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1 Introduction
Problems of general anisotropic total variation flow arise in a number of areas of science.
The parabolic equations representwhatGiga et al. called a very singular diffusivity (see [])
and are a natural generalization of the total variation flow in the presence of an anisotropy.
In the isotropic case, the equation ut = div(∂ξ f (Du)) becomes ut = div( Du

|Du| ) when the La-
grangian f : RN → [, +∞] is given by f (ξ ) = ‖ξ‖, where ‖ξ‖ is the usual l-norm; i.e.,
‖ξ‖ := (

∑N
i= ξ


i )


 . Let us recall that this PDE appears when one uses the steepest decent

method to minimize the total variation. This method was introduced by Rudin and Os-
her (see [, ]) in the context of image denoising and reconstruction. In the last years, its
applications have been studied by many authors (see [–]).
Let � be an open bounded subset in R

N , N ≥ , with boundary ∂� of class C. In this
paper, we are interested in the problem

⎧⎪⎨⎪⎩
∂u
∂t = div(∂ξ f (x,Du)) – h(x,u) in [,T]× �,
∂u
∂η

=  on [,T]× ∂�,
u() = u in �,

(.)

where u ∈ L(�), f (x, ξ ) is a -homogeneous convex functionwith linear growth as ‖ξ‖ →
∞, ∂

∂η
is the Neumann boundary operator associated to ∂ξ f (x, ξ ), i.e., ∂u

∂η
:= ∂ξ f (x, ξ ) · ν

with ν the unit outward normal on ∂�, and the function h(x,u) : � ×R →R satisfies the
following assumptions, which we shall refer to collectively as (M):

(M) For almost all x ∈ �, r → h(x, r) is continuous nondecreasing, and h(x, ) = ;
(M) For every r ∈ R, x → h(x, r) is in L(�).

As argued in [], the choice of Neumann boundary conditions is a natural choice in
image processing. It corresponds to the reflection of the picture across the boundary
and has the advantage of not imposing any value on boundary and not creating edges

© 2013 Rui and Si; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.boundaryvalueproblems.com/content/2013/1/147
mailto:rjhygl@163.com
http://creativecommons.org/licenses/by/2.0


Rui and Si Boundary Value Problems 2013, 2013:147 Page 2 of 14
http://www.boundaryvalueproblems.com/content/2013/1/147

on it. For instance, in [], Andreu, Caselles and Mazón considered the elliptic problem
u – diva(u,Du) = g with Neumann boundary conditions. In [], Andreu et al. obtained
the existence and uniqueness of entropy solutions of quasilinear parabolic equation with
the Neumann boundary, i.e.,⎧⎪⎨⎪⎩

∂u
∂t = diva(u,Du) in (,T)× �,
∂u
∂η

=  on (,T)× ∂�,
u() = u in �,

(.)

where u() = u ∈ L(�), a(z, ξ ) = ∇ξ f (z, ξ ), and f ∈ C satisfies some additional assump-
tions. Our problem is closely related to motion under anisotropic mean curvature flow
(see []) when h(x,u)≡ . If we take the f -distance to give a set E as an initial condition
(f  being the polar function of f ), then each sublevel set of the anisotropicmean curvature
motion behaves instantaneously as the solution of Cauchy problem (.) where � = R

N .
Recently Moll [] proved the existence and uniqueness of the solutions of Dirichlet prob-
lem (.) with h(x,u) ≡ . As we all know, it is possible that the solution of (.) will blow
up with perturbations. Therefore, in this paper, we extend the problem introduced inMoll
[] and obtain the existence and uniqueness of strong solutions of (.) when perturbation
term satisfies assumption (M).
This paper is organized as follows. In Section  we recall some notions and basic facts.

In Section  we define the notion of a strong solution for the Neumann problem of (.),
and give the basic results in this paper. In Section  we prove the existence and uniqueness
of solutions of an auxiliary equation, i.e.,⎧⎪⎨⎪⎩

∂u
∂t = div(∂ξ f (x,Du)) in [,T]× �,
∂u
∂η

=  on [,T]× ∂�,
u() = u in �,

(.)

and for some h(x,u) we obtain the existence and uniqueness of a strong solution of prob-
lem (.).

2 Preliminaries
To make precise our notions, let us recall some preliminary facts.
Given u ∈ BV(�), Du decomposes into absolutely continuous and singular parts Du =

∇uLN	� +Dsu, where ∇u denotes the Radon-Nikodým derivative with respect to the
Lebesgue measure and Dsu is its singular part. There is also the polar decomposition
Dsu =

––→
Dsu|Dsu|, where |Dsu| is the total variation measure of Dsu. For further informa-

tion concerning functions of bounded variation, we refer to [].
By Lw([,T];BV(�)) we denote the space of weakly measurable functions w : [,T] →

BV(�) (i.e., t ∈ [,T]→〈w(t),φ〉 ismeasurable for everyφ ∈ BV(�)*) such that
∫ T
 ‖w(t)‖<

+∞. Observe that since BV(�) has separable predual, it follows easily that the map
t ∈ [,T] → ‖w(t)‖ is measurable.
We shall need several results from [] in order to give sense to the integrals of bounded

vector fieldswith divergence in Lp(�). Let p≥  and p′ ≥  be such that 
p +


p′ = . Following

[], let

Xp(�) =
{
z ∈ L∞(

�,RN)
: div(z) ∈ Lp(�)

}
.
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If z ∈ Xp(�) and u ∈ BV(�)∩ Lp(�), the functional (z,Du) : C∞
 (�)→R is defined by the

formula

〈
(z,Du),ϕ

〉
= –

∫
�

uϕ div(z)dx –
∫

�

uz · ∇ϕ dx.

Then (z,Du) is a Radon measure in �,
∫
�
(z,Dw) =

∫
�
z · ∇wdx for all w ∈ W ,(�) ∩

L∞(�), and (z,Dw) is absolutely continuous with respect to ‖Dw‖ with the Radon-
Nikodým derivative θ (z,Dw,x) which is a ‖Dw‖ measurable function from � to R

such that
∫
B(z,Dw) =

∫
B θ (z,Dw,x)‖Dw‖ for any Borel set B ⊆ �. We also have that

‖θ (z,Dw, ·)‖L∞(�,‖Dw‖) ≤ ‖z‖L∞(�,RN ).
In [], a weak trace on ∂� of the normal component of z ∈ Xp(�) is defined. Concretely,

it is proved that there exists a linear operator γ : Xp(�) → L∞(∂�) such that ‖γ (z)‖∞ ≤
‖z‖∞ and γ (z)(x) = z(x) · ν(x) for all x ∈ ∂� if z ∈ C(�̄,RN ).
Next, let us introduce the concept of generalized total variation of a BV function with

respect to a Finsler metric []. Let f : �̄×R
N → [,∞] be a Borel function not identically

+∞. The function f will be called convex if for any x ∈ �, the function f (x, ·) is convex on
R

N . We shall say that f is lower semicontinuous (in short l.s.c.) if f (x, ·) is lower semicon-
tinuous for any x ∈ �. The function will be called positively homogeneous of degree  (in
short -homogeneous) if it satisfies the following property:

f (x, tξ ) = |t|f (x, ξ ), ∀x ∈ �,∀ξ ∈R
N ,∀t ∈R. (.)

f is a sublinear growth if there exists a positive constant  < C < +∞ such that

 ≤ f (x, ξ )≤ C‖ξ‖, ∀x ∈ �,∀ξ ∈R
N . (.)

Let us recall that f : �̄ × R
N → [,∞] is a Finsler metric if it is a Borel function and it

satisfies (.) and (.). If f satisfies (.), then the dual function f * : � ×R
N → [, +∞] is

defined by f *(x, ξ ) = sup{(ξ , ξ *) : ξ * ∈ R
N , f (x, ξ *) ≤ }. It is easy to verify that f * is convex,

l.s.c. and satisfies (.). Then, if we adopt the following conventions: for any a ∈ [, +∞],
we set a

+∞ = ; a
 = +∞ if a �=  and 

 = , we get

f *(x, ξ ) = sup

{
(ξ , ξ *)
f (x, ξ *)

: ξ * ∈R
N
}
, ∀x ∈ �,∀ξ ∈R

N .

We say that f is coercive if there exists a positive constant  < C < +∞ such that

f (x, ξ )≥ C‖ξ‖, ∀x ∈ �,∀ξ ∈R
N . (.)

It is easy to see that f is convex and has a sublinear growth, then f (x, ·) is continuous for
any x ∈ �.
We introduce the classes of vector fields

Xp
c (�) :=

{
z ∈ Xp(�) : supp(z) is compact in �

}
,

Hf (�) :=
{
z ∈ Xp

c (�) : f *
(
x, z(x)

) ≤  for a.e. x ∈ �
}

http://www.boundaryvalueproblems.com/content/2013/1/147
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and

Mp
f (�) :=

{
z ∈ Xp(�) : f *

(
x, z(x)

) ≤  for a.e. x ∈ �
}
.

Let u ∈ BV(�), the generalized total variation of u with respect to f in � is defined by∫
�

|Du|f := sup

{∫
�

(z,Du) : z ∈Hf (�)
}
= sup

{∫
�

udiv(z)dx : z ∈Hf (�)
}
. (.)

As a direct consequence of the definition, we have that the generalized total variation of
u with respect to f in � is L(�)-lower semicontinuous in �.
Now, we introduce the relaxed functional, which plays a basic role in proving the exis-

tence and uniqueness of the problem.
We define the functional G[f ] : L(�) → [, +∞] by

G[f ](u) :=

{∫
�
f (x,∇u(x))dx if u ∈W ,(�),

+∞, otherwise.
(.)

We denote by G[f ] the relaxed functional of G[f ]; i.e.,

G[f ](u) := inf{un}

{
lim inf
n→∞ G[f ](un) : un ∈W ,(�),un → u ∈ L(�)

}
.

In [], Amer and Belletini obtained the following result:∫
�

|Du|f = G
[
f **

]
(u) = G[f ](u), ∀u ∈ BV(�). (.)

Moreover, in [], Moll proved the representation result:∫
�

|Du|f =
∫

�

[
R(f )

](
x,νu)|Du|, ∀u ∈ BV(�), (.)

where [R(f )] : � ×R
N → [, +∞] is a representative of the equivalence class of homoge-

neous integrands hD associated to sets D ⊆ K =Mp
f (�) which are countable and sequen-

tially weakly*-dense inMp
f (�), and∫

�

[
R(f )

](
x,νu)|Du| =

∫
�

j
(
x,∇u(x)

)
dx +

∫
�

[
R(f )

](
x,νu)∣∣Dsu

∣∣ (.)

for all u ∈ BV(�), where j(x, ξ ) = sup{z(x) · ξ : z ∈Mp
f (�)}. The following useful inequality

holds:

j(x, ξ )≤ sup
{
ξ * · ξ : ξ * ∈R

N , f *
(
x, ξ *) ≤ 

}
= f (x, ξ ), ∀(x, ξ ) ∈ � ×R

N . (.)

The equality holds if and only if the functional G[f ] defined by (.) is L(�)-lower semi-
continuous onW ,(�). By the inequality (.), we have the measure |Du|f as follows:

|Du|f (B) =
∫

�∩B
|Du|f =

∫
�∩B

j
(
x,∇u(x)

)
dx +

∫
�∩B

[
R(f )

](
x,νu)∣∣Dsu

∣∣ (.)

for every Borel set B ⊆R
N .

http://www.boundaryvalueproblems.com/content/2013/1/147


Rui and Si Boundary Value Problems 2013, 2013:147 Page 5 of 14
http://www.boundaryvalueproblems.com/content/2013/1/147

In this paper, we assume that f :�×R
N → [, +∞] is a convex homogeneous integrand,

i.e., for some constants C,C > 

C‖ξ‖ ≤ f (x, ξ )≤ C‖ξ‖, ∀(x, ξ ) ∈ � ×R
N . (.)

Let us define the functional F(u) : L(�) → [, +∞] by the formula

F(u) :=

{∫
�
f (x,∇u(x))dx, u ∈ W ,(�) and ∂u

∂η
=  on ∂�,

+∞, otherwise.
(.)

By ∂u
∂η

=  on ∂�, and Theorem  in [], it is easy to obtain that the functional F :
BV(�) → [, +∞] is the relaxed functional of F defined by

F (u) :=
∫

�

|Du|f . (.)

3 Strong solutions andmain results
In this section we give themain concepts and results of Neumann problems (.) and (.).

Definition . A function u ∈ C([,T];L(�)) is a strong solution of (.) if u ∈ W ,
loc ([,

T];L(�))∩Lw([,T];BV(�)), there exists z ∈ L∞([,T]×�;RN ) with f *(x, z(t,x))≤  a.e.
in R

N and a.e. t > , such that

ut = div(z) inD′([,T]× �
)

(.)

and a.e. t >  it holds∫
�

(
z(t),Du(t)

)
=

∫
�

∣∣Du(t)∣∣f , (.)[
z(t),ν

]
= , HN–-a.e. on ∂�. (.)

Next we give themain definition in this paper that is the strong solution of problem (.).

Definition . A function u ∈ C([,T];L(�)) is a strong solution of (.) if u ∈ W ,
loc ([,

T];L(�))∩Lw([,T];BV(�)), there exists z ∈ L∞([,T]×�;RN ) with f *(x, z(t,x))≤  a.e.
in R

N and ut = div(z) – h(x,u) in D′([,T]× �) a.e. t >  such that∫
�

(
u(t) –w

)
ut ≤

∫
�

(
z(t),Dw

)
–

∫
�

∣∣Du(t)∣∣f + ∫
�

(
w – u(t)

)
h
(
x,u(t)

)
(.)

for every w ∈W ,(�)∩ L(�) and a.e. on [,T].

The main results of this paper are the following.

Theorem . Let u ∈ L(�). Assume that f satisfies (.), then there exists a unique
strong solution of (.) in [,T] × � for every T >  such that u() = u. Moreover, if ũ(t),
u(t) are the strong solutions of (.) corresponding to initial data ũ, u, respectively, then∥∥(

ũ(t) – u(t)
)+∥∥

 ≤ ∥∥(ũ – u)+
∥∥
 for any t > . (.)

http://www.boundaryvalueproblems.com/content/2013/1/147
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Theorem . Let u ∈ L(�). Assume that f satisfies (.) and h(x,u) satisfies (M), then
there exists a unique strong solution of (.) in [,T]×� for every T >  such that u() = u.
Moreover, if û(t), û(t) are the strong solutions of (.) corresponding to initial data û, û,
respectively, then∥∥(

û(t) – û(t)
)+∥∥

 ≤ ∥∥(û – û)+
∥∥
 for any t > . (.)

4 Proof of themain results
In this section we prove Theorem . by using the techniques of completely accretive
operators [] and Crandall-Liggett’s semigroup generation theorem [].
Let us recall the notion of completely accretive operators introduced in []. Let

M(�) be the space of measurable functions in �. Given u, v ∈ M(�), we shall write
that u � v if and only if

∫
�
j(u)dx ≤ ∫

�
j(v)dx for all j ∈ J, where J = {j : R →

[,∞], convex, l.s.c., j() = }. Let A be an operator (possibly multivalued) in M(�), i.e.,
A⊆M(�)×M(�). We shall say that A is completely accretive if

u – ũ � u – ũ + λ(v – ṽ) for all λ >  and all (u, v), (ũ, ṽ) ∈ A.

Let P = {p ∈ C∞(R) :  ≤ p′ ≤ , supp(p′) be compact and  /∈ supp(p′)}. If A ⊆ L(�) ×
L(�), then A is completely accretive if and only if

∫
�
p(u – ũ)(v – ṽ) ≥  for any p ∈ P,

(u, v), (ũ, ṽ) ∈ A. A completely accretive operator in L(�) is said to be m-completely ac-
cretive if R(I + λA) = L(�) for any λ > . In that case, by Crandall-Liggett’s theorem, A
generates a contraction semigroup denoted by {S(t)}t> in L(�), which is given by the
exponential formula

S(t)u = e–tAu = lim
n→∞

(
I +

t
n
A

)–n

u for any u ∈ L(�).

Let us write u(t) = e–tAu = S(t)u, then u ∈ C([,T],L(�)) for any T > , and it is amild
solution (a solution in the sense of semigroups []) of

du
dt

+Au �  (.)

such that u() = u.
We shall use a stronger notion of the solution of (.). We say that v ∈ C([,T],L(�)) is

a strong solution of (.) on [,T] if v ∈W ,
loc ((,T),L

(�)) and v′(t) +Av(t) �  for almost
all t ∈ (,T). If u ∈ D(A) = {ū ∈ L(�) : (ū, v̄) ∈ A for some v̄ ∈ L(�)} (the domain of A)
and A is m-completely accretive, then u ∈W ,

loc ((,T),L
(�)) and u(t) is a strong solution

of (.) on (,T) for all T > .
To obtain the solution of problem (.), we need the result of problem (.). Thus, at

first, we will prove the existence and uniqueness of a strong solution of problem (.). Let
us introduce the following operatorA in L(�) associated to problem (.).
(u, v) ∈ A if and only if u ∈ BV(�) ∩ L(�), v ∈ L(�) and there exists z ∈ M

f (�), v =
–div(z) in D′(�) such that∫

�

(w – u)vdx≤
∫

�

z · ∇wdx –
∫

�

|Du|f (.)

for all w ∈W ,(�)∩ L(�).

http://www.boundaryvalueproblems.com/content/2013/1/147
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Proposition . The operator A is m-completely accretive with dense domain. For any
u ∈ L(�), the semigroup solution u(t) = e–tAu is a mild solution of{

du
dt +Au � ,
u() = u.

(.)

To prove Proposition ., we need to prove the operator A has some characterization,
satisfies the range condition and has dense domain in L(�).
By the results of Section , the relaxed functionalF is convex and lower semicontinuous.

Therefore, the subdifferential ∂F of F is a maximal monotone operator in L(�), and
consequently, if {T(t)}t> is the semigroup solution in L(�) generated by ∂F , u(t) = T(t)u
is a strong solution of the problem (see []){

du
dt + ∂Fu(t) � , t ∈ [, +∞],
u() = u, u ∈ L(�).

(.)

Recall that the operator ∂F is defined by (u, v) ∈ ∂F if and only if u, v ∈ L(�) andF (w)–
F (u) ≥ ∫

�
v(w – u)dx, ∀w ∈ L(�).

To prove the existence and uniqueness of a strong solution of problem (.), we also need
the next proposition.

Proposition . The operator ∂F has dense domain in L(�) and ∂F =A.

The following lemmas will be used to prove Proposition . and Proposition ..

Lemma . We have the following characterization of the operator A, (u, v) ∈ A if and
only if u ∈ BV(�) ∩ L(�), v ∈ L(�) and there exists z ∈ M

f (�), v = –div(z) in D′(�)
such that∫

�

(w – u)vdx≤
∫

�

(z,Dw) –
∫

�

|Du|f (.)

for all w ∈ BV(�)∩ L(�).Moreover, we have that
(i)

∫
�
(z,Du) =

∫
�

|Du|f ,
(ii)

∫
�
vu =

∫
�

|Du|f ,
(iii)

∫
�
wv =

∫
�
(z,Dw) for all w ∈ BV(�)∩ L(�).

Proof We denote the operator by B defined in the statement of the lemma. Since
∫
�
z ·

∇w =
∫
�
(z,Dw) when w ∈ W ,(�) ∩ L(�), we have B ⊆ A. Let u ∈ BV(�) ∩ L(�), v ∈

L(�) and there exists z ∈M
f (�), v = –div(z) inD′(�) and (.). Let w ∈ BV(�)∩ L(�),

applying results from [], we have that there exists a sequence wn ∈ W ,(�) ∩ L∞(�)
such that wn → w in L(�),

∫
�

|∇wn| →
∫
�

|Dw| and ∫
�
z · ∇wn =

∫
�
(z,Dwn) →

∫
�
(z,Dw).

Using wn as a test function in (.) and letting n → ∞, we obtain (.), then we conclude
that A⊆ B, thereforeA = B.
Letting w = u in (.), we get∫

�

(z,Du) ≥
∫

�

|Du|f .

Moreover, using
∫
�

|Du|f := sup{∫
�
(z,Du) : z ∈Hf (�)}, we obtain (i).

http://www.boundaryvalueproblems.com/content/2013/1/147
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We take w =  in (.) to obtain
∫
�
uvdx≥ ∫

�
|Du|f . Using w = u in (.) and (i), we get∫

�

uvdx ≤ 
∫

�

(z,Du) –
∫

�

|Du|f =
∫

�

|Du|f .

Thus, (ii) holds.
Using (ii) in (.) we have∫

�

wvdx ≤
∫

�

(z,Dw), ∀w ∈ BV(�)∩ L(�).

Since the same inequality holds for –w ∈ BV(�)∩ L(�), (iii) is obtained. �

We consider the following possibly multi-valued functions: A(x, ξ ) := ∂ξ f (x, ξ ) and
B(x, ξ ) := ∂ξ j(x, ξ ). By the convexity of f , it follows that A is a monotone function satis-
fying

C ≤ ‖δ‖ ≤ C, ∀δ ∈ A(x, ξ ). (.)

For each x ∈ �, we consider the Moreau-Yosida approximation to f (x) : R → [, +∞] de-
fined by

fλ(x)(ξ ) := min
ζ∈Rn

{

λ

‖ζ – ξ‖ + f (x)(ζ )
}

(.)

and the Yosida approximation of the multi-valued function A(x) is defined as

Aλ(x)(ξ ) =
I – (I + λA(x))–

λ
.

We have that ξ �→ fλ(x)(ξ ) is a convex Fréchet differentiable function (see []) such that
fλ(x)→ f (x) pointwise and a.e. in�when λ →  andAλ(x)(ξ ) = ∇fλ(x)(ξ ).Moreover, when
ζ = Jλ(x)(ξ ) = (I + λA(x))–ξ , we get the minimum in (.). In [], Moll gave the following
estimate:

C‖ξ‖ ≥ f (x, ξ )≥ fλ(x)(ξ )≥
{

C
 ‖ξ‖ if ‖ξ‖ ≥ Cλ,

λ‖ξ‖ if ‖ξ‖ < Cλ,

(.)

Aλ(x)(ξ ) · ξ ≥ fλ(x)(ξ ) and Aλ(x)(ξ ) · ξ ≤ C‖ξ‖. (.)

We consider the operator An(x, ξ ) = A 
n
(x, ξ ) + 

nξ in L(�) to prove Proposition .. Let
W ,

p (�) := {w ∈W ,(�) : ∂w
∂η

=  on ∂�}, we define (u, v) ∈ An if and only if u ∈W ,
p (�)∩

L∞(�), v ∈ L(�) and∫
�

(w – u)vdx≤
∫

�

An(x)(∇u) · ∇(w – u)dx (.)

for all w ∈W ,
p (�)∩ L∞(�).

The operator An satisfies the classical Leray-Lions assumption []. Hence, for every
n ∈N, the operator An satisfies L∞(�)⊂ R(I +An).
Moreover, we need the following characterization of the operator An.

http://www.boundaryvalueproblems.com/content/2013/1/147
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Lemma . For every n ∈N, the operator An is completely accretive in L(�).

Proof Let p ∈ P and (u, v), (ũ, ṽ) ∈ An. Since (u, v) ∈ An, taking w = u – p(u – ũ) as a test
function in (.), we get∫

�

p(u – ũ)vdx≥
∫

�

An(x)(∇u) · ∇p(u – ũ)dx. (.)

Similarly, (ũ, ṽ) ∈ An, we take w = ũ + p(u – ũ) as a test function in (.) and obtain

–
∫

�

p(u – ũ)ṽ dx ≥ –
∫

�

An(x)(∇ũ) · ∇p(u – ũ)dx. (.)

Using (.) + (.), we may write that∫
�

p(u – ũ)(v – ṽ)dx≥
∫

�

An(x)(∇u –∇ũ) · ∇p(u – ũ)dx.

According to (.) and u ∈ W ,
p (�) ∩ L∞(�), we obtain that q := An(x)(∇u) ∈ Xp(�).

Moreover, by Lemma . and Theorem  in [], we have that∫
�

p(u – ũ)(v – ṽ)dx≥
∫

�

(q – q̃) · ∇p(u – ũ)dx

=
∫

�

(
(q – q̃),Dp(u – ũ)

)
=

∫
�

θ
(
(q – q̃),Dp(u – ũ),x

)∣∣Dp(u – ũ)
∣∣

≥ .

It follows that the operator An is completely accretive in L(�). �

Lemma . The operator A satisfies L∞(�) ⊂ R(I +A), and D(A) is dense in L(�).

Proof We divide the proof into two steps.
Step .We first prove L∞(�) ⊂ R(I +A). Let v ∈ L∞(�), we shall find u ∈ BV(�)∩L(�)

such that (u, v – u) ∈ A, i.e., there exists z ∈ X(�) such that f *(x, z(x)) ≤ , LN -a.e. x ∈ �,
v – u = –div(z) and∫

�

(w – u)(v – u)dx ≤
∫

�

z · ∇wdx –
∫

�

|Du|f (.)

for all w ∈W ,(�)∩ L(�).
Using (.) and L∞(�)⊂ R(I +An), we have that for every n ∈ N there is un ∈W ,

p (�)∩
L∞(�) such that (un · v – un) ∈ An and∫

�

(w – un)(v – un)dx≤
∫

�

An(x)(∇un) · ∇(w – un)dx (.)

for all w ∈W ,
p (�)∩ L∞(�). Since An is completely accretive, it is obtained that

‖un‖∞ =
∥∥(I +An)–v

∥∥∞ ≤ ‖v‖∞. (.)

http://www.boundaryvalueproblems.com/content/2013/1/147
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Now taking w = un and w = –un in (.), respectively, we get that∫
�

An(x)(∇un) · ∇un dx =
∫

�

un(v – un)dx.

Using the estimate (.), (.) and � being a bounded subset in R
N , we have that∫

�

A 
n
(x)(∇un) · ∇un dx ≥ C‖∇un‖.

By (.), it follows that

‖∇un‖ + 
n

∫
�

|∇un| dx ≤
∫

�

un(v – un)dx ≤ C,

where C depends on ‖v‖∞. Moreover, we obtain that for all n ∈N,

‖∇un‖ ≤ C (.)

and


n

∫
�

|∇un| dx ≤ C. (.)

Thus, {un}n∈N is bounded in W ,(�) and we may extract a subsequence such that un
converges in L(�). Now, by (.) and (.), we know that un → u in L(�) and u ∈
BV(�)∩ L(�).
Observe that by (.) and (.), An(x)(∇un) = An(·)(∇un) is bounded in L(�;RN ) and

weakly relatively compact in L(�;RN ). We may assume that

An(·)(∇un) ⇀ z as n→ ∞ weakly in L
(
�;RN)

.

By (.) and 
n |∇un| →  in L(�), we also have that

A 
n
(·)(∇un) ⇀ z as n→ ∞ weakly in L

(
�;RN)

. (.)

Given ϕ ∈ C∞
 and taking w = un ± ϕ in (.), we have

∫
�

(w – un)ϕ dx =
∫

�

An(x)(∇un) · ∇ϕ dx

and letting n→ +∞, it follows that∫
�

(w – u)ϕ dx =
∫

�

z · ∇ϕ dx,

that is, v – u = –div(z) in D′(�), and

div
(
A 

n
(·)(∇un)

)
⇀ div(z) as n→ ∞ weakly in L

(
�;RN)

. (.)

http://www.boundaryvalueproblems.com/content/2013/1/147
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From the proof of Proposition  in [], we obtain that f *(x, z(x)) ≤ . Moreover, by (.)
and (.), it implies that z ∈M

f (�). Now, we prove that u, v and z verify (.). Applying
the Lebesgue convergence theorem in (.), there exists u ∈ BV(�) ∩ L(�) for every
w ∈ W ,

p (�)∩ L∞(�),

∫
�

(w – u)(v – u)dx ≤
∫

�

z · ∇(w – un)dx

≤
∫

�

z · ∇wdx –
∫

�

z · ∇udx

=
∫

�

z · ∇wdx –
∫

�

(z,Du)

=
∫

�

z · ∇wdx –
∫

�

|Du|f . (.)

To prove (.), we assume that there exists w ∈ W ,
p (�) ∩ L∞(�). Let w ∈ W ,(�) ∩

L(�) and let wn ∈ W ,
p (�) ∩ L∞(�) be such that wn → w in L(�) as n → ∞. Using wn

as a test function in (.) and letting n → ∞, we obtain (.). That is, (u, v – u) ∈A.
Step . Now let us prove that D(A) is dense in L(�). We only need to prove that

C∞
 (�) ⊆ D(A)

L(�)
. Let v ∈ C∞

 (�). By Step , we have that v ∈ R(I + 
nA) for all n ∈ N.

Thus, for each n ∈N, there exists un ∈D(A) such that (un, v–un) ∈A and, in consequence,
there exists some zn ∈M

f (�) such that n(v – un) = –div(zn) in D′(�) and

n
∫

�

(w – un)(v – un)dx ≤
∫

�

zn · ∇wdx –
∫

�

|Du|f ≤
∫

�

zn · ∇wdx ≤
∫

�

|∇w|

for every w ∈ BV(�)∩ L(�). Taking w = v in the above inequality, we get∫
�

(v – un) dx ≤ C
n

∫
�

|∇v|dx.

Letting n → ∞, it follows that un → v in L(�). This implies that v ∈D(A)
L(�)

. �

Proof of Proposition . Let p ∈ P and (u, v), (ũ, ṽ) ∈ A. Let z, z̃ ∈ M
f (�) be such that

v = –div(z), ṽ = –div(z̃) and∫
�

(w – u)vdx≤
∫

�

(z,Dw) –
∫

�

|Du|f , (.)∫
�

(w – ũ)ṽ dx≤
∫

�

(z̃,Dw) –
∫

�

|Dũ|f (.)

for every w ∈ BV(�) ∩ L(�). Taking w = u – p(u – ũ) as a test function in (.), taking
w = ũ + p(u – ũ) as a test function in (.), and by Theorem  in [], we have that∫

�

p(u – ũ)(v – ṽ)dx ≥
∫

�

(
z – z̃,Dp(u – ũ)

)
=

∫
�

θ
(
z – z̃,Dp(u – ũ),x

)∣∣Dp(u – ũ)
∣∣ ≥ .

We get the operator A is completely accretive in L(�).

http://www.boundaryvalueproblems.com/content/2013/1/147


Rui and Si Boundary Value Problems 2013, 2013:147 Page 12 of 14
http://www.boundaryvalueproblems.com/content/2013/1/147

Now, we prove that A is closed. Let (un, vn) ∈ A such that (un, vn) → (u, v) in L(�) ×
L(�). Since (un, vn) ∈A, there exists zn ∈M

f (�) with vn = –div(zn) in D′(�) such that∫
�

(w – un)vn dx≤
∫

�

(zn,Dw) –
∫

�

|Dun|f (.)

for every w ∈ BV(�)∩ L(�). Since ‖zn‖∞ ≤ C, we may assume that

zn ⇀ z in the weak* topology of L∞(
�;RN)

. (.)

Working as before, it is easy to see that z ∈ M
f (�). Moreover, since vn → v in L(�), we

have v = –div(z) in D′(�), and

lim
n→∞

∫
�

(zn,Dw) =
∫

�

(z,Dw).

Letting n → ∞ in (.), and having in mind the lower semicontinuity of the functional
F defined in (.), we obtain that∫

�

(w – u)vdx≤
∫

�

(z,Dw) –
∫

�

|Du|f .

Consequently, (u, v) ∈ A. By Lemma ., it follows that A is m-completely accretive in
L(�). By Crandall-Liggett’s theorem,A generates a contraction semigroup in L(�) given
by the exponential formula

e–tAu = lim
n→∞

(
I +

t
n
A

)–n

u for any u ∈ L(�).

The function u(t) = e–tAu is a mild solution of

du
dt

+Au � 

with u() = u. �

Proof of Proposition. Wefirst prove thatA⊆ ∂F . Let (u, v) ∈A andw ∈ BV(�)∩L(�),
there exists z ∈M

f (�) with v = –div(z) in D′(�) such that

∫
�

(w – u)vdx≤
∫

�

(z,Dw) –
∫

�

|Du|f ≤F (w) –F (u)

for every w ∈ BV(�)∩ L(�). Thus, (u, v) ∈ ∂F , that is, A⊆ ∂F .
Next, by the proof of Proposition ., we have that the operator A is closed. Since A ⊆

∂F and L∞(�) ⊂ R(I +A), we have that ∂F =AL(�)×L(�). �

Proof of Theorem . As a consequence of Proposition ., the semigroups generated by
A and by ∂F coincide, and therefore u(t,x) := e–tAu(x) is a strong solution of

du(t)
dt

+Au(t) � , in L(�), t ∈ [,T]

http://www.boundaryvalueproblems.com/content/2013/1/147
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with u() = u, i.e., u ∈ W ,
loc ([,T];L

(�)) and (u(t),u′(t)) ∈ A for a.e. t ∈ [,T]. Then we
have u′(t) = div(z(t)) in D′([,T]× �). By the characterization (i) in Lemma ., we have
(.) and (.) hold. The contractivity estimate (.) follows directly from the nonlinear
semigroup theory. �

Let us define several operators that will be needed in this section. The single-valued
operator Bh is defined in L(�) as

Bh :=
{
(u, v) ∈ L(�)× L(�) : v = h

(·,u(·)) a.e.}.
Take H : L(�) → [,T] defined by

H(u) :=

{∫
�
k(x,u(x))dx, x → k(x,u(x)) ∈ L(�),

+∞, otherwise,

where k(x,u(x)) :=
∫ r
 h(x, s)ds. It is easy to see that L

∞(�) ⊂D(H) andH is convex.More-
over, by Fatou’s lemma, H is lower semicontinuous. Hence, ∂H is a maximal monotone
graph in L(�).
Thus, to prove Theorem ., we only need to obtain the following result.

Lemma . ∂(H +F ) =A + Bh.

Proof From (u, v) ∈ A + Bh, we have u ∈ BV(�) ∩ L(�), v ∈ L(�) and there exists z ∈
M

f (�), v = –div(z) + h(x,u) in D′(�) such that

∫
�

(w – u)vdx≤
∫

�

(z,Dw)dx –
∫

�

|Du|f +
∫

�

(w – u)h(x,u)dx (.)

for all w ∈W ,(�)∩L(�). Since h(x,u) satisfies (M), there exists z(x) ∈ [u(x),w(x)] such
that ∫

�

∫ v

u
h(x, s)dsdx =

∫
�

(w – u)h
(
x, z(x)

)
dx ≥

∫
�

(w – u)h(x,u)dx.

By the above inequality and F being lower semicontinuous in (.), we have that∫
�

(w – u)vdx ≤
∫

�

(z,Dw)dx –
∫

�

|Du|f +
∫

�

(w – u)h(x,u)dx

≤
∫

�

|Dw|f –
∫

�

|Du|f +
∫

�

∫ v(x)

u(x)
h(x, s)dsdx

= (H +F )(w) – (H +F )(u).

We have proved that A + Bh ⊆ ∂(H +F ).
By Proposition  in [], we have that L∞(�)⊆ R(I +A + Bh), and the operatorA + Bh

is closed. Hence, ∂(H +F ) =A + Bh
L(�)×L(�). �

Using Crandall-Liggett’s theorem and a similar proof of Theorem . again, we obtain
that Theorem . holds.

http://www.boundaryvalueproblems.com/content/2013/1/147
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