Infinitely many sign-changing solutions for p-Laplacian equation involving the critical Sobolev exponent

Yuanze Wu* and Yisheng Huang

*Correspondence
wuyuanzesuda@126.com Department of Mathematics, Soochow University, Suzhou, Jiangsu, 215006, P.R. China

Abstract

In this paper, we study the following problem:

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\lambda|u|^{p-2} u+|u|^{p^{*}-2} u \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain, $1<p<N,-\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian, $p^{*}=p N /(N-p)$ is the critical Sobolev exponent and $\lambda>0$ is a parameter. By establishing a new deformation lemma, we show that if $N>p^{2}+p$, then for each $\lambda>0$, this problem has infinitely many sign-changing solutions, which extends the results obtained in (Cao et al. in J. Funct. Anal. 262: 2861-2902, 2012; Schechter and Zou in Arch. Ration. Mech. Anal. 197: 337-356, 2010).

1 Introduction

In this paper, we consider the following problem:

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\lambda|u|^{p-2} u+|u|^{p^{*}-2} u \quad \text { in } \Omega \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{N}(N \geq 3)$ is a smooth bounded domain, $1<p<N,-\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian, $p^{*}=p N /(N-p)$ is the critical Sobolev exponent and $\lambda>0$ is a parameter.

The first existence result of Problem (1.1) with $p=2$ was obtained by Brezis and Nirenberg in the celebrated paper [1]. In that paper, the authors proved that Problem (1.1) had a positive solution for $N \geq 4$ and $\lambda \in\left(0, \lambda_{1}^{*}\right)$ or $N=3$ and $\lambda \in\left(\lambda_{1}^{*} / 4, \lambda_{1}^{*}\right)$, where λ_{1}^{*} is the first eigenvalue of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$. After that, many existence results have appeared for (1.1); one can see, for example, [2-7] and the references therein for case of $p=2$ and [8-11] and the references therein for case of $1<p<N$. In particular, in the case of $p=2$, the authors in [2] proved that the number of solutions of Problem (1.1) is bounded below by the number of eigenvalues of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$ lying in the open interval $\left(\lambda, \lambda+S|\Omega|^{-2 / N}\right)$, where S is the best Sobolev constant and $|\Omega|$ is the Lebesgue measure of Ω. In [5], the existence of infinitely many sign-changing solutions of (1.1) with $p=2$ has been obtained when $N \geq 4$, $\lambda>0$ and Ω is a ball, while it has been shown in [6] that (1.1) with $p=2$ has infinitely many

[^0]sign-changing radial solutions when $N \geq 7, \lambda>0$ and Ω also is a ball. We remark that the methods used in $[5,6]$ are strongly dependent on the symmetry of the ball Ω. For a general bounded smooth domain Ω, by the method of invariant sets of the descending flow, the authors in [7] have shown that (1.1) with $p=2$ has infinitely many sign-changing solutions when $N \geq 7$ and $\lambda>0$, which extends the main result in [4].
The main purpose of this paper is to try to obtain the existence of infinitely many signchanging solutions of Problem (1.1) for general $p \in(1, N)$. In a very recent work [9], the authors have proved that (1.1) has infinitely many solutions for $\lambda>0$ and $N>p^{2}+p$. However, by using the Picone identity ($c f$. $[12,13]$), we see that every nonzero solution of Problem (1.1) is sign-changing for $\lambda \geq \lambda_{1}$, where λ_{1} is the first eigenvalue of $\left(-\Delta_{p}, W_{0}^{1, p}(\Omega)\right)$ (see Lemma 2.1 for more details). Hence, to achieve our purpose, we mainly consider the situation of $\lambda \in\left(0, \lambda_{1}\right)$.
Our main result in this paper is the following.

Theorem 1.1 Assume that $N>p^{2}+p$ and $\lambda>0$. Then Problem (1.1) has infinitely many sign-changing solutions.

Since p^{*} is the critical Sobolev exponent, in order to overcome the lack of compactness of the embedding of $W_{0}^{1, p}(\Omega)$ in the Lebesgue space $L^{p^{*}}(\Omega)$, we follow the ideas of $[4,7,9]$ to consider the following auxiliary problems:

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\lambda|u|^{p-2} u+|u|^{p_{n}-2} u \quad \text { in } \Omega \tag{n}\\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $p_{n}<p^{*}$ and p_{n} is increasing to p^{*}. It has been shown by [14, Theorem 1.2] that for every n, Problem $\left(\mathcal{P}_{n}\right)$ has infinitely many sign-changing solutions $\left\{u_{n, k}\right\}_{k \in \mathbb{N}}$. Hence, to prove Theorem 1.1, we will show that for every $k \in \mathbb{N},\left\{u_{n, k}\right\}$ converges to some signchanging solution u_{k} of (1.1) as $n \rightarrow \infty$, and that $\left\{u_{k}\right\}$ are different. The convergence of $\left\{u_{n, k}\right\}$ can be done with the help of [9, Theorem 1.2], which we show in Lemma 2.3. To distinguish $\left\{u_{k}\right\}$, we shall establish a new deformation lemma on special sets in $W_{0}^{1, p}(\Omega)$; see Lemma 2.5 for details.

Throughout this paper, we will always respectively denote $\|u\|$ and $\|u\|_{r}$ by the usual norm in spaces $W_{0}^{1, p}(\Omega)$ and $L^{r}(\Omega)(r \geq 1)$. Let C be indiscriminately used to denote various positive constants.

2 Proof of Theorem 1.1

We first consider the case of $\lambda \geq \lambda_{1}$. Recall that λ_{1}, the first eigenvalue of $-\Delta_{p}$ in $W_{0}^{1, p}(\Omega)$, given by $\lambda_{1}:=\inf \left\{\int_{\Omega}|\nabla u|^{p} d x, \int_{\Omega}|u|^{p} d x=1\right\}$, is simple and there exists a positive eigenfunction $e_{1} \in W_{0}^{1, p}(\Omega)$ corresponding to λ_{1} such that $\int_{\Omega}\left|\nabla e_{1}\right|^{p-2} \nabla e_{1} \nabla \eta d x=\lambda_{1} \int_{\Omega} e_{1}^{p-1} \eta d x$ for every $\eta \in W_{0}^{1, p}(\Omega)$ (cf. [15]). Moreover, by [16, Proposition 2.1], we know that $e_{1} \in$ $L^{\infty}(\Omega) \cap C_{\text {loc }}^{1, \alpha}(\Omega)$. On the other hand, we have the following proposition which is the socalled Picone identity.

Proposition 2.1 [13, Lemma A.6] Let $u, v \in W_{\operatorname{loc}}^{1, p}(\Omega) \cap C(\Omega)$ be such that $u \geq 0, v>0$ and $\frac{u}{v} \in W_{\text {loc }}^{1, p}(\Omega)$. Then

$$
\begin{aligned}
\int_{\Omega} & \nabla\left(\frac{u^{p}}{v^{p-1}}\right)|\nabla v|^{p-2} \nabla v d x \\
& =\int_{\Omega}\left(p\left(\frac{u}{v}\right)^{p-1}|\nabla v|^{p-2} \nabla v \nabla u-(p-1)\left(\frac{u}{v}\right)^{p}|\nabla v|^{p}\right) d x .
\end{aligned}
$$

Moreover,

$$
\int_{\Omega}\left(p\left(\frac{u}{v}\right)^{p-1}|\nabla v|^{p-2} \nabla v \nabla u-(p-1)\left(\frac{u}{v}\right)^{p}|\nabla v|^{p}\right) d x \leq \int_{\Omega}|\nabla u|^{p} d x
$$

and the equality holds if and only if $u=c v$ for some constant $c>0$.
Lemma 2.1 Assume that $u \in W_{0}^{1, p}(\Omega)$ is a nonzero solution of (1.1) for $\lambda \geq \lambda_{1}$. Then u is sign-changing.

Proof By a contradiction, we may assume $u \geq 0$. By using a standard regularity argument and [17, Lemmas 3.2 and 3.3], we have $u \in C^{1, \alpha}(\Omega)$ for some $\alpha \in(0,1)$. Thus, it follows from the strong maximum principle (cf. [18]) that $u>0$. Now, for every $\varepsilon>0$, by applying the above Picone identity (i.e., Proposition 2.1) to $u+\varepsilon$ and e_{1}, we see

$$
\int_{\Omega}\left|\nabla e_{1}\right|^{p} d x \geq \int_{\Omega} \nabla\left(\frac{e_{1}^{p}}{(u+\varepsilon)^{p-1}}\right)|\nabla u|^{p-2} \nabla u d x .
$$

Noting that u is a solution of (1.1), we have

$$
\int_{\Omega}\left|\nabla e_{1}\right|^{p} d x \geq \int_{\Omega}\left(\lambda \frac{u^{p-1}}{(u+\varepsilon)^{p-1}}+\frac{u^{p^{*}-1}}{(u+\varepsilon)^{p-1}}\right) e_{1}^{p} d x .
$$

It follows from the Fatou lemma that

$$
\begin{aligned}
\int_{\Omega}\left|\nabla e_{1}\right|^{p} d x & \geq \liminf _{\varepsilon \rightarrow 0} \int_{\Omega}\left(\lambda \frac{u^{p-1}}{(u+\varepsilon)^{p-1}}+\frac{u^{p^{*}-1}}{(u+\varepsilon)^{p-1}}\right) e_{1}^{p} d x \\
& \geq \int_{\Omega}\left(\lambda+u^{p^{*}-p}\right) e_{1}^{p} d x,
\end{aligned}
$$

which is impossible since $\int_{\Omega}\left|\nabla e_{1}\right|^{p} d x=\lambda_{1} \int_{\Omega} e_{1}^{p}, u>0, e_{1}>0$ and $\lambda \geq \lambda_{1}$. Therefore, we have proved Lemma 2.1.

Next, we consider the case of $\lambda<\lambda_{1}$.
It is clear that the corresponding functional of $\left(\mathcal{P}_{n}\right) I_{n}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$, given by

$$
I_{n}(u)=\frac{1}{p}\left(\|u\|^{p}-\lambda\|u\|_{p}^{p}\right)-\frac{1}{p_{n}}\|u\|_{p_{n}}^{p_{n}},
$$

is C^{1} Fréchet differentiable. Let $X_{m}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}$, where $\left\{\varphi_{i}\right\}$ is a linearly independent sequence of $W_{0}^{1, p}(\Omega)$. It is easy to show that there exists $R_{m}>0$ such that $I_{n}(u) \leq-1$ for
$u \in X_{m} \backslash B_{m}$, where $B_{m}:=\left\{u \in X_{m}:\|u\| \leq R_{m}\right\}$ (cf. [14, Lemma 3.9]). We denote

$$
\begin{aligned}
& P(-P):=\left\{u \in W_{0}^{1, p}(\Omega): u \geq 0(u \leq 0) \text { a.e. }\right\}, \\
& D_{\mu}^{ \pm}:=\left\{u \in W_{0}^{1, p}(\Omega): \operatorname{dist}(u, \pm P) \leq \mu\right\}, \quad D_{\mu}:=D_{\mu}^{+} \cup D_{\mu}^{-}, \\
& G_{m}:=\left\{h \in C\left(B_{m}, W_{0}^{1, p}(\Omega)\right): h \text { is odd, } h(x)=x \text { for } x \in \partial_{X_{m}} B_{m}\right\} .
\end{aligned}
$$

Recall that the genus of a symmetric set A of $W_{0}^{1, p}(\Omega)$ is defined by

$$
\operatorname{gen}(A):=\inf \left\{k \geq 0: \exists f \in C\left(A, \mathbb{R}^{k} \backslash\{0\}\right), f \text { is odd }\right\} .
$$

Here, we say that A is symmetric if $x \in A$ implies $-x \in A$.
By [14, Theorem 1.2], we know that, for every $n \in \mathbb{N}, I_{n}(u)$ has infinitely many critical points, denoted by $\left\{u_{n, k}\right\}_{k \in \mathbb{N}}$, in $X \backslash D_{\mu}$ for μ small enough. Moreover,

$$
\begin{equation*}
I_{n}\left(u_{n, k}\right)=d_{n, k}:=\inf _{Z \in \Gamma_{k}} \sup _{u \in Z} I_{n}(u), \tag{2.1}
\end{equation*}
$$

where $\Gamma_{k}:=\left\{h\left(B_{m} \backslash B\right) \backslash D_{\mu}: h \in G_{m}\right.$ for $m \geq n, B=-B \subset B_{m}$ open, $\left.\operatorname{gen}(B) \leq m-n\right\}$.

Lemma 2.2 For every $k \in \mathbb{N}$, there exists $d_{k}^{*}>0$ such that $\left\|u_{n, k}\right\| \leq d_{k}^{*}$ for all $n \in \mathbb{N}$.

Proof Consider the following auxiliary functional:

$$
I_{*}(u):=\frac{1}{p}\left(\|u\|^{p}-\|u\|_{p}^{p}\right)-\frac{1}{p^{*}}\|u\|_{\sigma}^{\sigma},
$$

where $\sigma=\left(p+p^{*}\right) / 2$. Since $p_{n} \rightarrow p^{*}$, we may assume $p_{n}>\sigma$ for all $n \in \mathbb{N}$. Then $\frac{1}{p^{*}}\|u\|_{\sigma}^{\sigma} \leq$ $\frac{\text { meas }(\Omega)}{p^{*}}+\frac{1}{p_{n}}\|u\|_{p_{n}}^{p_{n}}$ for all $n \in \mathbb{N}$. This means

$$
\begin{equation*}
I_{*}(u)=I_{n}(u)+\left(\frac{1}{p_{n}}\|u\|_{p_{n}}^{p_{n}}-\frac{1}{p^{*}}\|u\|_{\sigma}^{\sigma}\right) \geq I_{n}(u)-\frac{\operatorname{meas}(\Omega)}{p^{*}} . \tag{2.2}
\end{equation*}
$$

Note that $I_{*}(u)$ is the corresponding functional of the following equation:

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\lambda|u|^{p-2} u+\frac{\sigma}{p^{*}}|u|^{\sigma-2} u \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

and the nonlinearity satisfies the assumptions of [14, Theorem 1.2]. Thus, this equation has a sequence of solutions $\left\{v_{k}\right\} \subset W_{0}^{1, p}(\Omega) \backslash\left(D_{\mu}^{+} \cup D_{\mu}^{-}\right)$such that

$$
I_{*}\left(v_{k}\right)=\bar{d}_{k}:=\inf _{Z \in \Gamma_{k}} \sup _{u \in Z} I_{*}(u)
$$

for μ small enough. For every $k \in \mathbb{N}$, the definitions of \bar{d}_{k} and $d_{k, n}$, together with (2.2), imply $\bar{d}_{k}+\frac{\operatorname{meas}(\Omega)}{p^{*}} \geq d_{k, n}$ for all $n \in \mathbb{N}$. On the other hand, since for every $n,\left\{u_{n, k}\right\}_{k \in \mathbb{N}}$ is a sequence of solutions for $\left(\mathcal{P}_{n}\right)$ whose energies satisfy (2.1), it follows that $d_{n, k} \geq\left(\frac{1}{p}-\frac{1}{p_{1}}\right)(1-$ $\left.\frac{\lambda}{\lambda_{1}}\right)\left\|u_{n, k}\right\|^{p}$. We complete the proof by choosing $d_{k}^{*}=\left(\frac{\left(\bar{d}_{k} p^{*}+\operatorname{meas}(\Omega)\right) p_{1} p \lambda_{1}}{p^{*}\left(p_{1}-p\right)\left(\lambda_{1}-\lambda\right)}\right)^{1 / p}$.

By Lemma 2.2 and [9, Theorem 1.2], we know that for each $k \in \mathbb{N}$, there exists $u_{k} \in$ $W_{0}^{1, p}(\Omega)$ such that $u_{n, k} \rightarrow u_{k}$ as $n \rightarrow \infty$ in $W_{0}^{1, p}(\Omega)$. The next lemma will give more information about u_{k}.

Lemma $2.3 u_{k}$ is a sign-changing solution of Problem (1.1) for every $k \in \mathbb{N}$.

Proof We first prove that u_{k} is a solution of Problem (1.1) for every $k \in \mathbb{N}$. Since $u_{n, k} \rightarrow u_{k}$ as $n \rightarrow \infty$ in $W_{0}^{1, p}(\Omega)$,

$$
\int_{\Omega}\left|\nabla u_{n, k}\right|^{p-2} \nabla u_{n, k} \nabla \varphi d x \rightarrow \int_{\Omega}\left|\nabla u_{k}\right|^{\mid-2} \nabla u_{k} \nabla \varphi d x
$$

and

$$
\int_{\Omega}\left|u_{n, k}\right|^{p-2} u_{n, k} \varphi d x \rightarrow \int_{\Omega}\left|u_{k}\right|^{p-2} u_{k} \varphi d x
$$

as $n \rightarrow \infty$ for every $\varphi \in W_{0}^{1, p}(\Omega)$. If we can prove

$$
\begin{equation*}
\int_{\Omega}\left|u_{n, k}\right|^{p_{n}-2} u_{n, k} \varphi d x \rightarrow \int_{\Omega}\left|u_{k}\right|^{2^{*}-2} u_{k} \varphi d x \tag{2.3}
\end{equation*}
$$

as $n \rightarrow \infty$ for every $\varphi \in W_{0}^{1, p}(\Omega)$, then u_{k} is a solution of (1.1) for $u_{n, k}$ is a solution of $\left(\mathcal{P}_{n}\right)$. Indeed, $u_{n, k} \rightarrow u_{k}$ a.e. in Ω as $n \rightarrow \infty$ since $u_{n, k} \rightarrow u_{k}$ in $W_{0}^{1, p}(\Omega)$. By the Egoroff theorem, for every $\delta>0$, there exists Ω_{δ} such that $u_{n, k} \rightarrow u_{k}$ uniformly in $\Omega \backslash \Omega_{\delta}$ and $\left|\Omega_{\delta}\right|<$ δ, where $\left|\Omega_{\delta}\right|$ is the Lebesgue measure of Ω_{δ}. This, together with the Lebesgue dominated convergence theorem, implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega \backslash \Omega_{\delta}}\left|u_{n, k}\right|^{p_{n}-2} u_{n, k} \varphi d x=\int_{\Omega \backslash \Omega_{\delta}}\left|u_{k}\right|^{p^{*}-2} u_{k} \varphi d x \quad \text { for every } \varphi \in W_{0}^{1, p}(\Omega) \tag{2.4}
\end{equation*}
$$

On the other hand, for every $\varphi \in W_{0}^{1, p}(\Omega)$, we have

$$
\begin{aligned}
& \int_{\Omega_{\delta}}| | u_{n, k}| |^{p_{n}-2} u_{n, k}-\left|u_{k}\right|^{p^{*}-2} u_{k}| | \varphi \mid d x \\
& \leq\left.\int_{\Omega_{\delta}}| | u_{n, k}\right|^{p_{n}-2} u_{n, k}-\left|u_{n, k}\right|{ }^{p-1}-\left|u_{n, k}\right|^{p^{*}-1}| | \varphi \mid d x \\
&+\left.\int_{\Omega_{\delta}}| | u_{k}\right|^{p-1}+\left|u_{k}\right|^{p^{*}-1}-\left|u_{k}\right|^{p^{*}-2} u_{k}| | \varphi \mid d x \\
&+\left.\int_{\Omega_{\delta}}| | u_{k}\right|^{p-1}+\left|u_{k}\right|^{p^{*}-1}-\left|u_{n, k}\right|^{p-1}-\left|u_{n, k}\right|^{p^{*}-1}| | \varphi \mid d x \\
& \leq\left.2 \int_{\Omega_{\delta}}| | u_{n, k}\right|^{p-1}+\left|u_{n, k}\right|^{p^{*}-1}| | \varphi\left|d x+\int_{\Omega_{\delta}}\right|\left|u_{k}\right|^{p-1}+\left|u_{k}\right| p^{p^{*}-1}-\left|u_{k}\right|^{p^{*}-2} u_{k}| | \varphi \mid d x \\
&+\left.\int_{\Omega_{\delta}}| | u_{k}\right|^{p-1}+\left|u_{k}\right|^{p^{*}-1}-\left|u_{n, k}\right|^{p-1}-\left|u_{n, k}\right|^{p^{*}-1}| | \varphi \mid d x \\
& \leq\left.2 \int_{\Omega_{\delta}}| | u_{k}\right|^{p-1}+\left.\left|u_{k}\right|\right|^{p^{*}-1}| | \varphi\left|d x+\int_{\Omega_{\delta}}\right|\left|u_{k}\right|^{p-1}+\left|u_{k}\right|^{p^{*}-1}-\left|u_{k}\right|^{p^{*}-2} u_{k}| | \varphi \mid d x \\
&+\left.3 \int_{\Omega_{\delta}}| | u_{k}\right|^{p-1}+\left|u_{k}\right|^{p^{*}-1}-\left|u_{n, k}\right|^{p-1}-\left.\left|u_{n, k}\right|\right|^{p^{*}-1}| | \varphi \mid d x .
\end{aligned}
$$

For every $\varepsilon>0$, by the above inequality and the absolute continuity of the integral, we can take δ small enough such that

$$
\left.2 \int_{\Omega_{\delta}}| | u_{k}\right|^{p-1}+\left|u_{k}\right|^{p^{*}-1}| | \varphi\left|d x+\int_{\Omega_{\delta}}\right|\left|u_{k}\right|^{p-1}+\left.\left|u_{k}\right|\right|^{p^{*}-1}-\left|u_{k}\right|^{p^{*}-2} u_{k}| | \varphi \mid d x<\varepsilon / 3 .
$$

For this δ, since $u_{n, k} \rightarrow u_{k}$ in $W_{0}^{1, p}(\Omega)$,

$$
\left.3 \int_{\Omega_{\delta}}| | u_{k}\right|^{| |^{-1}}+\left.\left|u_{k}\right|\right|^{p^{*}-1}-\left.\left|u_{n, k}\right|\right|^{p-1}-\left|u_{n, k}\right|^{p^{*}-1}| | \varphi \mid d x<\varepsilon / 3
$$

for n large enough. By (2.4), for this δ, we have

$$
\left.\int_{\Omega \backslash \Omega_{\delta}}| | u_{n, k}\right|^{p_{n}-2} u_{n, k} \varphi-\left|u_{k}\right|^{p^{*}-2} u_{k} \varphi \mid d x<\varepsilon / 3
$$

for n large enough. So (2.3) holds. Moreover, by a similar proof, we can show $d_{k}:=$ $\lim _{n \rightarrow \infty} d_{n, k}=I_{n}\left(u_{n, k}\right)=I\left(u_{k}\right)$.

Next, we will show u_{k} is sign-changing for all $k \in \mathbb{N}$. Since for each $n \in \mathbb{N}, u_{n, k}$ is a signchanging solution of $\left(\mathcal{P}_{n}\right)$, multiplying $\left(\mathcal{P}_{n}\right)$ by $u_{n, k}^{ \pm}$, we obtain $\left\|u_{n, k}^{ \pm}\right\|^{p}=\lambda\left\|u_{n, k}^{ \pm}\right\|_{p}^{p}+\left\|u_{n, k}^{ \pm}\right\|_{p_{n}}^{p_{n}}$, where $u^{ \pm}=\max \{ \pm u, 0\}$. Note that $\lambda<\lambda_{1}$, by the Sobolev imbedding theorem, we have $0<\left(1-\frac{\lambda}{\lambda_{1}}\right) C \leq\left\|u_{n, k}^{ \pm}\right\|_{p^{*}}^{p_{n}-p}$. It follows that $u_{n, k} \rightarrow u_{k}$ in $L^{p^{*}}(\Omega)$ as $n \rightarrow \infty$ for $u_{n, k} \rightarrow u_{k}$ in $W_{0}^{1, p}(\Omega)$ as $n \rightarrow \infty$. This gives $0<\left(1-\frac{\lambda}{\lambda_{1}}\right) C \leq\left\|u_{k}^{ \pm}\right\|_{p^{*}}^{p^{*}-p}$, i.e., $u_{k}^{ \pm} \neq 0$ for all $k \in \mathbb{N}$.

Let $\varepsilon>0$ and $c \in \mathbb{R}$, we denote

$$
\begin{aligned}
& K:=\left\{u \in W_{0}^{1, p}(\Omega): I^{\prime}(u)=0\right\}, \quad K_{c}:=\left\{u \in W_{0}^{1, p}(\Omega): I(u)=c, I^{\prime}(u)=0\right\}, \\
& K_{\mu}^{*}:=K \backslash\left(\operatorname{int}\left(D_{\mu}^{+}\right) \cup \operatorname{int}\left(D_{\mu}^{-}\right)\right), \quad K_{c, \mu}^{*}:=K_{c} \backslash\left(\operatorname{int}\left(D_{\mu}^{+}\right) \cup \operatorname{int}\left(D_{\mu}^{-}\right)\right), \\
& \mathcal{N}_{c, \mu, \varepsilon}:=\left\{u \in W_{0}^{1, p}(\Omega): \operatorname{dist}\left(u, K_{c}^{*}\right)<\varepsilon\right\} .
\end{aligned}
$$

Thanks to Lemma 2.3, $u_{k} \in K_{\mu_{k}}^{*}$ for some $\mu_{k}>0$. We claim that $\left\{u_{k}\right\} \subset K_{\mu}^{*}$ for some $\mu>0$. Indeed, if not, then $\operatorname{dist}\left(u_{k}, P\right) \rightarrow 0$ as $k \rightarrow \infty$ without loss of generality. On the one hand, since u_{k} is a solution of (1.1), $\left\langle I^{\prime}\left(u_{k}\right), u_{k}-S_{\lambda}\left(u_{k}\right)\right\rangle_{W_{0}^{1, p}(\Omega), W_{0}^{-1, p}(\Omega)}=0$, where $S_{\lambda}\left(u_{k}\right):\left(-\Delta_{p}\right)^{-1}\left(\lambda\left|u_{k}\right|^{p-2} u_{k}+\left|u_{k}\right| p^{*-2} u_{k}\right)$. On the other hand, by [17, Lemma 3.7], we have

$$
\left\langle I^{\prime}\left(u_{k}\right), u_{k}-S_{\lambda}\left(u_{k}\right)\right\rangle_{W_{0}^{1, p}(\Omega), W_{0}^{-1, p}(\Omega)} \geq C\left\|u_{k}-S_{\lambda}\left(u_{k}\right)\right\|^{2}\left(\left\|u_{k}\right\|+\left\|S_{\lambda}\left(u_{k}\right)\right\|\right)^{p-2}
$$

for $1<p<2$ and

$$
\left\langle I^{\prime}\left(u_{k}\right), u_{k}-S_{\lambda}\left(u_{k}\right)\right\rangle_{W_{0}^{1, p}(\Omega), W_{0}^{-1, p}(\Omega)} \geq C\left\|u_{k}-S_{\lambda}\left(u_{k}\right)\right\|^{p}
$$

for $p \geq 2$. Note that by a similar proof of [14, Lemma 3.3], we can see that $S_{\lambda}\left(D_{\mu}^{ \pm}\right) \subset \operatorname{int}\left(D_{\mu}^{ \pm}\right)$ for μ small enough. Thus, $\left\|u_{k}-S_{\lambda}\left(u_{k}\right)\right\|>0$ for k large enough. This implies

$$
\left\langle I^{\prime}\left(u_{k}\right), u_{k}-S_{\lambda}\left(u_{k}\right)\right\rangle_{W_{0}^{1, p}(\Omega), W_{0}^{-1, p}(\Omega)} \geq C_{k}>0
$$

for k large enough, which contradicts $\left\langle I^{\prime}\left(u_{k}\right), u_{k}-S_{\lambda}\left(u_{k}\right)\right\rangle_{W_{0}^{1, p}(\Omega), W_{0}^{-1, p}(\Omega)}=0$. For the sake of convenience, we denote $K_{\mu}^{*}, K_{c, \mu}^{*}, \mathcal{N}_{c, \mu, \varepsilon}$ by $K^{*}, K_{c}^{*}, \mathcal{N}_{c, \varepsilon}$. Note that for every $c \in \mathbb{R}, K_{c}$ is
compact in $W_{0}^{1, p}(\Omega)(c f$. [9, Theorem 1.2]). It follows from [19, Proposition 7.5] that there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\operatorname{gen}\left(\mathcal{N}_{c, 2 \varepsilon}\right)=\operatorname{gen}\left(K_{c}^{*}\right)<+\infty . \tag{2.5}
\end{equation*}
$$

Let $J_{n}^{c}:=\left\{u \in W_{0}^{1, p}(\Omega): I_{n}(u) \leq c\right\}$ and $\mathcal{Q}_{n}^{c}:=D_{\mu} \cup J_{n}^{c}$. Let $J^{c}:=\left\{u \in W_{0}^{1, p}(\Omega): I(u) \leq c\right\}$. For $\delta>0$ small enough, we define $\mathcal{A}_{n, \varepsilon}^{c, \delta}:=\left(\mathcal{Q}_{n}^{c+\delta} \backslash \mathcal{Q}_{n}^{c-\delta}\right) \backslash \mathcal{N}_{c, \varepsilon}$, then we have the following.

Lemma 2.4 Assume that there exists $\delta>0$ such that $K^{*} \cap J^{c+\delta} \backslash \operatorname{int}\left(J^{c-\delta}\right)=K_{c}^{*}$ for n large. Then there exists $\gamma>0$ such that $\left\|I_{n}^{\prime}(u)\right\| \geq \gamma$ for $u \in \mathcal{A}_{n, \varepsilon}^{c, \delta}$ and large n.

Proof Assume a contradiction. Then, for every $n \in \mathbb{N}$, there exists $\left\{v_{n, k}\right\} \subset \mathcal{A}_{n, \varepsilon}^{c, \delta}$ such that $\lim _{k \rightarrow \infty} I_{n}^{\prime}\left(v_{n, k}\right)=0$. It is clear that I_{n} satisfies the (PS) condition for every $n \in \mathbb{N}$. Hence there exists $v_{n} \in W_{0}^{1, p}(\Omega)$ such that, up to a subsequence, $v_{n, k} \rightarrow v_{n}$ in $W_{0}^{1, p}(\Omega)$ as $k \rightarrow \infty$ with $I_{n}^{\prime}\left(v_{n}\right)=0$ and $I_{n}\left(v_{n}\right) \in[c-\delta, c+\delta]$. This implies

$$
c+\delta \geq I_{n}\left(v_{n}\right)=\left(\frac{1}{p}-\frac{1}{p_{n}}\right)\left(1-\frac{\lambda}{\lambda_{1}}\right)\left\|v_{n}\right\|^{p} \geq\left(\frac{1}{p}-\frac{1}{p_{1}}\right)\left(1-\frac{\lambda}{\lambda_{1}}\right)\left\|v_{n}\right\|^{p} .
$$

Thus, by [9, Theorem 1.2], up to a subsequence, we see that there exists $v_{0} \in W_{0}^{1, p}(\Omega)$ such that $v_{n} \rightarrow v_{0}$ in $W_{0}^{1, p}(\Omega)$ as $n \rightarrow \infty$. Moreover, by using the arguments in the proof of Lemma 2.3, we have $I^{\prime}\left(v_{0}\right)=0$ and $I\left(v_{0}\right) \in[c-\delta, c+\delta]$. On the other hand, for large n, $v_{n} \notin\left(\operatorname{int}\left(D_{\mu}^{+}\right) \cup \operatorname{int}\left(D_{\mu}^{-}\right)\right) \cup \mathcal{N}_{c, \varepsilon}$ since $v_{n, k} \in \mathcal{A}_{n, \varepsilon}^{c, \delta}$. It follows that $v_{0} \notin\left(\operatorname{int}\left(D_{\mu}^{+}\right) \cup \operatorname{int}\left(D_{\mu}^{-}\right)\right) \cup \mathcal{N}_{c, \varepsilon}$. This contradicts the fact that $K^{*} \cap J_{n}^{c+\delta} \backslash \operatorname{int}\left(J_{n}^{c-\delta}\right)=K_{c}^{*}$.

Lemma 2.5 Assume that there exists $\gamma>0$ such that $\left\|I_{n}^{\prime}(u)\right\| \geq \gamma$ for every $u \in \mathcal{A}_{n, \varepsilon}^{c, \delta}$ and large n. Then there exist $\delta>0$ and an odd continuous map η_{n} such that $\eta_{n}: \mathcal{A}_{n, 2 \varepsilon}^{c, \delta} \cup \mathcal{Q}_{n}^{c-\delta} \rightarrow$ $\mathcal{Q}_{n}^{c-\delta}$ and $\left.\eta\right|_{\mathcal{Q}_{n}^{c-\delta}}=$ Id for large n.

Proof We first assume $1<p<2$. It is clear that there exists $L>0$ such that

$$
\begin{equation*}
\|u\|+\left\|S_{n, \lambda}(u)\right\| \leq L \quad \text { for all } u \in \mathcal{N}_{c, 2 \varepsilon} \tag{2.6}
\end{equation*}
$$

where

$$
\left\langle S_{n, \lambda}(u), \varphi\right\rangle:=\int_{\Omega}\left(\lambda|u|^{p-2} u+|u|^{p_{n}-2} u\right) \varphi d x \quad \text { for } u \in W_{0}^{1, p}(\Omega) \text { and } \varphi \in W_{0}^{-1, p}(\Omega)
$$

Let $T_{n, \lambda}: W_{0}^{1, p}(\Omega) \backslash K \rightarrow W_{0}^{1, p}(\Omega)$ be the local Lipschitz continuous operator obtained in [14, Lemma 2.1] and let $\phi_{u}(t)$ be the solution of the following O.D.E.

$$
\left\{\begin{array}{l}
\frac{d \phi}{d t}=-\phi+T_{n, \lambda}(\phi), \\
\phi=u \in W_{0}^{1, p}(\Omega) \backslash K .
\end{array}\right.
$$

Denote $\tau(u)$ to be the maximal interval of existence of $\phi_{u}(t)$.
Claim 1: $\phi_{u}(t)$ cannot enter $\mathcal{N}_{c, \varepsilon}$ before it enters $\mathcal{Q}_{n}^{c-\delta}$ for small δ, large n and $u \in \mathcal{A}_{n, 2 \varepsilon}^{c, \delta}$.

Indeed, if the claim fails, then for every $\delta>0, \phi_{u}(t)$ will enter $\mathcal{N}_{c, \varepsilon}$ before it enters $\mathcal{Q}_{n}^{c-\delta}$. Since $u \in \mathcal{A}_{n, 2 \varepsilon}^{c, \delta} \subset W_{0}^{1, p}(\Omega) \backslash \mathcal{N}_{c, 2 \varepsilon}$, there exist $0 \leq t_{1}<t_{2}<\tau(u)$ such that $\phi_{u}(t) \in \mathcal{N}_{c, 2 \varepsilon} \backslash \mathcal{N}_{c, \varepsilon}$ for $t \in\left(t_{1}, t_{2}\right]$ and

$$
\operatorname{dist}\left(\phi_{u}\left(t_{1}\right), K_{c}^{*}\right)=2 \varepsilon, \quad \operatorname{dist}\left(\phi_{u}\left(t_{2}\right), K_{c}^{*}\right)=\varepsilon
$$

By [14, Lemma 2.1], $C\left\|u-S_{n, \lambda}(u)\right\|^{2}\left(\|u\|+\left\|S_{n, \lambda}(u)\right\|\right)^{p-2} \leq\left\langle I_{n}(u), u-T_{n, \lambda}(u)\right\rangle$. On the other hand, by the choice of t_{1} and t_{2}, we know that $\phi_{u}(t) \in \mathcal{A}_{n, \varepsilon}^{c, \delta}$ for $t \in\left(t_{1}, t_{2}\right]$. Thanks to [17, Lemma 3.8], $\left\|u-S_{n, \lambda}(u)\right\| \geq\left(\frac{\gamma}{C}\right)^{1 /(p-1)}$ for large n. This, together with (2.6) and [14, Lemma 2.1], implies

$$
\begin{aligned}
\varepsilon & \leq\left\|\phi_{u}\left(t_{2}\right)-\phi_{u}\left(t_{1}\right)\right\| \leq \int_{t_{1}}^{t_{2}}\left\|\phi_{u}(t)-T_{n, \lambda}\left(\phi_{u}(t)\right)\right\| d t \\
& \leq C \int_{t_{1}}^{t_{2}}\left\|\phi_{u}(t)-S_{n, \lambda}\left(\phi_{u}(t)\right)\right\| d t \\
& \leq C \int_{t_{1}}^{t_{2}}\left\|\phi_{u}(t)-S_{n, \lambda}\left(\phi_{u}(t)\right)\right\|^{2}\left(\left\|\phi_{u}(t)\right\|+\left\|S_{n, \lambda}\left(\phi_{u}(t)\right)\right\|\right)^{p-2} d t \\
& \leq C \int_{t_{1}}^{t_{2}}\left\langle I_{n}\left(\phi_{u}(t)\right), \phi_{u}(t)-T_{n, \lambda}\left(\phi_{u}(t)\right)\right\rangle d t \\
& =C\left(I_{n}\left(t_{1}\right)-I_{n}\left(t_{2}\right)\right) \leq 4 C \delta .
\end{aligned}
$$

A contradiction with $\delta<4 C / \varepsilon$.
Claim 2: There exists $\tau_{1}(t)<\tau(u)$ such that $\phi_{u}\left(\tau_{1}(u)\right) \in \mathcal{Q}_{n}^{c-\delta}$ for large n and $u \in \mathcal{A}_{n, 2 \varepsilon}^{c, \delta}$.
If the claim is not true, then $\phi_{u}(t) \in \mathcal{Q}_{n}^{c+\delta} \backslash \mathcal{Q}_{n}^{c-\delta}$ for all $t \in(0, \tau(u))$. We first consider the case of $\tau(u)<+\infty$. In fact, by Claim $1, \phi_{u}(t) \notin \mathcal{N}_{c, \varepsilon}$, i.e., $\phi_{u}(t) \in \mathcal{A}_{n, \varepsilon}^{c, \delta}$ for all $t \in(0, \tau(u))$. Since $\left\|I_{n}^{\prime}(u)\right\| \geq \gamma>0$ for $u \in \mathcal{A}_{n, \varepsilon}^{c, \delta}$ and large n, we must have

$$
\begin{equation*}
\left\|\phi_{u}(t)\right\| \rightarrow \infty \quad \text { as } t \rightarrow \tau(u) \tag{2.7}
\end{equation*}
$$

On the other hand, by [14, Lemma 2.1] and [17, Lemma 5.2], we have

$$
\begin{aligned}
\left\|\phi_{u}(t)-\phi_{u}(0)\right\| & \leq \int_{0}^{t}\left\|\phi_{u}(s)-T_{\lambda, n}\left(\phi_{u}(s)\right)\right\| d s \\
& \leq C \int_{0}^{t}\left\|\phi_{u}(s)-S_{\lambda, n}\left(\phi_{u}(s)\right)\right\| d s \\
& \leq C \int_{0}^{t}\left(1+\left\|\phi_{u}(s)-S_{\lambda, n}\left(\phi_{u}(s)\right)\right\|\right)^{p} d s \\
& \leq C \int_{0}^{t}\left(1+\left\|\phi_{u}(s)-S_{\lambda, n}\left(\phi_{u}(s)\right)\right\|\right)^{2}\left(\left\|\phi_{u}(s)\right\|+\left\|S_{\lambda, n}\left(\phi_{u}(s)\right)\right\|\right)^{p-2} d s \\
& \leq C \int_{0}^{t}\left\|\phi_{u}(s)-S_{\lambda, n}\left(\phi_{u}(s)\right)\right\|^{2}\left(\left\|\phi_{u}(s)\right\|+\left\|S_{\lambda, n}\left(\phi_{u}(s)\right)\right\|\right)^{p-2} d s \\
& \leq C\left(I_{n}\left(\phi_{u}(0)\right)-I_{n}\left(\phi_{u}(t)\right)\right) \leq C .
\end{aligned}
$$

This means $\left\|\phi_{u}(t)\right\| \leq\|u\|+C$ for all $t \in(0, \tau(u))$, which contradicts with (2.7). It follows that there must exist $\tau_{1}(u)<\tau(u)$ such that $\phi_{u}\left(\tau_{1}(u)\right) \in \mathcal{Q}_{n}^{c-\delta}$ for $u \in \mathcal{A}_{n, 2 \varepsilon}^{c, \delta}$, large n and
$\tau(u)<+\infty$. Next, we consider the case of $\tau(u)=+\infty$. Since $\left\|u-S_{n, \lambda}(u)\right\| \geq\left(\frac{\gamma}{C}\right)^{1 /(p-1)}$ for all $u \in \mathcal{A}_{n, \varepsilon}^{c, \delta}$ and large n, it follows from [14, Lemma 2.1] and [17, Lemma 5.2] that

$$
\begin{aligned}
\frac{d I_{n}\left(\phi_{u}(t)\right)}{d t} & =\left\langle I_{n}\left(\phi_{u}(t)\right),-\phi_{u}(t)+T_{n, \lambda}\left(\phi_{u}(t)\right)\right\rangle \\
& \leq-C\left\|\phi_{u}(t)-S_{n, \lambda}\left(\phi_{u}(t)\right)\right\|^{2}\left(\left\|\phi_{u}(t)\right\|+\left\|S_{n, \lambda}\left(\phi_{u}(t)\right)\right\|\right)^{p-2} \\
& \leq-C\left\|\phi_{u}(t)-S_{n, \lambda}\left(\phi_{u}(t)\right)\right\|^{2}\left(1+\left\|\phi_{u}(t)-S_{n, \lambda}\left(\phi_{u}(t)\right)\right\|\right)^{p-2} \\
& \leq-C<0 .
\end{aligned}
$$

Thus, there also exists $\tau_{1}(u) \in(0,+\infty)$ such that $\phi_{u}\left(\tau_{1}(u)\right) \in \mathcal{Q}_{n}^{c-\delta}$ for $u \in \mathcal{A}_{n, 2 \varepsilon}^{c, \delta}$ and $\tau(u)=$ $+\infty$. Moreover, we must have $\phi_{u}(t) \in \mathcal{Q}_{n}^{c-\delta}$ for $t \in\left(\tau_{1}(u), \tau(u)\right)$ since $\frac{d I_{n}\left(\phi_{u}(t)\right)}{d t} \leq 0$ for all $u \in W_{0}^{1, p}(\Omega) \backslash K$.
Let

$$
\eta_{n}(u)= \begin{cases}\phi_{u}\left(\tau_{1}(u)\right), & u \in \mathcal{A}_{n, 2 \varepsilon}^{c}, \\ u, & u \in \mathcal{Q}_{n}^{c-\delta}\end{cases}
$$

Then, by the continuity of $\phi_{u}(t), \eta_{n}(u)$ is continuous. Note that $\phi_{u}(t)$ is odd and $\tau_{1}(u)$ is even, we see that $\eta_{n}(u)$ is odd and it is the desired map. The situation of $p \geq 2$ can be proved in a similar way. Therefore, we complete the proof of this lemma.

Proof of Theorem 1.1 We first consider the case $\lambda \geq \lambda_{1}$. Thanks to Lemma 2.1 and [9, Theorem 1.1], (1.1) has infinitely many sign-changing solutions. Next, we consider the case of $\lambda \in\left(0, \lambda_{1}\right)$. Since for every $n \in \mathbb{N}, 0 \leq d_{n, k} \leq d_{n, k+1}$ for all $k \in \mathbb{N}, d_{k} \leq d_{k+1}$ for all $k \in \mathbb{N}$. It follows that two cases may occur:
Case 1: There are $1<k_{1}<k_{2}<\cdots$ such that $d_{k_{1}}<d_{k_{2}}<\cdots$.
In this case, Problem (1.1) has infinitely many sign-changing solutions.
Case 2: There exists $k_{0}>0$ such that $d_{*}=d_{k}$ for all $k \geq k_{0}$.
In this case, if $\left(K^{*} \cap J^{d_{*}+\delta} \backslash \bigvee^{d_{*}-\delta}\right) \backslash K_{d_{*}}^{*} \neq \emptyset$ for every $\delta>0$ small enough, then Problem (1.1) also has infinitely many sign-changing solutions. Otherwise, there exists $\delta_{0}>0$ such that $\left(K^{*} \cap J^{d_{*}+\delta} \backslash J^{d_{*}-\delta}\right)=K_{d_{*}}^{*}$ for $\delta<\delta_{0}$. Thanks to Lemmas 2.4 and 2.5 , there exists η_{n} such that $\eta_{n}\left(\mathcal{A}_{n, 2 \varepsilon}^{d_{*}} \cup \mathcal{Q}_{n}^{d_{*}-\delta}\right) \subset \mathcal{Q}_{n}^{d_{*}-\delta}$ for small δ and large n. Fix $l \in \mathbb{N}$ and $k \geq k_{0}$, the definitions of d_{k} and d_{k+l} give that there exists a large n such that $d_{n, k}>d_{*}-\delta$ and $d_{n, k+l}<d_{*}+\delta$ for small $\delta \in(0,1)$. By the definition of $d_{n, k+l}$, there exists $Z \in \Gamma_{k+l}$ such that $\sup _{Z} I_{n}(u)<d_{*}+\delta$, where $Z=h\left(B_{m} \backslash B\right) \backslash D_{\mu}, h \in G_{m}$ and gen $(B) \leq m-k-l$. It follows that $h\left(B_{m} \backslash B\right) \backslash \mathcal{N}_{d_{*}, 2 \varepsilon} \subset \mathcal{A}_{n, 2 \varepsilon}^{c, \delta} \cup$ $\mathcal{Q}_{n}^{c-\delta}$. Thus, $\eta_{n}\left(h\left(B_{m} \backslash B\right) \backslash \mathcal{N}_{d_{*}, 2 \varepsilon}\right) \subset \mathcal{Q}_{n}^{d_{*}-\delta}$. By the choice of δ and B_{m}, we have $\eta_{n} \circ h \in G_{m}$. If $\operatorname{gen}\left(B \cup h^{-1}\left(\mathcal{N}_{d_{*}, 2 \varepsilon}\right)\right) \leq m-k$, then we have

$$
d_{*}-\delta<d_{n, k} \leq \sup _{\eta_{n} \circ h\left(B_{m} \backslash\left(B \cup h^{-1}\left(\mathcal{N}_{d_{*}, 2 \varepsilon}\right)\right)\right)} I_{n}(u) \leq d_{*}-\delta .
$$

A contradiction. By the properties of gen, we have

$$
m-k+1 \leq \operatorname{gen}\left(B \cup h^{-1}\left(\mathcal{N}_{d_{*}, 2 \varepsilon}\right)\right) \leq \operatorname{gen}(B)+\operatorname{gen}\left(\mathcal{N}_{d_{*}, 2 \varepsilon}\right) \leq m-k-l+\operatorname{gen}\left(\mathcal{N}_{d_{*}, 2 \varepsilon}\right)
$$

This implies $\operatorname{gen}\left(\mathcal{N}_{d_{*}, 2 \varepsilon}\right) \geq l+1$. Since $l \in \mathbb{N}$ is arbitrary, we have $\operatorname{gen}\left(\mathcal{N}_{d_{*}, 2 \varepsilon}\right)=+\infty$, which contradicts with (2.5).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors typed, read and approved the final manuscript.

Acknowledgements

The work was supported by the Natural Science Foundation of China $(11071180,11171247)$ and College Postgraduate Research and Innovation Project of Jiangsu Province (CXZZ110082)

Received: 14 December 2012 Accepted: 28 May 2013 Published: 19 June 2013

References

1. Brezis, H, Nirenberg, L: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent Commun. Pure Appl. Math. 36, 437-478 (1983)
2. Cerami, G, Fortunato, D, Struwe, M: Bifurcation and multiplicity results for nonlinear elliptic problems involving critica Sobolev exponents. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1, 341-350 (1984)
3. Clapp, M, Weth, T: Multiple solutions for the Brezis-Nirenberg problem. Adv. Differ. Equ. 10, 463-480 (2005)
4. Devillanova, G, Solimini, S: Concentration estimates and multiple solutions to elliptic problems at critical growth. Adv. Differ. Equ. 7, 1257-1280 (2002)
5. Fortunato, D, Jannelli, E: Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains. Proc. R. Soc. Edinb. A 105, 205-213 (1987)
6. Solimini, S: A note on compactness-type properties with respect to Lorenz norms of bounded subsets of a Sobolev spaces. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 12, 319-337 (1995)
7. Schechter, M, Zou, W: On the Brézis-Nirenberg problem. Arch. Ration. Mech. Anal. 197, 337-356 (2010)
8. Alves, C, Ding, Y: Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity. J. Math Anal. Appl. 279, 508-521 (2003)
9. Cao, D, Peng, S, Yan, S: Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth. J. Funct. Anal. 262, 2861-2902 (2012)
10. Cingolani, S, Vannella, G: Multiple positive solutions for a critical quasilinear equation via Morse theory. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26, 397-413 (2009)
11. Degiovanni, M, Lancelotti, S: Linking solutions for p-Laplace equations with nonlinearity at critical growth. J. Funct. Anal. 256, 3643-3659 (2009)
12. Allegretto, W, Huang, Y: A Picone's identity for the p-Laplacian and applications. Nonlinear Anal. 32, 819-830 (1998)
13. Iturriaga, L, Massa, E, Sanchez, J, Ubilla, P: Positive solutions of the p-Laplacian involving a superlinear nonlinearity with zeros. J. Differ. Equ. 248, 309-327 (2010)
14. Bartsch, T, Liu, Z, Weth, T: Nodal solutions of p-Laplacian equation. Proc. Lond. Math. Soc. 91, 129-152 (2005)
15. Lindqvist, P: On the equation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u=0$. Proc. Am. Math. Soc. 109, 157-164 (1990)
16. Cuesta, M: Eigenvalue problem for the p-Laplacian with indefinite weights. Electron. J. Differ. Equ. 2001, 1-9 (2001)
17. Bartsch, T, Liu, Z: On a superlinear elliptic p-Laplacian equation. J. Differ. Equ. 198, 149-175 (2004)
18. Tolksdorf, P: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126-150 (1984)
19. Rabinowitz, P: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg. Conf. Ser. Math., vol. 65. Am. Math. Soc., Providence (1986)
doi:10.1186/1687-2770-2013-149
Cite this article as: Wu and Huang: Infinitely many sign-changing solutions for p-Laplacian equation involving the critical Sobolev exponent. Boundary Value Problems 2013 2013:149.

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: © 2013 Wu and Huang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

