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Introduction
As a generalization of the Banach fixed point theorem, Nadler’s contraction principle has
lead to an excellent fixed point result in the area of nonlinear analysis. Some other works
focused on fixed point results for multi-valued mappings are, for instance, [–]. Coin-
cidence and common fixed points of nonlinear hybrid contractions (i.e., contractions in-
volving single-valued and multi-valued mappings) have been recently studied by many
authors. To mention some of the achievements, we cite, for example, [–].
The concept of commutativity of single-valued mappings [] was extended in [] to

the setting of a single-valuedmapping and amulti-valuedmapping on ametric space. This
concept of commutativity has been further generalized by different authors, viz weakly
commuting [], compatible [], weakly compatible []. It is interesting to note that in
all the results obtained so far concerning common fixed points of hybrid mappings the
(single-valued and multi-valued) mappings under consideration satisfy either the com-
mutativity condition or one of its generalizations (see, for instance, [–]). In this note,
we show the existence of fixed points of hybrid contractions which do not satisfy any of the
commutativity conditions or its above-mentioned generalizations. Our result extends and
improves several well-known results in the field of hybrid fixed point theory. Some other
recent related references are [, ], where commonfixed point theorems for hybridmap-
pings on a symmetric space are proved under the assumptions of weak compatibility and
occasional weak compatibility. Some analogous results for the case of contractivity con-
ditions of integral type are presented in [–] and generalized contractive hybrid pairs
are considered in []. Finally, in [], fixed point results are proved in topological vector
space valued cone metric spaces (with nonnormal cones).
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Preliminaries
For a metric space (X,d), let (CB(X),H) and (CL(X),H) denote respectively the hyper-
space of non-empty closed bounded and non-empty closed subsets of X, where H is the
Hausdorff metric induced by d. For f : X → X and T : X → CL(X), we shall use the fol-
lowing notations:

L(x, y) =max

{
d(fx, fy),d(fx,Tx),d(fy,Ty),



(
d(fx,Ty) + d(fy,Tx)

)}

and

N(x, y) =
[
max

{
d(fx, fy),d(fx,Tx) · d(fy,Ty),d(fx,Ty) · d(fy,Tx),



d(fx,Tx) · d(fy,Tx), 


d(fx,Ty) · d(fy,Ty)

}] 

.

We recall some definitions.

Definition  Mappings f and T are said to be commuting at a point x ∈ X if fTx ⊆ Tfx.
The mappings f and T are said to be commuting on X if fTx ⊆ Tfx for all x ∈ X.

Definition  Mappings f and T are said to be weakly commuting at a point x ∈ X if

H(fTx,Tfx) ≤ d(fx,Tx).

The mappings f and T are said to be weakly commuting on X if

H(fTx,Tfx) ≤ d(fx,Tx)

for all x ∈ X.

Definition  The mappings f and T are said to be compatible if fTx ∈ CB(X) for all x ∈ X
and limn→+∞ H(Tfxn, fTxn) = , whenever {xn} is a sequence in X such that Txn → M ∈
CB(X) and fxn → t ∈ M, as n→ +∞.

Definition  The mappings f and T are said to be f -weak compatible if fTx ∈ CB(X) for
all x ∈ X and the following limits exist and satisfy the inequalities:

(i) limn→∞ H(Tfxn, fTxn) ≤ limn→∞ H(Tfxn,Txn),
(ii) limn→∞ d(fTxn, fxn) ≤ limn→∞ H(Tfxn,Txn),

whenever {xn} is a sequence in X such that Txn →M ∈ CB(X) and fxn → t ∈ M as n → ∞.

Let C(T , f ) denote the set of all coincidence points of the mappings f and T , that is,
C(T , f ) = {u : fu ∈ Tu}.

Definition  The mappings f and T are said to be coincidentally commuting if they com-
mute at their coincidence points.

Definition  Mappings f and T are said to be coincidentally idempotent if ffu = fu for
every u ∈ C(T , f ), that is, if f is idempotent at the coincidence points of f and T .

http://www.boundaryvalueproblems.com/content/2013/1/145


Pathak and Rodríguez-López Boundary Value Problems 2013, 2013:145 Page 3 of 21
http://www.boundaryvalueproblems.com/content/2013/1/145

Definition  Mappings f and T are said to be occasionally coincidentally idempotent (or,
in brief, oci) if ffu = fu for some u ∈ C(T , f ).

It should be remarked that coincidentally idempotent pairs of mappings are occasionally
coincidentally idempotent, but the converse is not necessarily true as shown in Example 
of this note.

Main results
We recall the following lemma.

Lemma  [] Let T : Y → CB(X) and f : Y → X be f -weak compatible. If {fw} = Tw for
some w ∈ Y and H(Tx,Ty) ≤ h(a · L(x, y) + ( – a) ·N(x, y)) for all x, y in Y , where  < h < ,
 ≤ a≤ , then fTw = Tfw.

We remark that the above-mentioned lemma has been used in [, ] and [] to prove
the existence of fixed points of hybrid mappings. However, we have noticed some typos in
its original statement which have been rectified in the above statement without altering
the proof.
Next, we prove a fixed point result for hybrid mappings under a general integral-type

contractivity condition. In contrast to [], we avoid the complete character of the base
space X, and we introduce hybridmappings.With respect to the study in [], we consider
here occasionally coincidentally idempotent mappings.

Theorem  Let Y be an arbitrary non-empty set, (X,d) be a metric space, f : Y → X and
T : Y → CB(X) be such that

T(Y ) ⊆ f (Y ), ()

that is,
⋃

y∈Y T(y) ⊆ f (Y ),

there exists q ∈ (, ) such that∫ H(Tx,Ty)


ψ(t)dt ≤ q

∫ L(x,y)


ψ(t)dt for all x, y in Y , ()

f (Y ) is complete, ()

ψ :R+ → R+ is a Lebesgue measurable mapping which is nonnegative, summable on each
compact interval and such that

ψ(x) > , ∀x > , ()

which trivially implies that
∫ ε


ψ(t)dt >  for each ε >  ()

and
∫ ε


ψ(t)dt <

∫ ε̃


ψ(t)dt for each  < ε < ε̃. ()

http://www.boundaryvalueproblems.com/content/2013/1/145
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Suppose also that

∫ με


ψ(t)dt ≤ γ (μ)

∫ ε


ψ(t)dt for each μ >  and ε > , ()

where γ : (, +∞) −→R+ is such that

 < γ
(
q–/

) · q <  ()

and

γ
(
q–/

) · q · γ
(


γ (q–/) · q

)
≤ . ()

Then T and f have a coincidence point. Further, if f and T are occasionally coincidentally
idempotent, then f and T have a common fixed point.

Proof In view of () and Nadler’s remark in [], given the point x ∈ Y , we can construct
two sequences {xn} in Y and {yn} in X such that, for each n ∈N,

yn = fxn ∈ Txn– and d(yn, yn+) ≤ q–/ ·H(Txn–,Txn).

Indeed, since Tx ⊆ f (Y ), there exists x ∈ Y such that fx = y ∈ Tx. Besides, given y ∈
Tx, byNadler’s remark in [] and using that q–/ > , we can choose y ∈ Tx ⊆ f (Y ) such
that d(y, y) ≤ q–/ ·H(Tx,Tx) and y = fx for a certain x ∈ Y . The continuation of this
process allows to construct the two above-mentioned sequences {xn} and {yn} inductively.
We claim that {yn} is a Cauchy sequence. Using the inequality in () and also property

(), which is trivially valid for ε = , it follows, for n≥ , that

∫ d(fxn–,fxn)


ψ(t)dt ≤

∫ q–/H(Txn–,Txn–)


ψ(t)dt

≤ γ
(
q–/

)∫ H(Txn–,Txn–)


ψ(t)dt

≤ γ
(
q–/

) · q
∫ L(xn–,xn–)


ψ(t)dt,

where

L(xn–,xn–) = max

{
d(fxn–, fxn–),d(fxn–,Txn–),d(fxn–,Txn–),



(
d(fxn–,Txn–) + d(fxn–,Txn–)

)}

≤ max

{
d(fxn–, fxn–),d(fxn–, fxn–),d(fxn–, fxn),



d(fxn–, fxn)

}

≤ max

{
d(fxn–, fxn–),d(fxn–, fxn),



(
d(fxn–, fxn–) + d(fxn–, fxn)

)}

= max
{
d(fxn–, fxn–),d(fxn–, fxn)

}
.
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Suppose that

d(fxn–, fxn) > λ · d(fxn–, fxn–) for some n ∈ N with n≥ ,

where λ = γ (q–/) · q ∈ (, ), hence d(fxn–, fxn) >  and

 <max
{
d(fxn–, fxn–),d(fxn–, fxn)

}
<

λ
d(fxn–, fxn),

so that

∫ d(fxn–,fxn)


ψ(t)dt ≤ γ

(
q–/

) · q
∫ max{d(fxn–,fxn–),d(fxn–,fxn)}


ψ(t)dt

< γ
(
q–/

) · q
∫ 

λ
d(fxn–,fxn)


ψ(t)dt

≤ γ
(
q–/

) · q · γ
(

λ

)∫ d(fxn–,fxn)


ψ(t)dt ≤

∫ d(fxn–,fxn)


ψ(t)dt,

where we have also used () (a consequence of ()), (), () and (). The previous inequal-
ities imply that

∫ d(fxn–,fxn)


ψ(t)dt <

∫ d(fxn–,fxn)


ψ(t)dt,

which is a contradiction. In consequence,

d(fxn–, fxn) ≤ λ · d(fxn–, fxn–), for every n ∈N,n≥ ,

where λ = γ (q–/) · q ∈ (, ), by hypothesis, and hence {fxn} is a Cauchy sequence in f (Y ).
This is clear from the following inequality, valid for n,m ∈N, n >m,

d(fxn, fxm) ≤
n∑

j=m+

d(fxj, fxj–) ≤
n∑

j=m+

λj–d(fx, fx)

=
λm – λn

 – λ
d(fx, fx) ≤ λm

 – λ
d(fx, fx),

which tends to zero asm → +∞.
Since f (Y ) is complete, then the sequence {fxn} has a limit in f (Y ), say u. Let w ∈ f –(u)

and prove that fw ∈ Tw.
Suppose that fw /∈ Tw, then, by (), we have

∫ d(fxn+,Tw)


ψ(t)dt ≤

∫ H(Txn ,Tw)


ψ(t)dt ≤ q

∫ L(xn ,w)


ψ(t)dt,

where

L(xn,w) = max

{
d(fxn, fw),d(fxn,Txn),d(fw,Tw),



(
d(fxn,Tw) + d(fw,Txn)

)}

= d(fw,Tw) for n large.
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Here,wehave used that d(fxn, fw) = d(fxn,u) → , asn → +∞, d(fxn,Txn) ≤ d(fxn, fxn+) →
, as n → +∞, d(fw,Tw) >  due to fw /∈ Tw and Tw closed, and



(
d(fxn,Tw) + d(fw,Txn)

) ≤ 

(
d(fxn, fw) + d(fw,Tw) + d(fxn,Txn)

)
→ 


d(fw,Tw), as n→ +∞.

Hence, for n large enough, we have

∫ d(fxn+,Tw)


ψ(t)dt ≤ q

∫ d(fw,Tw)


ψ(t)dt.

Making n tend to +∞ in the previous inequality, we have

∫ d(fw,Tw)


ψ(t)dt ≤ q

∫ d(fw,Tw)


ψ(t)dt

and, therefore, since q <  and d(fw,Tw) > , we get
∫ d(fw,Tw)
 ψ(t)dt <

∫ d(fw,Tw)
 ψ(t)dt,

which is a contradiction. Hence fw ∈ Tw, that is, w is a coincidence point for T and f .
Although this fact is not relevant to the proof, we note that H(Txn–,Txn) →  since

lim
n→∞d(yn–, yn) = .

Indeed,

∫ H(Txn–,Txn)


ψ(t)dt ≤ q

∫ L(xn–,xn)


ψ(t)dt,

where

L(xn–,xn) ≤ max
{
d(fxn–, fxn),d(fxn, fxn+)

}
≤ max

{
d(fxn–, fxn),λd(fxn–, fxn)

}
= d(fxn–, fxn),

therefore

∫ H(Txn–,Txn)


ψ(t)dt ≤ q

∫ d(fxn–,fxn)


ψ(t)dt.

Then limn→+∞
∫ H(Txn–,Txn)
 ψ(t)dt =  and, by the properties of ψ , we get H(Txn–,

Txn) →  as n → +∞. From the definition of {yn}, we deduce that d(fxn,Txn) ≤ H(Txn–,
Txn) for every n and, therefore, limn→∞ d(fxn,Txn) = , so that {xn} is asymptotically
T-regular with respect to f . However, this property can be deduced directly from the fact
that

 ≤ d(fxn,Txn) ≤ d(fxn, fxn+) →  as n→ +∞.

http://www.boundaryvalueproblems.com/content/2013/1/145
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Now, if f and T are occasionally coincidentally idempotent, then ffw = fw for some w ∈
C(T , f ). Then we have

∫ H(Tfw,Tw)


ψ(t)dt ≤ q

∫ L(fw,w)


ψ(t)dt, ()

where

L(fw,w) = max

{
d(ffw, fw),d(ffw,Tfw),d(fw,Tw),



(
d(ffw,Tw) + d(fw,Tfw)

)}

= max

{
d(fw, fw),d(fw,Tfw),d(fw,Tw),



(
d(fw,Tw) + d(fw,Tfw)

)}

= d(fw,Tfw) ≤ H(Tw,Tfw).

If Tfw 	= Tw, then from inequality () and using () (which is guaranteed by ()), we
have that

∫ H(Tfw,Tw)


ψ(t)dt ≤ q

∫ H(Tfw,Tw)


ψ(t)dt <

∫ H(Tfw,Tw)


ψ(t)dt,

which is a contradiction. Hence Tfw = Tw. Thus we have fw = ffw and fw ∈ Tw = Tfw, i.e.,
fw is a common fixed point of f and T . �

Let � denote the family of maps φ from the set R+ of nonnegative real numbers to itself
such that

φ(t) ≤ qt for all t ≥  and for some q ∈ (, ). ()

Corollary  Let Y be an arbitrary non-empty set, (X,d) be ametric space, f : Y → X and
T : Y → CB(X) be such that T(Y ) ⊆ f (Y ),

∫ H(Tx,Ty)


ψ(t)dt ≤ φ

(∫ L(x,y)


ψ(t)dt

)
()

for all x, y in Y , where φ ∈ � (satisfying () for a certain q ∈ (, )),

f (Y ) is complete,

ψ :R+ → R+ is a Lebesgue measurable mapping which is nonnegative, summable on each
compact interval and such that () holds. Suppose also that (), () and () hold for a cer-
tain γ : (, +∞) −→ R+ and q determined by (). Then T and f have a coincidence point.
Further, if f and T are occasionally coincidentally idempotent, then f and T have a com-
mon fixed point.

Proof It is a consequence of Theorem  since () and () imply that

∫ H(Tx,Ty)


ψ(t)dt ≤ φ

(∫ L(x,y)


ψ(t)dt

)
≤ q

∫ L(x,y)


ψ(t)dt

for all x, y in Y and q ∈ (, ). �

http://www.boundaryvalueproblems.com/content/2013/1/145
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Remark  The condition
∫ με


ψ(t)dt ≤ μ

∫ ε


ψ(t)dt for each μ >  and ε >  ()

implies the validity of hypothesis () in Theorem  for the particular case of γ the iden-
tity mapping. Moreover, for  < q < , hypotheses () and () are trivially satisfied for this
choice of γ . Indeed, using that  < q < , we get

 < γ
(
q–/

) · q = q–/ · q = q/ < 

and

γ
(
q–/

) · q · γ
(


γ (q–/) · q

)
= q–/q


q–/q

= .

Remark  Assuming (), condition () is trivially valid if λ · γ ( 
λ
) ≤  for every λ ∈ (, )

or, equivalently, γ ( 
λ
) ≤ 

λ
for every λ ∈ (, ), that is, γ (z) ≤ z for every z > . Note that this

last condition is trivially valid for γ the identity mapping. Moreover, if γ (z) ≤ z for every
z > , then γ (z) < z for every z >  and, therefore, if q ∈ (, ), then γ (q–/) < q–, obtaining
() if γ (q–/) > .

Remark  According to Remark , for q ∈ (, ) fixed andψ satisfying (), an admissible
function γ can be obtained by taking

γ (z) ≥ sup
ε>

∫ zε
 ψ(t)dt∫ ε

 ψ(t)dt
, z > ,

provided that γ (q–/) >  and γ (z) ≤ z for every z > .

Example  Taking ψ as the constant function ψ(t) = K > , t > , in the statement of
Theorem , condition () is reduced to

Kμε ≤ γ (μ)Kε for each μ >  and ε > ,

so that we must choose γ as a nonnegative function satisfying that γ (z) = z for z >  (ob-
viously, γ (q–/) >  since q ∈ (, )) in order to guarantee conditions (), () and ().

Example  A simple calculation provides that, for the function ψ(t) = t, t > , condition
() is written as γ (z) ≥ z for z >  and, therefore, in this case condition () is never fulfilled.
If we take ψ(t) = Ktm, t > , for K >  andm >  fixed, then () implies that γ (z) ≥ zm+ > z
for z > .

Example  Now, we choose ψ(t) = Ktm, t > , where K >  and – < m <  are fixed.
Note that the case m =  has already been studied in Example . In this case – <m < ,
condition () is reduced to

K
(με)m+

m + 
≤ γ (μ)K

εm+

m + 
for μ >  and ε > ,

http://www.boundaryvalueproblems.com/content/2013/1/145
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which is equivalent to γ (z) ≥ zm+ for z > . Note that this inequality implies, for  < q < ,
that γ (q–/) > . If we add the hypothesis γ (z) ≤ z for z > , then we guarantee the validity
of conditions () and () due to Remark . Hence, we can take any nonnegative function
γ satisfying that

zm+ ≤ γ (z) ≤ z for z > .

Of course, γ (z) = z and γ (z) = zm+ are valid choices.

Example  Take ψ(t) = e–t , t > . Condition () is equivalent to

 – e–με ≤ γ (μ)
(
 – e–ε

)
for μ >  and ε > ,

that is,

γ (μ) ≥  – e–με

 – e–ε
for μ >  and ε > .

Now, for each z >  fixed, we calculate supε>
–e–zε
–e–ε , which is obviously positive, and we

check that its value is equal to z.
It is easy to prove that for z >  fixed, the function ε ∈ (, +∞) −→ Rz(ε) = –e–zε

–e–ε is
decreasing on (,+∞). Indeed, the sign of its derivative coincides with the sign of the
function ν(ε) = ze–zε( – e–ε) – ( – e–zε)e–ε and also with the sign of τ (ε) = ze–zε(eε – ) +
e–zε –  for ε ∈ (, +∞). Now, the function τ is strictly negative on (,+∞) since τ () =
τ (+) =  and τ ′(ε) = z( – z)e–zε(eε – ) <  for ε > .
Moreover, limε→+ Rz(ε) = z for each z > ; in consequence, supε>Rz(ε) = z for every

z > . Therefore, if γ (z) ≥ z for every z > , then () follows. Note also that if q ∈ (, ), then
γ (q–/) > . Finally, for q ∈ (, ), if we take γ : (, +∞) −→ R+ such that γ (z) = z for z > ,
we deduce the validity of (), () and ().

The following example shows that Theorem  is a proper generalization of the fixed
point results in [–].

Example  Let X = R+ be endowed with the Euclidean metric, let f : X → X and T :
X → CB(X) be defined by fx = (x + x) and Tx = [,x + ]. Let φ :R+ →R+ be defined by
φ(t) = 

 t for all t ∈R+. Then mappings f and T are not commuting and also do not satisfy
any of its generalizations, viz weakly commuting, compatibility, weak compatibility. Also
the mappings f and T are not coincidentally commuting. Note that f  ∈ T, but ff  	= f 
and so f and T are not coincidentally idempotent, but f  ∈ T and ff  = f  thus f and T
are occasionally coincidentally idempotent. For all x and y in X, we have

∫ H(Tx,Ty)


ψ(t)dt =

∫ |x–y|


ψ(t)dt =

∫ ( x+y )· 
(x+y+) ·(|x–y|·(x+y+))


ψ(t)dt

=
∫ ( x+y )· 

(x+y+) ·(|x–y+x–y|)


ψ(t)dt ≤

∫ 
 d(fx,fy)


ψ(t)dt

≤ 


∫ d(fx,fy)


ψ(t)dt ≤ 



∫ L(x,y)


ψ(t)dt = φ

(∫ L(x,y)


ψ(t)dt

)
.

http://www.boundaryvalueproblems.com/content/2013/1/145
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Note that these inequalities are valid if

∫ 
 d(fx,fy)


ψ(t)dt ≤ 



∫ d(fx,fy)


ψ(t)dt,

which is satisfied taking, for instance, the constant function ψ ≡ . On the other hand, γ
is chosen as the identity map and it satisfies () and ().
Note that  is a common fixed point of f and T . We remark that the results of [–] and

[] cannot be applied to these mappings f and T .

Theorem  In Theorem ,we can assume, instead of condition (), one of the inequalities

∫ H(Tx,Ty)


ψ(t)dt ≤ q

(
a

∫ L(x,y)


ψ(t)dt + b

∫ N(x,y)


ψ(t)dt

)
for all x, y in Y , ()

or

∫ H(Tx,Ty)


ψ(t)dt ≤ q

∫ aL(x,y)+bN(x,y)


ψ(t)dt for all x, y in Y , ()

where a,b≥ , a + b ≤  and q ∈ (, ).
Similarly, in Corollary , we can consider one of the contractivity conditions

∫ H(Tx,Ty)


ψ(t)dt ≤ φ

(
a

∫ L(x,y)


ψ(t)dt + b

∫ N(x,y)


ψ(t)dt

)
for all x, y in Y , ()

or

∫ H(Tx,Ty)


ψ(t)dt ≤ φ

(∫ aL(x,y)+bN(x,y)


ψ(t)dt

)
for all x, y in Y , ()

where a,b ≥ , a+b ≤  and φ ∈ � (satisfying () for a certain q ∈ (, )) and the conclusion
follows.

Proof It follows from the inequality

N(x, y)≤ L(x, y) for every x, y

and the nonnegative character of a, b and ψ . Indeed, d(fx, fy) ≤ [L(x, y)],

d(fx,Tx) · d(fy,Ty) ≤ [
L(x, y)

],
d(fx,Ty) · d(fy,Tx) ≤ 


(
d(fx,Ty) + d(fy,Tx)

) ≤ [
L(x, y)

],


d(fx,Tx) · d(fy,Tx) ≤

[
max

{
d(fx,Tx),



(
d(fx,Ty) + d(fy,Tx)

)}]

≤ [
L(x, y)

],


d(fx,Ty) · d(fy,Ty) ≤

[
max

{
d(fy,Ty),



(
d(fx,Ty) + d(fy,Tx)

)}]

≤ [
L(x, y)

],

http://www.boundaryvalueproblems.com/content/2013/1/145
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hence, for instance,

a
∫ L(x,y)


ψ(t)dt + b

∫ N(x,y)


ψ(t)dt ≤ (a + b)

∫ L(x,y)


ψ(t)dt ≤

∫ L(x,y)


ψ(t)dt.

Note that, in cases () and (), it is not necessary to assume the nondecreasing character
of the function φ since, using that φ ∈ �, we deduce () and (), respectively. �

Of course, the function φ ≡  is admissible in the results of this paper.
Note that, taking a =  and b =  in the inequalities of Theorem , we obtain the cor-

responding contractivity conditions of Theorem  and Corollary . On the other hand,
taking a =  and b =  in Theorem , we have the following results, which are also corol-
laries of Theorem .

Corollary  Let Y be an arbitrary non-empty set, (X,d) be a metric space, f : Y → X and
T : Y → CB(X) be such that conditions (), () hold and

∫ H(Tx,Ty)


ψ(t)dt ≤ q

∫ N(x,y)


ψ(t)dt for all x, y ∈ Y , ()

where  < q <  and ψ : R+ → R+ is a Lebesgue measurable mapping which is nonnega-
tive, summable on each compact interval and such that () holds. Assume also that (),
() and () are fulfilled for a certain γ : (, +∞) −→ R+. Then f and T have a coincidence
point. Further, if f and T are occasionally coincidentally idempotent, then f and T have a
common fixed point.

Corollary  Let Y be an arbitrary non-empty set, (X,d) be a metric space, f : Y → X and
T : Y → CB(X) be such that conditions (), () hold and

∫ H(Tx,Ty)


ψ(t)dt ≤ φ

(∫ N(x,y)


ψ(t)dt

)
for all x, y ∈ Y , ()

where φ ∈ � (satisfying () for q ∈ (, )) andψ :R+ →R+ is a Lebesgue measurable map-
ping which is nonnegative, summable on each compact interval and such that () holds.
Assume also that (), () and () are fulfilled for a certain γ : (, +∞) −→ R+. Then f and
T have a coincidence point. Further, if f and T are occasionally coincidentally idempotent,
then f and T have a common fixed point.

Let η : [,∞) → [, ) be a function having the following property (see, for instance,
[, ]):

(P) For t ≥ , there exist δ(t) > , s(t) <  such that  ≤ r – t < δ(t) implies η(r)≤ s(t).

This property obviously holds if η is continuous since η attains its maximum (less than )
on each compact [t, t + δ(t)].

Definition  A sequence {xn} is said to be asymptotically T-regular with respect to f if
limn→∞ d(fxn,Txn) = .

http://www.boundaryvalueproblems.com/content/2013/1/145
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The following theorem is related to the main results of Hu [, Theorem ], Jungck
[], Kaneko [], Nadler [, Theorem ] and Beg and Azam [, Theorem . and Corol-
lary .].

Theorem  Let Y be an arbitrary non-empty set, (X,d) be a metric space, f : Y → X and
T : Y → CL(X) be such that condition () holds and

∫ H(Tx,Ty)


ψ(t)dt < η

(
d(fx, fy)

) ∫ d(fx,fy)


ψ(t)dt ()

for all x, y ∈ Y , where η : [,∞)→ [, ) satisfies (P) and ψ ≥  is nonincreasing.
Suppose also that Tx is a compact set for every x ∈ Y .
If f (Y ) is complete, then
(i) there exists an asymptotically T-regular sequence {xn} with respect to f in Y ,
(ii) f and T have a coincidence point.

Further, if f and T are occasionally coincidentally idempotent, then f and T have a com-
mon fixed point.

Proof For some x in Y , let y = fx and choose x in Y such that y = fx ∈ Tx. Then, by
(), we have

∫ H(Tx,Tx)


ψ(t)dt < η

(
d(fx, fx)

)∫ d(fx,fx)


ψ(t)dt.

Using (), we can choose x ∈ Y such that y = fx ∈ Tx and satisfying that

d(y, y) = d(fx, y) = d(fx,Tx) ≤ H(Tx,Tx),

hence

∫ d(y,y)


ψ(t)dt =

∫ d(fx,fx)


ψ(t)dt < η

(
d(fx, fx)

)∫ d(fx,fx)


ψ(t)dt

≤
∫ d(fx,fx)


ψ(t)dt.

Note that, in the previous inequalities, we have used that d(fx, fx) > . If d(fx, fx) = ,
then fx = fx ∈ Tx and {xn} is asymptotically T-regular with respect to f .
By induction, we construct a sequence {xn} in Y and {yn} in f (Y ) such that, for every n,

d(fxn–, yn) = d(fxn–,Txn–) = min
y∈Txn–

d(fxn–, y) ≤ H(Txn–,Txn–),

and yn = fxn ∈ Txn–.
Also, we have

∫ d(yn+,yn+)


ψ(t)dt

=
∫ d(fxn+,fxn+)


ψ(t)dt

http://www.boundaryvalueproblems.com/content/2013/1/145


Pathak and Rodríguez-López Boundary Value Problems 2013, 2013:145 Page 13 of 21
http://www.boundaryvalueproblems.com/content/2013/1/145

=
∫ d(fxn+,Txn+)


ψ(t)dt ≤

∫ H(Txn ,Txn+)


ψ(t)dt

≤ η
(
d(fxn, fxn+)

)∫ d(fxn ,fxn+)


ψ(t)dt

<
∫ d(fxn ,fxn+)


ψ(t)dt =

∫ d(yn ,yn+)


ψ(t)dt.

It follows that the sequence {d(yn, yn+)} is decreasing and converges to its greatest lower
bound, say t. Clearly t ≥ . If t > , then by the property (P) of η, there will exist δ(t) > 
and s(t) <  such that

 ≤ r – t < δ(t) implies η(r) ≤ s(t).

For this δ(t) > , there exists N ∈ N such that  ≤ d(yn, yn+) – t < δ(t), whenever n≥ N .
Hence η(d(yn, yn+)) ≤ s(t), whenever n ≥ N . Let K = max{η(d(y, y)),η(d(y, y)), . . . ,
η(d(yN–, yN )), s(t)}. Then for n = , , , . . . , we have

∫ d(yn ,yn+)


ψ(t)dt < η

(
d(yn–, yn)

)∫ d(yn–,yn)


ψ(t)dt

≤ K
∫ d(yn–,yn)


ψ(t)dt

≤ Kn
∫ d(y,y)


ψ(t)dt →  as n→ ∞,

which contradicts the assumption that t > . Thus limn→∞ d(yn, yn+) = ; i.e., d(fxn,
Txn) →  as n → +∞. Hence the sequence {xn} is asymptotically T-regular with respect
to f .
We claim that {fxn} is a Cauchy sequence. Let n,m ∈ N with n <m, then, by the nonin-

creasing character of ψ , we get

∫ d(yn ,ym)


ψ(t)dt

≤
∫ d(yn ,yn+)+d(yn+,yn+)+···+d(ym–,ym)


ψ(t)dt =

∫ d(yn ,yn+)


ψ(t)dt

+
∫ d(yn ,yn+)+d(yn+,yn+)

d(yn ,yn+)
ψ(t)dt + · · · +

∫ d(yn ,yn+)+d(yn+,yn+)+···+d(ym–,ym)

d(yn ,yn+)+d(yn+,yn+)+···+d(ym–,ym–)
ψ(t)dt

≤
∫ d(yn ,yn+)


ψ(t)dt +

∫ d(yn+,yn+)


ψ(t)dt + · · · +

∫ d(ym–,ym)


ψ(t)dt

=
m–∑
i=n

∫ d(yi ,yi+)


ψ(t)dt.

Now, we recall that

∫ d(yn+,yn+)


ψ(t)dt ≤ η

(
d(yn, yn+)

)∫ d(yn ,yn+)


ψ(t)dt

http://www.boundaryvalueproblems.com/content/2013/1/145
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for every n, which implies that

∫ d(yn+,yn+)


ψ(t)dt ≤ η

(
d(yn+, yn+)

)∫ d(yn+,yn+)


ψ(t)dt

≤ η
(
d(yn+, yn+)

)
η
(
d(yn, yn+)

)∫ d(yn ,yn+)


ψ(t)dt.

Following this procedure, we prove that

∫ d(yj ,yj+)


ψ(t)dt ≤

j–∏
i=n

η
(
d(yi, yi+)

)∫ d(yn ,yn+)


ψ(t)dt, for every j = n + , . . . ,m – .

Therefore,

∫ d(yn ,ym)


ψ(t)dt ≤

m–∑
i=n

∫ d(yi ,yi+)


ψ(t)dt

=
∫ d(yn ,yn+)


ψ(t)dt +

m–∑
i=n+

∫ d(yi ,yi+)


ψ(t)dt

≤
[
 +

m–∑
i=n+

i–∏
l=n

η
(
d(yl, yl+)

)]∫ d(yn ,yn+)


ψ(t)dt.

We check that the right-hand side in the last inequality tends to  as n,m → +∞. Since∫ d(yn ,yn+)
 ψ(t)dt →  as n → +∞, it suffices to show that

∑m–
i=n+

∏i–
l=n η(d(yl, yl+)) is

bounded (uniformly on n,m). Indeed, we check that
∑m–

i=n+
∏i–

l=n η(zl) is bounded for any
sequence {zl} with nonnegative terms and tending to  as l → +∞, using the property (P)
of the function η. Given t = , by (P), there exist δ() > , s <  such that  ≤ r < δ()
implies η(r) ≤ s. Since {zl} → , given δ() > , there exists l ∈ N such that, for every
l ≥ l, we have  ≤ zl < δ(). This implies that η(zl) ≤ s for every l ≥ l.
In consequence, for n≥ l, we get

 ≤
m–∑
i=n+

i–∏
l=n

η(zl) ≤
m–∑
i=n+

i–∏
l=n

s =
m–∑
i=n+

(s)i–n

=
s – (s)m–n

 – s
<

s
 – s

,

and this expression is bounded independently ofm, n.
Hence {fxn} is a Cauchy sequence in f (Y ). Since f (Y ) is complete, {fxn} converges to

some p in f (Y ). Let z ∈ f –(p). Then fz = p. Next, we have

∫ d(fz,Tz)


ψ(t)dt ≤

∫ d(fxn+,fz)+d(fxn+,Tz)


ψ(t)dt

=
∫ d(fxn+,Tz)


ψ(t)dt +

∫ d(fxn+,Tz)+d(fz,fxn+)

d(fxn+,Tz)
ψ(t)dt

≤
∫ d(fxn+,Tz)


ψ(t)dt +

∫ d(fz,fxn+)


ψ(t)dt
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≤
∫ H(Txn ,Tz)


ψ(t)dt +

∫ d(fz,fxn+)


ψ(t)dt

≤ η
(
d(fxn, fz)

) ∫ d(fxn ,fz)


ψ(t)dt +

∫ d(fz,fxn+)


ψ(t)dt.

Letting n → ∞, we get
∫ d(fz,Tz)
 ψ(t)dt ≤ . Thus we have d(fz,Tz) = . Hence fz ∈ Tz.

Now, if f and T are occasionally coincidentally idempotent, then ffw = fw for some w ∈
C(T , f ). Then we have

∫ H(Tfw,Tw)


ψ(t)dt ≤ η

(
d(ffw, fw)

)∫ d(ffw,fw)


ψ(t)dt = .

Thus, Tfw = Tw. It follows that ffw = fw ∈ Tw = Tfw. Hence, fw is a common fixed point of
T and f . �

Nowwe state some fixed point theorems for Kannan-typemulti-valuedmappings which
extend and generalize the corresponding results of Shiau et al. [] and Beg and Azam
[, ]. A proper blend of the proof of Theorem  and those of [, Th. , Th. , Th. 
respectively] and [, Theorems ., ., .] will complete the proof.

Theorem  Let Y be an arbitrary non-empty set, (X,d) be a metric space, f : Y → X and
T : Y → CB(X) be such that () holds and

∫ Hr (Tx,Ty)


ψ(t)dt

≤ α
(
d(fx,Tx)

)∫ dr(fx,Tx)


ψ(t)dt + α

(
d(fy,Ty)

)∫ dr(fy,Ty)


ψ(t)dt ()

for all x, y ∈ Y , where αi : R+ → [, ) (i = , ) are bounded on bounded sets, r is some
fixed positive real number and ψ : R+ → R+ is a Lebesgue measurable mapping which is
summable on each compact interval and

∫ ε

 ψ(t)dt >  for each ε > . Suppose that there
exists an asymptotically T-regular sequence {xn} with respect to f in Y . If T(Y ) is complete
or

there exists k ∈N such that fxn+k ∈ Txn for every n ∈N, and f (Y ) is complete, ()

then f and T have a coincidence point. Further, if f and T are occasionally coincidentally
idempotent, then f and T have a common fixed point.

Proof By hypotheses,

∫ Hr (Txn ,Txm)


ψ(t)dt

≤ α
(
d(fxn,Txn)

)∫ dr(fxn ,Txn)


ψ(t)dt + α

(
d(fxm,Txm)

)∫ dr (fxm ,Txm)


ψ(t)dt.

Since {xn} is asymptotically T-regular with respect to f in Y , then {α(d(fxn,Txn))}n
and {α(d(fxm,Txm))}m are bounded sequences and

∫ dr(fxn ,Txn)
 ψ(t)dt → ,

http://www.boundaryvalueproblems.com/content/2013/1/145
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∫ dr(fxm ,Txm)
 ψ(t)dt → , as n,m → +∞. This provides the property H(Txn,Txm) →  as
n,m → +∞, so that {Txn} is a Cauchy sequence in (CB(X),H).
IfT(Y ) is complete, there existsK * ∈ T(Y ) ⊆ f (Y ) such thatH(Txn,K *) →  as n → +∞.

Let u ∈ Y be such that f (u) ∈ K *. Then

∫ dr(fu,Tu)


ψ(t)dt ≤

∫ Hr (K *,Tu)


ψ(t)dt ≤

∫ (H(K *,Txn)+H(Txn ,Tu))r


ψ(t)dt

=
∫ Hr (Txn ,Tu)


ψ(t)dt +

∫ Hr (Txn ,Tu)+terms containing H(K *,Txn)

Hr (Txn ,Tu)
ψ(t)dt

≤ α
(
d(fxn,Txn)

)∫ dr (fxn ,Txn)


ψ(t)dt + α

(
d(fu,Tu)

) ∫ dr(fu,Tu)


ψ(t)dt

+
∫ Hr (Txn ,Tu)+terms containing H(K *,Txn)

Hr (Txn ,Tu)
ψ(t)dt,

where the number of terms containing H(K *,Txn) is a finite number depending on r, and
therefore fixed. Calculating the limit as n → +∞ and taking into account that the length
of the intervals in the last integral tends to zero, we get

∫ dr(fu,Tu)


ψ(t)dt

(
 – α

(
d(fu,Tu)

)) ≤ lim
n→+∞α

(
d(fxn,Txn)

)∫ dr(fxn ,Txn)


ψ(t)dt = .

Therefore,

∫ dr(fu,Tu)


ψ(t)dt ≤ 

and, by the properties of ψ , we get dr(fu,Tu) = , which implies that fu ∈ Tu and u is a
coincidence point.
Now, suppose that f (Y ) is complete.Note thatTxn is closed and bounded for everyn ∈N.

Take k >  fixed. By the results in [], we can affirm that for every y ∈ Txn, there exists
y ∈ Txm such that d(y, y)≤ kH(Txn,Txm).
Given n,m ∈ N, we choose y ∈ Txn and, for this y ∈ Txn fixed, we choose y ∈ Txm such

that d(y, y) ≤ kH(Txn,Txm). Then

d(fxn, fxm) ≤ d(fxn, y) + d(y, y) + d(y, fxm)

≤ d(fxn,Txn) + kH(Txn,Txm) + d(Txm, fxm).

By the hypothesis on {xn} and the Cauchy character of {Txn}, we deduce that {fxn} is a
Cauchy sequence. Since f (Y ) is complete, there exists f (u) ∈ f (Y ) such that {f (xn)} → f (u).
By hypotheses, d(fxn+k ,Tu) ≤ H(Txn,Tu) for every n, hence

∫ dr(fxn+k ,Tu)


ψ(t)dt

≤
∫ Hr (Txn ,Tu)


ψ(t)dt

≤ α
(
d(fxn,Txn)

)∫ dr(fxn ,Txn)


ψ(t)dt + α

(
d(fu,Tu)

) ∫ dr (fu,Tu)


ψ(t)dt,
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and taking the limit as n → +∞, we get

∫ dr(fu,Tu)


ψ(t)dt ≤ α

(
d(fu,Tu)

) ∫ dr(fu,Tu)


ψ(t)dt.

In this case,

(
 – α

(
d(fu,Tu)

))∫ dr (fu,Tu)


ψ(t)dt ≤ 

and d(fu,Tu) = , which implies that fu ∈ Tu. Now, if f and T are coincidentally idempo-
tent, then ffw = fw for some w ∈ C(T , f ). Hence

∫ Hr (Tfw,Tw)


ψ(t)dt

≤ α
(
d(ffw,Tfw)

) ∫ dr (ffw,Tfw)


ψ(t)dt + α

(
d(fw,Tw)

)∫ dr(fw,Tw)


ψ(t)dt

= α
(
d(fw,Tfw)

) ∫ dr(fw,Tfw)


ψ(t)dt.

Since ffw = fw ∈ Tw, we get

∫ dr(fw,Tfw)


ψ(t)dt ≤

∫ Hr (Tw,Tfw)


ψ(t)dt ≤ α

(
d(fw,Tfw)

) ∫ dr(fw,Tfw)


ψ(t)dt.

Therefore

∫ dr(fw,Tfw)


ψ(t)dt

(
 – α

(
d(fw,Tfw)

)) ≤ ,

obtaining d(fw,Tfw) =  and fw ∈ Tfw. Since  ≤ ∫ Hr (Tfw,Tw)
 ψ(t)dt ≤ , we deduce that

H(Tfw,Tw) =  and Tfw = Tw. In consequence, ffw = fw ∈ Tw = Tfw and fw is a common
fixed point of T and f . �

Remark  In the statement of Theorem , condition () can be replaced by the more
general one

f (Y ) is complete.

To complete the proof with this more general hypothesis, take into account that for y ∈ Y ,
T(y) is a closed set in X and T(Y ) ⊆ f (Y ). Using that f (Y ) is complete, we deduce that
(CL(f (Y )),H) is complete. Hence {Txn} is a sequence in CL(f (Y )) and it is a Cauchy se-
quence in (CL(f (Y )),H). Therefore, there exists K * ∈ CL(f (Y )) such that H(Txn,K *) → 
as n → +∞. Note also that K * is a closed set in the complete space f (Y ), then K * is
complete and, therefore, a closed set, then K * ∈ CL(X). Once we have proved that
H(Txn,K *)→  as n→ +∞ in (CL(f (Y )),H), the proof follows analogously.

Theorem  In addition to the hypotheses of Theorem , suppose that Txn is compact
for all n ∈N. If f (z) is a cluster point of {fxn}, then z is a coincidence point of f and T .

http://www.boundaryvalueproblems.com/content/2013/1/145
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Proof Let yn ∈ Txn be such that d(fxn, yn) = d(fxn,Txn) → , this is possible since Txn is
compact. It is obvious that a cluster point of {fxn} is a cluster point of {yn}. Let f (z) be a
cluster point of {fxn} and {yn}, then we check that fz ∈ Tu, where u is obtained in the proof
of Theorem . Note that, for every y ∈ Tu,

d(fz, y) ≤ d(fz, fxn) + d(fxn, yn) + d(yn, y) = d(fz, fxn) + d(fxn,Txn) + d(yn, y),

hence

d(fz,Tu) = inf
y∈Tud(fz, y) ≤ d(fz, fxn) + d(fxn,Txn) + inf

y∈Tud(yn, y)

= d(fz, fxn) + d(fxn,Txn) + d(yn,Tu) ≤ d(fz, fxn) + d(fxn,Txn) +H(Txn,Tu).

In consequence,

∫ dr(fz,Tu)


ψ(t)dt ≤

∫ (d(fz,fxn)+d(fxn ,Txn)+H(Txn ,Tu))r


ψ(t)dt.

Using that there exists a subsequence fxnk converging to fz, the properties of {xn} and the
inequality

∫ Hr (Txnk ,Tu)


ψ(t)dt

≤ α
(
d(fxnk ,Txnk )

)∫ dr (fxnk ,Txnk )


ψ(t)dt + α

(
d(fu,Tu)

) ∫ dr (fu,Tu)


ψ(t)dt

k→+∞−→ ,

then, taking the limit when nk → +∞, we get
∫ dr (fz,Tu)
 ψ(t)dt ≤  and fz ∈ Tu. To prove

that fz ∈ Tz, using that fu ∈ Tu, we get

∫ dr(fz,Tz)


ψ(t)dt ≤

∫ Hr (Tu,Tz)


ψ(t)dt

≤ α
(
d(fu,Tu)

) ∫ dr(fu,Tu)


ψ(t)dt + α

(
d(fz,Tz)

) ∫ dr(fz,Tz)


ψ(t)dt

= α
(
d(fz,Tz)

) ∫ dr(fz,Tz)


ψ(t)dt.

This implies that

(
 – α

(
d(fz,Tz)

))∫ dr(fz,Tz)


ψ(t)dt ≤ 

and, by the properties of α and ψ , we deduce that d(fz,Tz) = , which proves that z is a
coincidence point of f and T . �

The following result extends [, Theorem .].

Theorem  Let Y be an arbitrary non-empty set, (X,d) be a metric space, f : Y → X and
T : Y → CB(X) be such that () and () hold, where αi :R+ → [, ) (i = , ) are bounded
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on bounded sets and such that

α
(
d(fx,Tx)

)
+ α

(
d(fy,Ty)

) ≤  for every x, y,

r is some fixed positive real number and ψ : R+ → R+ is a Lebesgue measurable mapping
which is summable on each compact interval, and ψ(x) >  for each x > . Suppose that

inf
{
d(fzn,Tzn) : n ∈N

}
=  for every sequence {zn} in Y with fzn ∈ Tzn–,∀n. ()

If T(Y ) is complete or f (Y ) is complete, then f and T have a coincidence point. Further, if
f and T are occasionally coincidentally idempotent, then f and T have a common fixed
point.

Proof Using Theorem , it suffices to prove that there exists an asymptotically T-regular
sequence {xn} with respect to f in Y . Let x ∈ Y and take {xn} in Y such that fxn ∈ Txn–
for every n ∈N. Then

∫ dr(fxn ,Txn)


ψ(t)dt

≤
∫ Hr (Txn–,Txn)


ψ(t)dt

≤ α
(
d(fxn–,Txn–)

)∫ dr(fxn–,Txn–)


ψ(t)dt + α

(
d(fxn,Txn)

)∫ dr(fxn ,Txn)


ψ(t)dt.

Hence,

(
 – α

(
d(fxn,Txn)

))∫ dr(fxn ,Txn)


ψ(t)dt ≤ α

(
d(fxn–,Txn–)

)∫ dr(fxn–,Txn–)


ψ(t)dt,

or also, using the hypothesis on α and α,

∫ dr(fxn ,Txn)


ψ(t)dt ≤ α(d(fxn–,Txn–))

( – α(d(fxn,Txn)))

∫ dr(fxn–,Txn–)


ψ(t)dt

≤
∫ dr(fxn–,Txn–)


ψ(t)dt.

The properties of ψ imply that dr(fxn,Txn) ≤ dr(fxn–,Txn–) for every n ∈ N, and
{d(fxn,Txn)}n∈N is nonincreasing and bounded below. Therefore it is convergent to the
infimum, that is,

d(fxn,Txn) → inf
{
d(fxn,Txn) : n ∈ N

}
= ,

and {xn} is asymptotically T-regular with respect to f in Y . �

Remark  Note that condition () in Theorem  cannot be replaced by

inf
{
d(fx,Tx) : x ∈ Y

}
= 
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since the infimum taking the sequence {zn} could be positive (we calculate the infimum in
a smaller set).

Remark  In Theorem , condition () can be replaced by the following:

inf
{
H(Tzn–,Tzn) : n ∈ N

}
= ,

for every sequence {zn} in Y with fzn ∈ Tzn–,∀n. ()

Indeed, since

d(fzn,Tzn) ≤ H(Tzn–,Tzn), ∀n,

then

 ≤ inf
{
d(fzn,Tzn) : n ∈ N

} ≤ inf
{
H(Tzn–,Tzn) : n ∈N

}
= ,

and d(fzn,Tzn) → .

Remark  In Theorem , if we are able to obtain a sequence {xn} with an infinite num-
ber of terms which are different, then we can relax condition () to the following:

inf
{
d(fx,Tx) : x ∈ B

}
=  for every infinite set B of Y . ()
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