the conditional theorem on solvability of boundary value problem (.)
(.), we prove the following lemma.

Lemma . Let the operators AjA–j, j = ,  be bounded on H and let the operator P act
from the space

◦
W 

 (R+;H ; , ) to the space L(R+;H) as follows:

Pu(t) ≡ A
du(t)
dt

+A
du(t)
dt

, u(t) ∈ ◦
W 

 (R+;H ; , ).

Then P is also bounded.

http://www.boundaryvalueproblems.com/content/2013/1/140
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Proof Since for u(t) ∈ ◦
W 

 (R+;H ; , ), by virtue of the intermediate derivatives theorem
[, Ch.], we obtain

‖Pu‖L(R+;H) ≤
∥∥AA–∥∥

H→H

∥∥∥∥Adu
dt

∥∥∥∥
L(R+;H)

+
∥∥AA–∥∥

H→H

∥∥∥∥A du
dt

∥∥∥∥
L(R+;H)

≤ const‖u‖W
 (R+;H).

The lemma is proved. �

Theorem. Let the operators AjA–j, j = ,  be bounded onH and the following inequality
hold:

∑
j=

n–j
∥∥AjA–j∥∥

H→H < ,

where

nj = sup
�=u∈ ◦

W
 (R+;H;,)

‖A–j dju
dtj ‖L(R+;H)

‖Pu‖L(R+;H)
, j = , .

Then boundary value problem (.), (.) is regularly solvable.

Proof We represent boundary value problem (.), (.) in the form of the operator equa-
tion Pu(t) + Pu(t) = f (t), where f (t) ∈ L(R+;H), u(t) ∈ ◦

W 
 (R+;H ; , ). Since by The-

orem . the operator P has the bounded inverse P–
 which acts from L(R+;H) to

◦
W 

 (R+;H ; , ), then, after the replacement u(t) = P–
 v(t), we obtain the equation (E +

PP–
 )v(t) = f (t) in the space L(R+;H).

Under the conditions of Theorem ., we obtain

∥∥PP–
 v

∥∥
L(R+;H) = ‖Pu‖L(R+;H)

≤ ∥∥AA–∥∥
H→H

∥∥∥∥Adu
dt

∥∥∥∥
L(R+;H)

+
∥∥AA–∥∥

H→H

∥∥∥∥A du
dt

∥∥∥∥
L(R+;H)

≤
∑
j=

n–j
∥∥AjA–j∥∥

H→H‖Pu‖L(R+;H)

=
∑
j=

n–j
∥∥AjA–j∥∥

H→H‖v‖L(R+;H).

Therefore, if the inequality
∑

j= n–j‖AjA–j‖H→H <  holds, then the operator E + PP–
 is

invertible and we can define u(t) by the formula u(t) = P–
 (E + PP–

 )–f (t). Moreover,

‖u‖W
 (R+;H) ≤

∥∥P–


∥∥
L(R+;H)→W

 (R+;H)

∥∥(
E + PP–


)–∥∥

L(R+;H)→L(R+;H)‖f ‖L(R+;H)

≤ const‖f ‖L(R+;H).

The theorem is proved. �

http://www.boundaryvalueproblems.com/content/2013/1/140
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Naturally, there arises a problem of finding exact values or estimates for the numbers nj,
j = , , and it is very important for extending the class of operator-differential equations
of the form (.) for which our boundary value problem is solvable. We will make the
calculations for nj, j = ,  in Section .

3 On spectral properties of some polynomial operator pencils and basic
equalities for the functions in the spaceW3

2 (R+;H)
Consider the following polynomial operator pencils depending on the real parameter β :

Pj(λ;β ;A) =
(
(iλ)E +A) – β(iλ)jA–j, j = , . (.)

We need to clarify considering naturally arising pencils (.). Obviously, for u(t) ∈
W 

 (R;H), we obtain

∥∥∥∥
(
–
d
dt

+A
)(

d
dt

+A
)

u
∥∥∥∥


L(R;H)

=
∥∥∥∥–d

u
dt

–A
du
dt

+A du
dt

+Au
∥∥∥∥


L(R;H)

=
∥∥∥∥d

u
dt

∥∥∥∥


L(R;H)
+

∥∥∥∥Adu
dt

∥∥∥∥


L(R;H)
+

∥∥∥∥A du
dt

∥∥∥∥


L(R;H)
+

∥∥Au
∥∥
L(R;H)

+ Re
(
du
dt

,A
du
dt

)
L(R;H)

– Re
(
du
dt

,A du
dt

)
L(R;H)

– Re
(
du
dt

,Au
)
L(R;H)

– Re
(
A
du
dt

,A du
dt

)
L(R;H)

– Re
(
A
du
dt

,Au
)
L(R;H)

+ Re
(
A du

dt
,Au

)
L(R;H)

.

Since for u(t) ∈W 
 (R;H),

Re
(
du
dt

,A
du
dt

)
L(R;H)

= , Re
(
du
dt

,A du
dt

)
L(R;H)

= –
∥∥∥∥Adu

dt

∥∥∥∥


L(R;H)
,

Re
(
du
dt

,Au
)
L(R;H)

= , Re
(
A
du
dt

,A du
dt

)
L(R;H)

= ,

Re
(
A
du
dt

,Au
)
L(R;H)

= –
∥∥∥∥A du

dt

∥∥∥∥


L(R;H)
, Re

(
A du

dt
,Au

)
L(R;H)

= ,

then, as a result, we obtain

∥∥∥∥
(
–
d
dt

+A
)(

d
dt

+A
)

u
∥∥∥∥


L(R;H)
=

∥∥∥∥d
u
dt

∥∥∥∥


L(R;H)
+ 

∥∥∥∥Adu
dt

∥∥∥∥


L(R;H)

+ 
∥∥∥∥A du

dt

∥∥∥∥


L(R;H)
+

∥∥Au
∥∥
L(R;H). (.)
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If we use the Fourier transform in (.), then

∥∥∥∥
(
–
d
dt

+A
)(

d
dt

+A
)

u
∥∥∥∥


L(R;H)
=

∫ +∞

–∞

((
ξ E +A)ũ(ξ ), ũ(ξ ))dξ ,

where ũ(ξ ) is the Fourier transform of the function u(t). Therefore, if β ∈ R, then

∥∥∥∥
(
–
d
dt

+A
)(

d
dt

+A
)

u
∥∥∥∥


L(R;H)
– β

∥∥∥∥A–j dju
dtj

∥∥∥∥


L(R;H)

=
∫ +∞

–∞

(((
ξ E +A) – βξ jA–j)ũ(ξ ), ũ(ξ ))dξ .

That is why to estimate nj, j = , , it is necessary to study some properties of pencils (.).
The following theorem on factorization of pencils (.) holds.

Theorem . Let β ∈ [,  ). Then polynomial operator pencils (.) are invertible on the
imaginary axis and the following representations are true:

Pj(λ;β ;A) = Fj(λ;β ;A)Fj(–λ;β ;A), j = , ,

where

Fj(λ;β ;A) =
∏
s=

(
λE –ωj,s(β)A

) ≡ λE + α,j(β)λA + α,j(β)λA +A,

here Reωj,s(β) < , s = , , , the numbers α,j(β), α,j(β) are positive and satisfy the follow-
ing systems of equations:

() for j = ,

⎧⎨
⎩
–α,(β) + α

,(β) –  = ,

α,(β) – α
,(β) +  = β ;

() for j = ,

⎧⎨
⎩
–α,(β) + α

,(β) –  = –β ,

α,(β) – α
,(β) +  = .

(.)

Proof It is clear that

Pj(λ;β ;σ ) =
(
(iλ) + σ ) – β(iλ)jσ –j, j = , , (.)

are the characteristic polynomial operator pencils (.), where σ ∈ σ (A) (σ (A) denotes
the spectrum of the operator A). Let λ = iξ , ξ ∈ R. Then characteristic polynomials (.)
satisfy the following relations:

Pj(λ;β ;σ ) = Pj(iξ ;β ;σ ) = σ 
(

ξ 

σ  + 
)[

 – β
( ξ

σ )j

( ξ

σ + )

]

≥ σ 
(

ξ 

σ  + 
)[

 – β sup
ξ
σ

≥

( ξ

σ )j

( ξ

σ + )

]
, j = , .

http://www.boundaryvalueproblems.com/content/2013/1/140
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Since

sup
ξ
σ

≥

( ξ

σ )j

( ξ

σ + )
=




, j = , ,

we obtain

Pj(iξ ;β ;σ ) > , j = ,  (.)

for β ∈ [,  ). Inequalities (.) imply that polynomials (.) have no roots on the imagi-
nary axis for β ∈ [,  ). Besides, it can be seen from (.) that each of the characteristic
polynomial Pj(λ;β ;σ ) has exactly three roots in the left half-plane for σ ∈ σ (A). Since poly-
nomials (.) are homogeneous with respect to the arguments λ and σ , then the following
factorization is true for them:

Pj(λ;β ;σ ) = Fj(λ;β ;σ )Fj(–λ;β ;σ ), j = , , (.)

where

Fj(λ;β ;σ ) =
∏
s=

(
λ –ωj,s(β)σ

) ≡ λ + α,j(β)λσ + α,j(β)λσ  + σ ,

Reωj,s(β) < , s = , , , and the numbers α,j(β), α,j(β) are positive according to Vieta’s
formulas and satisfy systems of equations (.) derived from (.) during the compari-
son of same degree coefficients. Further, using the spectral decomposition of the operator
A, from equalities (.) we obtain the assertions of the theorem. The theorem is proved.

�

Now, we state a theorem playing a significant role in the subsequent study. Let us in-
troduce another notation, which will be used in the proof of that theorem: D(R+;H) will
denote the linear set of infinitely differentiable functions with values in H and compact
support in R+. As is well known, the space D(R+;H) is everywhere dense in W 

 (R+;H)
(see [, Ch.]).

Theorem . Let β ∈ [,  ). Then, for any u(t) ∈W 
 (R+;H), the following relation holds:

∥∥∥∥
(
–
d
dt

+A
)(

d
dt

+A
)

u
∥∥∥∥


L(R+;H)
– β

∥∥∥∥A–j dju
dtj

∥∥∥∥


L(R+;H)

=
∥∥∥∥Fj

(
d
dt

;β ;A
)
u
∥∥∥∥


L(R+;H)
+

(
Sj(β)ϕ,ϕ

)
H , (.)

where

H =
⊕

p=

H , ϕ =
(

ϕk = A–k–/ dku()
dtk

)

k=
,

Sj(β) =

⎛
⎜⎝

α,j(β) –  α,j(β) +  
α,j(β) +  α,j(β)α,j(β) –  α,j(β) + 

 α,j(β) +  α,j(β) – 

⎞
⎟⎠ .

http://www.boundaryvalueproblems.com/content/2013/1/140
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Proof It suffices to prove the theorem for functions u(t) ∈ D(R+;H). We have

∥∥∥∥Fj
(
d
dt

;β ;A
)
u
∥∥∥∥


L(R+;H)

=
∥∥∥∥d

u
dt

∥∥∥∥


L(R+;H)
+ α

,j(β)
∥∥∥∥Adu

dt

∥∥∥∥


L(R+;H)

+ α
,j(β)

∥∥∥∥A du
dt

∥∥∥∥


L(R+;H)
+

∥∥Au
∥∥
L(R+;H) + α,j(β)Re

(
du
dt

,A
du
dt

)
L(R+;H)

+ α,j(β)Re
(
du
dt

,A du
dt

)
L(R+;H)

+ Re
(
du
dt

,Au
)
L(R+;H)

+ α,j(β)α,j(β)Re
(
A
du
dt

,A du
dt

)
L(R+;H)

+ α,j(β)Re
(
A
du
dt

,Au
)
L(R+;H)

+ α,j(β)Re
(
A du

dt
,Au

)
L(R+;H)

.

Integrating by parts, we obtain

∥∥∥∥Fj
(
d
dt

;β ;A
)
u
∥∥∥∥


L(R+;H)

=
∥∥∥∥d

u
dt

∥∥∥∥


L(R+;H)
+

(
α
,j(β) – α,j(β)

)∥∥∥∥Adu
dt

∥∥∥∥


L(R+;H)

+
(
α
,j(β) – α,j(β)

)∥∥∥∥A du
dt

∥∥∥∥


L(R+;H)
+

∥∥Au
∥∥
L(R+;H) – α,j(β)‖ϕ‖

– α,j(β)Re(ϕ,ϕ) – Re(ϕ,ϕ) +
(
 – α,j(β)α,j(β)

)‖ϕ‖

– α,j(β)Re(ϕ,ϕ) – α,j(β)‖ϕ‖. (.)

Making similar calculations for ‖(– d
dt +A)( d

dt +A)u‖L(R+;H), we obtain

∥∥∥∥
(
–
d
dt

+A
)(

d
dt

+A
)

u
∥∥∥∥


L(R+;H)

=
∥∥∥∥d

u
dt

∥∥∥∥


L(R+;H)
+ 

∥∥∥∥Adu
dt

∥∥∥∥


L(R+;H)

+ 
∥∥∥∥A du

dt

∥∥∥∥


L(R+;H)
+

∥∥Au
∥∥
L(R+;H) – ‖ϕ‖ + Re(ϕ,ϕ)

+ Re(ϕ,ϕ) + Re(ϕ,ϕ) – ‖ϕ‖. (.)

From (.), taking into account (.) and applying Theorem ., we get the validity of (.).
The theorem is proved. �
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Corollary . If u(t) ∈ ◦
W 

 (R+;H) and β ∈ [,  ), then

∥∥∥∥
(
–
d
dt

+A
)(

d
dt

+A
)

u
∥∥∥∥


L(R+;H)
– β

∥∥∥∥A–j dju
dtj

∥∥∥∥


L(R+;H)

=
∥∥∥∥Fj

(
d
dt

;β ;A
)
u
∥∥∥∥


L(R+;H)
. (.)

Corollary . If u(t) ∈ ◦
W 

 (R+;H ; , ) and β ∈ [,  ), then

∥∥∥∥
(
–
d
dt

+A
)(

d
dt

+A
)

u
∥∥∥∥


L(R+;H)
– β

∥∥∥∥A–j dju
dtj

∥∥∥∥


L(R+;H)

=
∥∥∥∥Fj

(
d
dt

;β ;A
)
u
∥∥∥∥


L(R+;H)
+

(
Sj(β ; , )ϕ̃, ϕ̃

)
H , (.)

where Sj(β ; , ) = α,j(β) –  is obtained from Sj(β) by discarding the first two rows and
columns, here ϕ̃ = A/ du()

dt .

4 On the values of the numbers nj, j = 1,2
It is easy to check that the norms ‖u‖W

 (R+;H) and ‖(– d
dt +A)(

d
dt +A)

u‖L(R+;H) are equiva-

lent on
◦
W 

 (R+;H). Then it follows from the theorem on intermediate derivatives [, Ch.]
that the following numbers are finite:

n,j = sup
�=u∈ ◦

W
 (R+;H)

‖A–j dju
dtj ‖L(R+;H)

‖(– d
dt +A)( d

dt +A)u‖L(R+;H)
, j = , .

Lemma . n,j = 

√
 , j = , .

Proof Passing to the limit as β → 
 in (.), we see that, for any function u(t) ∈

◦
W 

 (R+;H), the following inequality holds:




∥∥∥∥A–j dju
dtj

∥∥∥∥


L(R+;H)
≤

∥∥∥∥
(
–
d
dt

+A
)(

d
dt

+A
)

u
∥∥∥∥


L(R+;H)
,

i.e., n,j ≤ 

√
 . We need to show that here we have the equality. To do this, it suffices to

show that for any ε > , there exists a function uε(t) ∈ ◦
W 

 (R+;H) such that

∥∥∥∥
(
–
d
dt

+A
)(

d
dt

+A
)

uε

∥∥∥∥


L(R+;H)
–

(



+ ε

)∥∥∥∥A–j djuε

dtj

∥∥∥∥


L(R+;H)
< .

Note that the procedure of constructing such functions uε(t) is thoroughly described in
[] (in addition, the one for fourth-order equations with multiple characteristic is avail-
able in []). This method is applicable to our case, too. Therefore, we omit the respective
part of the proof. So lemma is proved. �

Remark . Since
◦
W 

 (R+;H) ⊂ ◦
W 

 (R+;H ; , ), then nj ≥ n,j = 

√
 , j = , . Therefore,

there arises the question: When do we have nj = 

√
 , j = , ?

http://www.boundaryvalueproblems.com/content/2013/1/140
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Denote by μj the root of the equation Sj(β ; , ) =  in the interval (,  ) if such exists.

Theorem . The following relation holds:

nj =

⎧⎨
⎩



√
 for Sj(β ; , ) �= ,β ∈ (,  ),

μ–/
j otherwise.

Proof If nj = 

√
 , then it follows from equation (.) that for any function u(t) ∈

◦
W 

 (R+;H ; , ) and for all β ∈ [,  ), the following inequality holds:

∥∥∥∥Fj
(
d
dt

;β ;A
)
u
∥∥∥∥


L(R+;H)
+

(
Sj(β ; , )ϕ̃, ϕ̃

)
H ≥ ‖Pu‖L(R+;H)

(
 – βnj

)
> . (.)

Now let us consider the Cauchy problem

Fj
(
d
dt

;β ;A
)
u(t) = , (.)

dku()
dtk

= , k = , , (.)

du()
dt

= A–/ϕ̃, ϕ̃ ∈H . (.)

Since by Theorem ., for β ∈ [,  ), the polynomial operator pencil Fj(λ;β ;A) is of the
form Fj(λ;β ;A) =

∏
s=(λE–ωj,s(β)A), whereReωj,s(β) < , s = , , , thenCauchy problem

(.)-(.) has a unique solution uβ (t) ∈W 
 (R+;H), which can be expressed as:

uβ (t) = eωj,(β)tAη + eωj,(β)tAη + eωj,(β)tAη,

where η,η,η ∈ H/ are uniquely determined by the conditions at zero (.), (.).
Therefore, if we rewrite the inequality (.) for function uβ (t), then for β ∈ [,  ) we will
have

∥∥∥∥Fj
(
d
dt

;β ;A
)
uβ

∥∥∥∥


L(R+;H)
+

(
Sj(β ; , )ϕ̃, ϕ̃

)
H > .

This means that (Sj(β ; , )ϕ̃, ϕ̃)H > , and therefore, Sj(β ; , ) >  for all β ∈ [,  ). Now
let Sj(β ; , ) >  for all β ∈ [,  ). Then it follows from (.) that for any function u(t) ∈
◦
W 

 (R+;H ; , ) and for all β ∈ [,  ),

‖Pu‖L(R+;H) – β

∥∥∥∥A–j dju
dtj

∥∥∥∥


L(R+;H)
> .

Passing here to the limit as β → 
 , we obtain that nj ≤ 


√
 , and hence, nj = 


√
 .

Continuing the proof of the theorem, we suppose that nj > 

√
 . Then n–j ∈ (,  ). Note

that for β ∈ (,n–j ), we have

‖Pu‖L(R+;H) – β

∥∥∥∥A–j dju
dtj

∥∥∥∥


L(R+;H)
≥ ‖Pu‖L(R+;H)

(
 – βnj

)
> .
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Therefore, from (.) we find that for β ∈ (,n–j ), the following inequality holds:

∥∥∥∥Fj
(
d
dt

;β ;A
)
u
∥∥∥∥


L(R+;H)
+

(
Sj(β ; , )ϕ̃, ϕ̃

)
H > .

Applying this inequality again to the solution u(t) of Cauchy problem (.)-(.), we obtain
Sj(β ; , ) >  for all β ∈ [,n–j ). On the other hand, it follows from the definition of nj that,
for any β ∈ (n–j ,  ), there exists a function vβ (t) ∈ ◦

W 
 (R+;H ; , ) such that

‖Pvβ‖L(R+;H) < β

∥∥∥∥A–j djvβ

dtj

∥∥∥∥


L(R+;H)
.

Taking into account this inequality in (.), we obtain

∥∥∥∥Fj
(
d
dt

;β ;A
)
vβ

∥∥∥∥


L(R+;H)
+

(
Sj(β ; , )ϕ̃β , ϕ̃β

)
H < ,

where ϕ̃β = A/ dvβ ()
dt . Therefore, there exists a vector ϕ̃β ∈H such that

(
Sj(β ; , )ϕ̃β , ϕ̃β

)
H < .

Thus, Sj(β ; , ) <  for β ∈ (n–j ,  ). And since Sj(β ; , ) is a continuous function of the ar-
gument β in the interval [,  ), then Sj(n–j ; , ) = . It follows from these arguments that
the equation Sj(β ; , ) =  has a root in the interval (,  ). Now let Sj(β ; , ) =  have a
root in the interval (,  ). This means that the inequality Sj(β ; , ) >  cannot be satisfied
for any β ∈ [,  ). Therefore, according to our earlier reasonings in the proof of this the-
orem, we have nj > 


√
 . Obviously, for the root μj of the equation Sj(β ; , ) = , we have

that μj ≥ n–j , because the proof of the theorem for β ∈ [,n–j ) implies that Sj(β ; , ) > .
And since Sj(n–j ; , ) = , we obtain n–j = μj. The theorem is proved. �

Remark . From Theorem ., it becomes clear that to find the numbers nj, j = , , we
must solve the equations Sj(β ; , ) = , j = , , together with systems (.) respectively. In
this case, it is necessary to take into account the properties of the numbers α,j(β), α,j(β),
j = , .

The following theorem holds.

Theorem . n = 

√
 , n =

√
(

√
+)/

.

Proof In view of Remark ., in the case j = , we have n = 

√
 due to the negativity

of α,(β), despite α,(β) =  ⇒ α,(β) = – ⇒ β =  ∈ (,  ). In the case j = , we have
α,(β) =  ⇒ α,(β) = –

√
 or α,(β) =

√
. Then β = –(

√
 – ) /∈ (,  ) or β = (

√
 +

) ∈ (,  ), respectively. Therefore, n =
√

(
√
+)/

. The theorem is proved. �

5 Solvability of boundary value problem (1.1), (1.2). Example
The results obtained above allow us to establish exact conditions for regular solvability
of boundary value problem (.), (.). These conditions are expressed in terms of the
operator coefficients of equation (.).

http://www.boundaryvalueproblems.com/content/2013/1/140


Aliev and Elbably Boundary Value Problems 2013, 2013:140 Page 14 of 15
http://www.boundaryvalueproblems.com/content/2013/1/140

Theorem. Let the operators AjA–j, j = ,  be bounded onH and the following inequality
hold:

√
(

√
 + )/

∥∥AA–∥∥
H→H +



√


∥∥AA–∥∥
H→H < .

Then boundary value problem (.), (.) is regularly solvable.

Note that the above conditions for regular solvability of boundary value problem (.),
(.) are easily verified in applications because they are expressed in terms of the operator
coefficients of equation (.).
Let us illustrate our solvability resultswith an example of an initial-boundary value prob-

lem for a partial differential equation.

Example . On the half-strip R+ × [,π ], consider the problem

(
–

∂

∂t
–

∂

∂x

)(
∂

∂t
–

∂

∂x

)

u(t,x) + p(x)
∂u(t,x)
∂x ∂t

+ q(x)
∂u(t,x)
∂x ∂t

= f (t,x), (.)

∂ iu(,x)
∂ti

= , i = , , (.)

∂ku(t, )
∂xk

=
∂ku(t,π )

∂xk
= , k = , , , (.)

where p(x), q(x) are bounded functions on [,π ] and f (t,x) ∈ L(R+;L[,π ]). Note that
problem (.)-(.) is a special case of boundary value problem (.), (.). In fact, here we
have H = L[,π ], A = p(x) ∂

∂x and A = q(x) ∂

∂x . The operator A is defined on L[,π ] by
the relation Au = – du

dx and the conditions u() = u(π ) = .
Applying Theorem ., we obtain that under the condition

√
(

√
 + )/

sup
≤x≤π

∣∣p(x)∣∣ + 

√


sup
≤x≤π

∣∣q(x)∣∣ < ,

problem (.)-(.) has a unique solution in the spaceW ,
t,x,(R+;L[,π ]).

Remark . Using the same procedure, we can obtain similar results for equation (.) on
the semiaxis R+ with boundary conditions u() = du()

dt =  or du()
dt = du()

dt = .
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