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Abstract
In this paper, we consider the nonlocal problems for nonlinear first-order evolution
inclusions in an evolution triple of spaces. Using techniques from multivalued analysis
and fixed point theorems, we prove existence theorems of solutions for the cases of a
convex and of a nonconvex valued perturbation term with nonlocal conditions. Also,
we prove the existence of extremal solutions and a strong relaxation theorem. Some
examples are presented to illustrate the results.
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1 Introduction
In this paper, we examine the following nonlinear nonlocal problem:{

ẋ +A(t,x) + Bx ∈ F(t,x), a.e. I = [,T],
x() = ϕ(x),

where A : I ×V → V * is a nonlinear map, B : V → V * is a bounded linear map, ϕ :H →H
is a continuous map and F : I ×H → V * is a multifunction to be given later. Concerning
the function ϕ, appearing in the nonlocal condition, we mention here four remarkable
cases covered by our general framework, i.e.:
• ϕ(x) = x(T);
• ϕ(x) = –x(T);
• ϕ(x) = 

π
∫ π
 x(s)ds;

• ϕ(x) =
∑n

i= βix(ti), where  < t < t < · · · < tn are arbitrary, but fixed and
∑n

i= |βi| ≤ .
Many authors have studied the nonlocal Cauchy problem because it has a better effect

in the applications than the classical initial condition. We begin by mentioning some of
the previous work done in the literature. As far as we know, this study was first considered
by Byszewski. Byszewski and Lakshmikantham [, ] proved the existence and uniqueness
of mild solutions for nonlocal semilinear differential equations when F is a single-valued
function satisfying Lipschitz-type conditions. The fully nonlinear case was considered by
Aizicovici and Lee [], Aizicovici and McKibben [], Aizicovici and Staicu [], García-
Falset [], García-Falset and Reich [], and Paicu and Vrabie []. All these studies were
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motivated by the practical interests of such nonlocal Cauchy problems. For example, the
diffusion of a gas through a thin transparent tube is described by a parabolic equation sub-
jected to a nonlocal initial condition very close to the one mentioned above, see []. For
the nonlocal problems of evolution equations, in [], Ntouyas and Tsamatos studied the
case with compactness conditions. Subsequently, Byszewski and Akca [] established the
existence of a solution to functional-differential equations when the semigroup is com-
pact and ϕ is convex and compact on a given ball. In [], Fu and Ezzinbi studied neutral
functional-differential equations with nonlocal conditions. Benchohra and Ntouyas []
discussed second-order differential equations under compact conditions. Formore details
on the nonlocal problem, we refer to the papers of [–] and the references therein.
It is worth mentioning that many of these documents assume that a nonlocal function

meets certain conditions of compactness and A is a strongly continuous semigroup of
operators or accretive operators in studying the evolution equations or inclusions with
nonlocal conditions. However, one may ask whether there are similar results without the
assumption on the compactness or equicontinuity of the semigroup. This article will give
a positive answer to this question. The works mentioned above mainly establish the ex-
istence of mild solutions for evolution equations or inclusions with nonlocal conditions.
However, in the present paper, we consider the cases of a convex and of a nonconvex valued
perturbation term in the evolution triple of spaces (V ⊂H ⊂ V *). We assume the nonlin-
ear time invariant operator A to be monotone and the perturbation term to be multival-
ued, defined on I×H with values in V * (not inH).We will establish existence theorems of
solutions for the cases of a convex and of a nonconvex valued perturbation term, which is
new for nonlocal problems. Our approach will be based on the techniques and results of
the theory of monotone operators, set-valued analysis and the Leray-Schauder fixed point
theorem.
We pay attention to the existence of extreme solutions [] that are not only the so-

lutions of a system with a convexified right-hand side, but also they are solutions of the
original system.We prove that, under appropriate hypotheses, such a solution set is dense
and codense in the solution set of a systemwith a convexified right-hand side (‘bang-bang’
principle). Our results extend those of [] and are similar to those of [] in an infinite
dimensional space. Furthermore, the process of our proofs ismuch shorter, and our condi-
tions are more general. Finally, some examples are also given to illustrate the effectiveness
of our results.
The paper is divided into five parts. In Section , we introduce some notations, defi-

nitions and needed results. In Section , we present some basic assumptions and main
results, the proofs of the main results are given based on the Leray-Schauder alternative
theorem. In Section , the existence of extremal solutions and a relaxation theorem are
established. Finally, two examples are presented for our results in Section .

2 Preliminaries
In this section we recall some basic definitions and facts frommultivalued analysis which
we will need in what follows. For details, we refer to the books of Hu and Papageorgiou
[] and Zeidler []. Let I = [,T], (I,�) be the Lebesgue measurable space and X be a
separable Banach space. Denote

Pw(f )kc(X) =
{
A⊂ X : nonempty, weakly (closed) compact and convex

}
.
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Let A⊂ Pf (X), x ∈ X, then the distance from x to A is given by d(x,A) = inf{|x–a| : a ∈ A}.
A multifunction F : I → Pf (X) is said to be measurable if and only if, for every z ∈ X, the
function t → d(z,F(t)) = inf{‖z – x‖ : x ∈ F(t)} is measurable. A multifunction F : I →
X \ {∅} is said to be graph measurable if GrF = {(t,x) : x ∈ F(t)} ∈ � × B(X) with B(X)
being the Borel σ -field of X. On Pf (X) we can define a generalized metric, known in the
literature as the ‘Hausdorff metric’, by setting

h(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}

for all A,B ∈ Pf (X).
It is well known that (Pf (X),h) is a complete metric space and Pfc(X) is a closed subset

of it. When Z is a Hausdorff topological space, a multifunction G : Z → Pf (X) is said to be
h-continuous if it is continuous as a function from Z into (Pf (X),h).
Let Y , Z beHausdorff topological spaces andG : Y → Z \{φ}.We say thatG(·) is ‘upper

semicontinuous (USC)’ (resp., ‘lower semicontinuous (LSC)’) if for all C ⊆ Z nonempty
closed, G–(C) = {y ∈ Y : G(y) ∩ C 
= φ} (resp., G+(C) = {y ∈ Y : G(y) ⊆ C}) is closed in Y .
A USCmultifunction has a closed graph in Y ×Z, while the converse is true if G is locally
compact (i.e., for every y ∈ Y , there exists a neighborhoodU of y such that F(U) is compact
inZ). Amultifunctionwhich is bothUSC andLSC is said to be ‘continuous’. IfY ,Z are both
metric spaces, then the above definition of LSC is equivalent to saying that for all z ∈ Z,
y → dZ(z,G(y)) = inf {dZ(z, v) : v ∈G(y)} is upper semicontinuous as R+-valued function.
Also, lower semicontinuity is equivalent to saying that if yn → y in Y as n→ ∞, then

G(y) ⊆ limG(yn) =
{
z ∈ Z : limdZ

(
z,G(yn)

)
= 

}
=

{
z ∈ Z : z = lim zn, zn ∈G(yn),n≥ 

}
.

Let I = [,T]. By L(I,X)w, we denote the Lebesgue-Bochner space L(I,X) equipped
with the norm ‖g‖w = sup{‖ ∫ t′

t g(s)ds‖ :  ≤ t ≤ t′ ≤ T}, g ∈ L(I,X). A set D ⊆ Lp(I,X) is
said to be ‘decomposable’ if for every g, g ∈ D and for every J ⊆ I measurable, we have
χJ g + χJc g ∈ D.
Let H be a real separable Hilbert space, V be a dense subspace of H having structure of

a reflexive Banach space, with the continuous embedding V → H → V *, where V * is the
topological dual space of V . The system model considered here is based on this evolution
triple. Let the embedding be compact. Let 〈·, ·〉 denote the pairing of an element x ∈ V *

and an element y ∈ V . If x, y ∈ H , then 〈·, ·〉 = (·, ·), where (·, ·) is the inner product on H .
The norm in any Banach space X will be denoted by ‖ · ‖X . Let  < q ≤ p < ∞ be such that

p + 

q = . We denote Lp(I,V ) by X. Then the dual space of X is Lq(I,V *) and is denoted
by X*. For p, q satisfying the above conditions, from reflexivity of V that both X and X*

are reflexive Banach spaces (see Zeidler [, p.]).
Define Wpq(I) = {x : x ∈ X, ẋ ∈ X*}, where the derivative in this definition should be un-

derstood in the sense of distribution. Furnished with the norm ‖x‖Wpq = ‖x‖X + ‖ẋ‖X* , the
space (Wpq(I),‖x‖Wpq ) becomes a Banach space which is clearly reflexive and separable.
Moreover, Wpq(I) embeds into C(I,H) continuously (see Proposition . of []). So,
every element in Wpq(I) has a representative in C(I,H). Since the embedding V → H is
compact, the embedding Wpq(I) → Lp(I,H) is also compact (see Problem . of []).

http://www.boundaryvalueproblems.com/content/2013/1/15
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The pairing between X and X* is denoted by 〈〈·, ·〉〉. By ‘⇀’ we denote the weakly conver-
gence. The following lemmas are still needed in the proof of our main theorems.

Lemma . (see []) If X is a Banach space, C ⊂ X is nonempty, closed and convex with
 ∈ C and G : C → Pkc(C) is an upper semicontinuous multifunction which maps bounded
sets into relatively compact sets, then one of the following statements are true:

(i) the set 
 = {x ∈ C : x ∈ λG(x),λ ∈ (, )} is unbounded;
(ii) the G(·) has a fixed point, i.e., there exists x ∈ C such that x ∈G(x).

Let X be a Banach space and let L(I,X) be the Banach space of all functions u : I → X
which are Bochner integrable. D(L(I,X)) denotes the collection of nonempty decompos-
able subsets of L(I,X). Now, let us state the Bressan-Colombo continuous selection the-
orem.

Lemma . (see []) Let X be a separable metric space and let F : X → D(L(I,X)) be a
lower semicontinuous multifunction with closed decomposable values. Then F has a con-
tinuous selection.

Let X be a separable Banach space and C(I,X) be the Banach space of all continuous
functions. A multifunction F : I × X → Pwkc(X) is said to be Carathéodory type if for ev-
ery x ∈ X, F(·,x) is measurable, and for almost all t ∈ I , F(t, ·) is h-continuous (i.e., it is
continuous from X to the metric space (Pf (X),h), where h is a Hausdorff metric).
Let M ⊂ C(I,X), a multifunction F : I × X → Pwkc(X) is called integrably bounded

on M if there exists a function λ : I → R+ such that for almost all t ∈ I , sup{‖y‖ : y ∈
F(t,x(t)),x(·) ∈ M} ≤ λ(t). A nonempty subsetM ⊂ C(I,X) is called σ -compact if there is
a sequence {Mk}k≥ of compact subsetsMk such thatM =

⋃
k≥Mk . LetM ⊂M be such

thatM is dense inM and σ -compact. The following continuous selection theorem in the
extreme point case is due to Tolstonogov [].

Lemma . (see []) Let the multifunction F : I × X → Pwkc(X) be Carathéodory type
and integrably bounded. Then there exists a continuous function g : M → Lp(I,X) such
that for almost all t ∈ I , if x(·) ∈M , then g(x)(t) ∈ extF(t,x(t)), and if x(·) ∈M \M, then
g(x)(t) ∈ extF(t,x(t)).

3 Main results
Let I = [,T], consider the following evolution inclusions:

ẋ +A(t,x) + Bx ∈ F(t,x), a.e. I,

x() = ϕ(x),
(.)

where A : I ×V → V * is a nonlinear map, B : V → V * is a bounded linear map, ϕ :H →H
is a continuous map and F : I × H → V * is a multifunction satisfying some conditions
mentioned later.

Definition . A function x ∈Wpq(I) is called a solution to the problem (.) iff〈
ẋ(t), v

〉
+

〈
A

(
t,x(t)

)
, v

〉
+

〈
Bx(t), v

〉
=

〈
f (t), v

〉
,

where x() = ϕ(x), f (t) ∈ F(t,x(t)) for all v ∈ V and almost all t ∈ I .

http://www.boundaryvalueproblems.com/content/2013/1/15
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We will need the following hypotheses on the data problem (.).
(H) A : I ×V → V * is an operator such that

(i) t → A(t,x) is measurable;
(ii) for each t ∈ I , the operator A(t, ·) : V → V * is uniformly monotone and

hemicontinuous, that is, there exists a constant C >  (independent of t)
such that

〈
A(t,x) –A(t,x),x – x

〉 ≥ C‖x – x‖pH

for all x,x ∈ V , and the map s �→ 〈A(t,x + sz), y〉 is continuous on [, ] for
all x, y, z ∈ V ;

(iii) there exist a constant C > , a nonnegative function a(·) ∈ Lq(I) and a
nondecreasing continuous function η(·) ∈ Lq(I) such that
‖A(t,x)‖V * ≤ a(t) +Cη(‖x‖V ) for all x ∈ V , a.e. on I ;

(iv) there exist C > , C > , b(·) ∈ L(I) such that

〈
A(t,x),x

〉 ≥ C‖x‖pV –C‖x‖p–V +

T

∥∥x()∥∥ – b(t) a.e. I,∀x ∈ V ,

or

〈
A(t,x),x

〉 ≥ C‖x‖pV –C‖x‖p–V – b(t) a.e. I,∀x ∈ V ,p > .

(H) F : I ×H → Pk(V *) is a multifunction such that
(i) (t,x)→ F(t,x) is graph measurable;
(ii) for almost all t ∈ I , x→ F(t,x) is LSC;
(iii) there exist a nonnegative function b(·) ∈ Lq(I) and a constant C >  such

that

∣∣F(t,x)∣∣ = sup
{‖f ‖V * : f ∈ F(t,x)

} ≤ b(t) +C‖x‖k–H ∀x ∈ V a.e. I,

where  ≤ k < p.
(H) (i) B : V → V * is a bounded linear self-adjoint operator such that (Bx,x)≥  for

all x ∈ V , a.e. on I ;
(ii) there exists a continuous function ϕ : Lp(I,H) →H such that

∥∥ϕ(u) – ϕ(v)
∥∥ ≤ ‖u – v‖C(I,H) ∀u, v ∈ C(I,H),

and ϕ() = .
It is convenient to rewrite the system (.) as an operator equation inWpq(I). For x ∈ X,

we get

A(x)(t) = A(t,x), B(x)(t) = Bx(t),

F(x)(t) = F
(
t,x(t)

)
, t ∈ I.

It follows from Theorem .A of Zeidler [] that the operator A : X → X* is bounded,
monotone, hemicontinuous and coercive. By using the same technique, one can show that

http://www.boundaryvalueproblems.com/content/2013/1/15
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the operator F : Lp(I,H) → X* is bounded and satisfies

∣∣F(t,x)∣∣ = sup
{‖f ‖X* : f ∈ F(t,x)

} ≤ M̂ + M̂‖x‖k–Lp(I,H)

for some constants M̂, M̂ >  and all x ∈ Lp(I,H).
We define

Lu = u̇, D(L) =
{
u ∈Wpq(I) : u() = ξ ∈H

}
, (.)

where u̇ stands for the generalized derivative of u, i.e.,

∫ T


u̇(t)v(t)dt = –

∫ T


u(t)v̇(t)dt ∀v(·) ∈ C∞

 (I).

For the proofs of main results, we need the following lemma.

Lemma . Let V ⊆ H ⊆ V * be an evolution triple and let X = Lp(I,V ), where  < p < ∞
and  < T < ∞. Then the linear operator L : D(L) ⊆ X → X* defined by (.) is maximal
monotone.

Proof In the sequel we will show that L is maximal monotone. To prove this, suppose that
(v,w) ∈ X ×X* and

 ≤ 〈w – Lu, v – u〉 ∀u ∈D(L).

We have to show that v ∈ D(L) and w = Lv, i.e., w = v̇. Due to the arbitrariness of u, we
choose u = φz + ξ , where φ ∈ C∞

 (I), ξ = u and z ∈ V . Then u̇ = φ̇z, so 〈〈Lu,u〉〉 = . From
〈w – Lu, v – u〉 ≥ , we obtain that

 ≤ 〈〈w, v – ξ 〉〉 –
∫ T


〈ϕ̇v + ϕw, z〉dt ∀z ∈ V .

By the arbitrariness of z, one has that

∫ T


(ϕ̇v + ϕw)dt =  ∀ϕ ∈ C∞

 (I).

Hence, w = v̇. Since v ∈ Wpq(I), then w ∈ X*. It remains to show that v ∈ D(L). Using the
integration by parts formula for functions inWpq(I) (see Zeidler [], Proposition .),
we obtain from (.) that

 ≤ 〈〈v̇ – u̇, v – u〉〉 = 

(∥∥v(T) – u(T)

∥∥ –
∥∥v() – u()

∥∥) ∀u ∈D(L). (.)

Choose a set of functions (an)n≥ in H such that Tan → v(T) – ξ as n→ ∞. For ξ ∈ H , let
u(t) = tan + ξ , then u ∈D(L). By (.), we have v() = u() = ξ as n→ ∞. Hence, v ∈D(L).
This completes the proof. �

Theorem . If hypotheses (H), (H) and (H) hold, the problem (.) has at least one
solution.

http://www.boundaryvalueproblems.com/content/2013/1/15
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Proof The process of proof is divided into four parts.
Step .We claim that the equation

ẋ +A(t,x) + Bx = f (t) a.e. I,

x() = ( – ε)ϕ(x)
(.)

has only one solution.
Firstly, for every ε ∈ (, ], y ∈ X and f ∈ X*, we claim that the equation

ẋ +A(t,x) + Bx = f (t) a.e. I,

x() = ( – ε)ϕ(y)
(.)

has only one solution. By (H) and (H), it is easy to check that (A+B) is bounded, mono-
tone, hemicontinuous and coercive.Moreover, by Lemma ., L is a linearmaximalmono-
tone operator. Therefore, R(L +A + B) = V *, i.e., L + (A + B) is surjective (see [, p.]).
The uniqueness is clear. Hence, for the Cauchy problem (.) has a unique xy(t) ∈Wpq(I).
ByWpq(I) ⊂ C(I,H), then the operator P :Wpq(I) →Wpq(I) is defined as follows:

P(y) =
∫ t


ẋ(s)ds + ( – ε)ϕ(y).

By (.), we have

P(y) – P(y) +
∫ t


A(s,x) –A(s,x)ds = ( – ε)ϕ(y) – ( – ε)ϕ(y)

for all y, y ∈Wpq(I). Take an inner product over (.) with x – x, then

(
P(y)–P(y),x –x

)
+

∫ t



(
A(s,x)–A(s,x),x –x

)
ds = (–ε)

(
ϕ(y)–ϕ(y),x –x

)
.

By (H)(ii), we have

∥∥P(y) – P(y)
∥∥ ≤ ( – ε)

∥∥ϕ(y) – ϕ(y)
∥∥‖x – x‖.

Hence,

∥∥P(y) – P(y)
∥∥
C(I,H) ≤ ( – ε)

∥∥ϕ(y) – ϕ(y)
∥∥
C(I,H)

≤ ( – ε)‖y – y‖C(I,H). (.)

Invoking the Banach fixed point theorem, the operator P has only one fixed point xε =
P(xε), i.e., xε is the uniform solution of (.).
Therefore, we define Lε :Wpq(I) → X* as Lεx = ẋ +A(t,x) + Bx and x() = ( – ε)ϕ(x). By

Step , we have Lε :Wpq(I) → X* is one-to-one and surjective, and so L–ε : X* →Wpq(I) is
well defined.
Step . L–ε : X* → Lp(I,H) is completely continuous.

http://www.boundaryvalueproblems.com/content/2013/1/15
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We only need to show that L–ε is continuous and maps a bounded set into a relatively
compact set. We claim that Lε :Wpq(I) → X* is continuous. In fact, let {xn}n≥ ⊂ Wpq(I)
such that xn → x as n → ∞. From (H)(ii) and (H), we infer that xn → x, A(xn) → A(x),
Bxn → Bx, a.e. I as n → ∞. Obviously, ϕ(xn) → ϕ(x). Therefore, Lε :Wpq(I) → X* is con-
tinuous and L–ε is continuous.
LetK ⊂ X* be a bound set, for any f ∈ K , there is a priori bound inWpq(I) for the possible

solution x(t) = L–ε f of (.). Then

ẋ +A(t,x) + Bx = f (t) a.e. I. (.)

It follows that

〈〈ẋ,x〉〉 + 〈〈Ax,x〉〉 + 〈〈Bx,x〉〉 = 〈〈
f (t),x

〉〉
. (.)

By (H)(iv),

〈〈Au,u〉〉 ≥ C‖u‖pX –C‖u‖p–X +


∥∥u()∥∥ – ‖b‖L ,

or

〈〈Au,u〉〉 ≥ C‖u‖pX –C‖u‖p–X – ‖b‖L

with p > . But

〈〈u̇,u〉〉 = ∥∥u(T)∥∥ –
∥∥u()∥∥,

〈〈f ,u〉〉 ≤ ‖f ‖X*‖u‖X .

Therefore,

C‖x‖pX ≤ C‖x‖p–X + ‖f ‖X*‖x‖X + ‖b‖L ,

or

C‖x‖pX ≤ C‖x‖p–X + ‖f ‖X*‖x‖X + ‖b‖L + ‖x‖X ,

with p > . So, there exists an M >  such that ‖x‖X ≤ M. Because of the boundedness
of operators A, B, we obtain that there exists an M >  such that ‖ẋ‖X* ≤ M. Hence,
‖x‖Wpq ≤ M for some constant M > . Therefore, we have L–ε (K) is bounded in Wpq(I).
But Wpq(I) is compactly embedded in Lp(I,H). Therefore, L–ε (K) is relatively compact in
Lp(I,H).
Let N̂ : Lp(I,H) → X* be a multivalued Nemitsky operator corresponding to F and N̂

was defined by N̂(x) = {v ∈ X* : v(t) ∈ F(t,x(t))} a.e. on I .
Step . N̂(·) has nonempty, closed, decomposable values and is LSC.
The closedness and decomposability of the values of N̂(·) are easy to check. For the

nonemptiness, note that if x ∈ Lp(I,H), by the hypothesis (H)(i), (t,x) → F(t,x) is graph
measurable, so we apply Aumann’s selection theorem and obtain a measurable map v :

http://www.boundaryvalueproblems.com/content/2013/1/15
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I → V * such that v(t) ∈ F(t,x(t)) a.e. on I . By the hypothesis (H)(iii), v ∈ X*. Thus, for
every x ∈ Lp(I,H), N̂(x) 
= ∅. To prove the lower semicontinuity of N̂(·), we only need to
show that every u ∈ X*, x → d(u, N̂(x)) is a USC R+-valued function. Note that

d
(
u, N̂(x)

)
= inf

{‖u – v‖X* : v ∈ N̂(x)
}

= inf

{[∫ T



∥∥u(t) – v(t)
∥∥q
V * dt

]/q

: v ∈ N̂(x)
}

=
{∫ T


inf

{∥∥u(t) – v(t)
∥∥q
V * : v ∈ N̂(x)

}
dt

}/q

=
{∫ T



[
d
(
u(t),F

(
t,x(t)

))]q dt}/q

(seeHiai andUmegaki [] Theorem.).Wewill show that for every λ ≥ , the superlevel
set Uλ = {x ∈ Lp(I,H) : d(u, N̂(x)) ≥ λ} is closed in Lp(I,H). Let {xn}n≥ ⊆ Uλ and assume
that xn → x in Lp(I,H). By passing to a subsequence if necessary, we may assume that
xn(t)→ x(t) a.e. on I as n→ ∞. By (H)(ii), x→ d(u(t),F(t,x)) is an upper semicontinuous
R+-valued function. So, via Fatou’s lemma, we have

λq ≤ lim
[
d
(
u, N̂(xn)

)]q
= lim

∫ T



[
d
(
u(t),F

(
t,xn(t)

))]q dt
≤

∫ T


lim

[
d
(
u(t),F

(
t,xn(t)

))]q dt
≤

∫ T



[
d
(
u(t),F

(
t,x(t)

))]q dt = [
d
(
u, N̂(x)

)]q.
Therefore, x ∈Uλ and this proves the LSC of N̂(·). By Lemma ., we obtain a continuous
map f : Lp(I,H) → X* such that f (x) ∈ N̂(x). To finish our proof, we need to solve the fixed
point problem: x = L–ε ◦ f (x).
Since the embedding V →H is compact, the embeddingWpq(I)→ Lp(I,H) is compact.

That is, xn → x in Lp(I,H) whenever xn ⇀ x in Wpq(I). By using the above relation and
the continuity of f , we have f (xn) → f (x) in X* whenever xn ⇀ x in Wpq(I). So, L–ε ◦ f :
Lp(I,H) → Lp(I,H) is compact.
Step .We claim that the set 
 = {x ∈ Lp(I,H) : x = σL–ε ◦ f (x),σ ∈ (, )} is bounded.
Let x ∈ 
, then we have Lε( xσ ) = f (x). Note that〈〈

ẋ
σ
,
x
σ

〉〉
+

〈〈
A

(
x
σ

)
,
x
σ

〉〉
+

〈〈
B
x
σ
,
x
σ

〉〉
=

〈〈
f (x),

x
σ

〉〉
.

By (H)(iv) and (H)(i), one has that

〈〈Au,u〉〉 + 〈〈Bx,x〉〉 ≥ C‖u‖pX –C‖u‖p–X +


∥∥u()∥∥ – ‖b‖L , (.)

or

〈〈Au,u〉〉 + 〈〈Bx,x〉〉 ≥ C‖u‖pX –C‖u‖p–X – ‖b‖L (.)

http://www.boundaryvalueproblems.com/content/2013/1/15
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with p > . By using the integration by parts formula, we have

〈〈
A

(
x
σ

)
,
x
σ

〉〉
+

〈〈
B
x
σ
,
x
σ

〉〉
=

〈〈
f (x),

x
σ

〉〉
–

〈〈
ẋ
σ
,
x
σ

〉〉

≤ 
σ

{∫ T



∥∥f (t,x)∥∥q
V * dt

}/q{∫ T


‖x‖pV dt

}/p

+


σ 

∥∥ϕ(x)
∥∥

≤ 
σ

{∫ T



(
h(t) + ‖x‖k–H

)q dt}/q

‖x‖X +


σ 

∥∥ϕ(x)
∥∥

≤ 
σ

{∫ T



∣∣h(t)∣∣q + ‖x‖q(k–)H dt
}/q

‖x‖X +


σ 

∥∥ϕ(x)
∥∥

≤ 
σ

{(∫ T



∣∣h(t)∣∣q)/q

+
(∫ T


‖x‖q(k–)H dt

)/q}
‖x‖X +


σ 

∥∥ϕ(x)
∥∥

≤ γ‖x‖X + γ‖x‖kX +


σ 

∥∥ϕ(x)
∥∥, (.)

where γ,γ > . By (.), (.) and (.), if  ≤ k < p, then we have

‖x‖pX ≤ β‖x‖p–X + β‖x‖kX + β‖x‖X + β‖b‖L . (.)

If  ≤ k < p, p > , then we have

‖x‖pX ≤ β‖x‖p–X + β‖x‖kX + β‖x‖X + β‖b‖L + β‖x‖X . (.)

Thus, by virtue of the inequalities (.) and (.), we can find a constantM >  such that
‖x‖X ≤ M for all x ∈ 
. From the boundedness of operatorsA,B and f , and the continuous
embedding X → Lp(I,H), we obtain ‖A(x)‖X* ≤ M, ‖Bx‖X* ≤ M and ‖f (x)‖X* ≤ M for
some constantsM > ,M > ,M >  and all x ∈ 
. Therefore,

‖ẋ‖X* ≤ ∥∥A(x)∥∥X* + ‖Bx‖X* +
∥∥f (x)∥∥X* ≤M +M +M (.)

for all x ∈ 
.
It follows from (.) that ‖x‖Wpq ≤ ‖x‖X + ‖ẋ‖X* ≤ M̂ for some constant M̂ > . Hence,


 is a bounded subset ofWpq(I). So, 
 is a bounded subset of Lp(I,H) since the embedding
Wpq(I) → Lp(I,H) is compact.
Invoking the Leray-Schauder theorem, one has that there exists an xε ∈Wpq(I) such that

xε = L–ε f (xε), i.e., xε is a solution of the following problem:

ẋε +A(t,xε) + Bxε = f (xε),

f (xε) ∈ F(t,xε) a.e. I,

xε() = ( – ε)ϕ(xε).

(.)

http://www.boundaryvalueproblems.com/content/2013/1/15
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Let (εn)n≥ ⊂ (, ) and εn → . For every n ∈ N , there exists an xn ∈ Wpq(I) which is a
solution of the following equations:

ẋn +A(t,xn) + Bxn = f (xn) a.e. I,

f (xn) ∈ F(t,xn),

xn() = ( – εn)ϕ(xn).

(.)

By Step , we have that {xn}n≥ is uniformly bounded. By the boundedness of the sequence
{xn}n≥ ⊂Wpq(I), it follows that the sequence {ẋn}n≥ ⊂ X* is uniformly bounded and pass-
ing to subsequence if necessary, we may assume that ẋn ⇀ u in X*. Evidently, u = ẋ and
xn ⇀ x in Wpq(I). Since the embedding Wpq(I) ↪→ Lp(I,H) is compact, then xn → x in
Lp(I,H). Hence, from the hypothesis (H)(ii), we obtain f (xn) → f (x) and f (x) ∈ F(t,x).
Since the operator A is hemicontinuous and monotone and B is a continuous linear oper-
ator, thus A(xn) ⇀ A(x), Bxn ⇀ Bx in X* as n→ ∞. Therefore, we obtain ẋ+A(x) +Bx = f ,
f ∈ F(t,x) a.e. on I . Since xn(t)→ x(t) in Lp(I,H) and ϕ : Lp(I,H) →H is continuous, then
we have

xn() = ( – εn)ϕ(xn) → ϕ(x) = x().

Hence, x is a solution of (.). The proof is completed. �

Next, we consider the convex case, the assumption on F is as follows:
(H) F : I ×H → Pkc(V *) is a multifunction such that

(i) (t,x)→ F(t,x) is graph measurable;
(ii) for almost all t ∈ I , x → F(t,x) has a closed graph; and (H)(iii) hold.

Theorem . If hypotheses (H), (H) and (H) hold, the problem (.) has at least one
solution;moreover, the solution set is weakly compact in Wpq(I).

Proof The proof is as that of Theorem .. So, we only present those particular points
where the two proofs differ.
In this case, the multivalued Nemistsky operator N̂ : Lp(I,H) → X*

w has nonempty
closed, convex values in X* and is USC from Lp(I,H) into X* furnished with the weak
topology (denoted by X*

w). The closedness and convexity of the values of N̂(·) are clear.
To prove the nonemptiness, let x ∈ Lp(I,H) and {sn}n≥ be a sequence of step functions
such that sn(t)→ x(t) in H and ‖sn(t)‖H ≤ ‖x(t)‖H a.e. on I . Then by virtue of the hypoth-
esis (H)(i), for every n ≥ , t → F(t, sn(t)) admits a measurable selector vn(t). From the
hypothesis (H)(iii), we have that ‖vn‖X* ≤ M̂ + M̂‖x‖k–Lp(I,H), so {vn(t)}n≥ ⊆ X* is uni-
formly integrable. So, by the Dunford-Pettis theorem, and by passing to a subsequence if
necessary, we may assume that vn → v weakly in X*. Then from Theorem . in [], we
have

v(t) ∈ conv lim
{
vn(t)

}
n≥ ⊆ conv limF

(
t, sn(t)

) ⊆ F
(
t,x(t)

)
a.e. on I,

the last inclusion being a consequence of the hypothesis (H)(ii). So, v ∈ N̂(x), which
means that N̂(·) is nonempty.

http://www.boundaryvalueproblems.com/content/2013/1/15
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Next, we show that N̂(·) is USC from Lp(I,H) into X*
w. Let � be a nonempty and weakly

closed subset of X*. Obviously, it is sufficient to show that the set

N̂–(�) =
{
x ∈ Lp(I,H) : N̂(x)∩ � 
= φ

}
is closed. Let {xn}n≥ ⊆ N̂–(�) and assume xn → x in Lp(I,H). Passing to a subsequence,
we can get that xn(t) → x(t) a.e. on I . Let fn ∈ N̂(xn) ∩ �, n ≥ . Then by virtue of the
hypothesis (H)(iii), we have

‖fn‖X* ≤ M̂ + M̂‖x‖k–Lp(I,H).

So, by the Dunford-Pettis theorem, we may assume that fn → f ∈ � in X*
w. As before, we

have

f (t) ∈ conv lim
{
fn(t)

}
n≥ ⊆ conv limF

(
t,xn(t)

) ⊆ F
(
t,x(t)

)
a.e. on I,

then f ∈ N̂(x)∩ �, i.e., N̂–(�) is closed in Lp(I,H). This proves the upper semicontinuity
of N̂(·) from Lp(I,H) into X*

w.
We consider the following fixed point problem:

x ∈ L–ε ◦ N̂(x).

Recalling that L–ε : X* → Lp(I,H) is completely continuous, we see that L–ε ◦ N̂ :
Lp(I,H) → Pkc(Lp(I,H)) is USC and maps bounded sets into relatively compact sets. We
easily check that


 =
{
x ∈ Lp(I,H) : x ∈ λL–ε ◦ N̂(x),λ ∈ (, )

}
is bounded, as a proof of Theorem .. Invoking the Leray-Schauder fixed point theorem,
one has that there exists an xε ∈ Wpq(I) such that xε ∈ L–ε ◦ N̂(xε), i.e., xε is a solution of
the following problem:

ẋε +A(t,xε) + Bxε ∈ F(t,xε) a.e. I,

xε() = ( – ε)ϕ(xε).
(.)

Let (εn)n≥ ⊂ (, ) and εn → . For every n ∈ N , there exists an xn ∈ Wpq(I) which is a
solution of the following problem:

ẋn +A(t,xn) + Bxn = fn(t) a.e. I,

fn(t) ∈ F(t,xn),

xn() = ( – εn)ϕ(xn).

(.)

By Step , {xn}n≥ is uniformly bounded. By the boundedness of the sequence {xn}n≥ ⊂
Wpq(I), it follows that the sequence {ẋn}n≥ ⊂ X* is uniformly bounded and, passing to
subsequence if necessary, we may assume that ẋn ⇀ ẋ in X*. Thus, A(xn) ⇀ A(x), Bxn ⇀

http://www.boundaryvalueproblems.com/content/2013/1/15
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Bx in X* as n → ∞. Evidently, there exists fn ∈N(xn), by virtue of the hypothesis (H)(iv),
we have that ‖fn‖X* ≤ M̂ + M̂‖x‖k–Lp(I,H), so {fn(t)}n≥ ⊆ X* is uniformly integrable. So, by
the Dunford-Pettis theorem and by passing to a subsequence if necessary, we may assume
that fn → f weakly in X*. Therefore, we obtain ẋ +A(x) + Bx = f , f ∈ F(t,x) a.e. on I . Since
xn(t)→ x(t) in Lp(I,H) and ϕ : Lp(I,H) →H is continuous, then we have

xn() = ( – εn)ϕ(xn) → ϕ(x) = x().

Hence, evidently x is a solution of (.). As in the proof of Theorem ., we have that
|S| = sup{‖x‖Wpq : x ∈ S} ≤ M̂, for some M̂ > . So, S ⊆Wpq(I) is uniformly bounded. So, by
the Dunford-Pettis theorem and by passing to a subsequence if necessary, we may assume
that xn → x weakly inWpq(I). As before, we have

Lε(x)(t) ∈ conv lim
{
Lεxn(t)

}
n≥ ⊆ conv limF

(
t,xn(t)

) ⊆ F
(
t,x(t)

)
a.e. on I.

Clearly, x() = ϕ(x), then x ∈ S. Thus, S is weakly compact inWpq(I). �

4 Relaxation theorem
Now, we prove the existence of extremal solutions and a strong relaxation theorem. Con-
sider the extremal problem of the following evolution inclusion:

ẋ +A(t,x) + Bx ∈ extF(t,x) a.e. I,

x() = ϕ(x),
(.)

where extF(t,x) denotes the extremal point set of F(t,x). We need the following hypoth-
esis:
(H) F : I ×H → Pwkc(H) is a multifunction such that

(i) (t,x)→ F(t,x) is graph measurable;
(ii) for almost all t ∈ I , x → F(t,x) is h-continuous; and (H)(iii) holds.

Theorem . If hypotheses (H), (H) and (H) hold, then the problem (.) has at least
one solution.

Proof Since Se ⊂ S, as in the proof of Theorem ., we obtain a priori bound for Se. We
know that there exists Mi > , i = ,  such that ‖x‖Wpq < M and ‖x‖C(I,H) < M for all
x ∈ Se. Let ψ(t) = b(t) +CM, ψ(t) ∈ L+q (I). We may assume that |F(t,x)| ≤ ψ(t) a.e. on I
for all x ∈H . By Theorem ., let L = ẋ +A(x) + Bx, x() = ϕ(x), then L– :Wpq(I) → X* is
well defined. So, let

W =
{
v ∈ Lq(I,H) :

∥∥v(t)∥∥H ≤ ψ(t) a.e. on I
}
,

then K̂ = L– (W )⊆ Wpq(I) is a compact convex subset in C(I,H). Obviously, K̂ is convex.
We only need to show the compactness. Let {xn}n≥ ⊂ K̂ , then there exists hn ∈ W such
that L(xn) = hn, i.e., ẋn = hn–A(xn)–Bxn. By the definition ofW ,W is uniformly bounded
in Lq(I,H). By the Dunford-Pettis theorem, passing to a subsequence if necessary, we may
assume that hn ⇀ h in Lq(I,H) for some h ∈W . From the definition ofW , we have

‖xn‖Wpq =
∥∥L– (Lxn)

∥∥
Wpq

=
∥∥L– hn

∥∥
Wpq

≤ M.

http://www.boundaryvalueproblems.com/content/2013/1/15
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Therefore, the sequence {xn}n≥ ⊂ Wpq(I) is bounded. Because of the compactness of the
embedding Wpq(I) ⊂ Lp(I,H), we have that the sequence {xn}n≥ ⊂ Lp(I,H) is relatively
compact. So, by passing to a subsequence if necessary, we may assume that xn → x in
Lp(I,H). Moreover, by the boundedness of the sequence {xn}n≥ ⊂ Wpq(I), it follows that
the sequence {ẋn}n≥ ⊂ X* is uniformly bounded and, passing to subsequence if necessary,
we may assume that ẋn ⇀ ẋ in X*. Since the embedding Wpq(I) ⊂ C(I,H) is continuous
andWpq(I) ⊂ Lp(I,H) is compact, it follows that xn ⇀ x in C(I,H) and xn → x in Lp(I,H).
Hence, xn → x inH for all t ∈ I \�,m(�) =  (m being the Lebesgue measure on R). Since
A is hemicontinuous and monotone and B is a continuous linear operator, thus A(xn) ⇀

A(x), Bxn ⇀ Bx in X* and as n → ∞, we obtain ẋ +A(x) + Bx = h a.e. on I and x() = ϕ(x).
Note that

ẋn – ẋ +
(
A(t,xn) –A(t,x)

)
= hn – h – (Bxn – Bx). (.)

Taking the inner product above with xn – x and integrating from  to T , one can see that

∫ T



(
A(t,xn) –A(t,x),xn – x

)
dt

=
∫ T


(hn – h,xn – x)dt –

∫ T


(Bxn – Bx,xn – x)dt –

∫ T


(ẋn – ẋ,xn – x)dt

≤
∫ T


(hn – h,xn – x)dt +

∥∥xn() – x()
∥∥

=
∫ T


(hn,xn – x)dt –

∫ T


(h,xn – x)dt +

∥∥xn() – x()
∥∥

≤
∫ T


‖ϕ‖H‖xn – x‖H dt +

∫ T


‖h‖H‖xn – x‖H dt +

∥∥ϕ(xn) – ϕ(x)
∥∥

≤ 
∫ T


‖ϕ‖H‖xn – x‖H dt +

∥∥ϕ(xn) – ϕ(x)
∥∥ →  as n→ ∞. (.)

By the hypothesis (H)(iii), it follows that

∫ T



(
A(t,xn) –A(t,x),xn – x

)
dt ≥ C

∫ T


‖xn – x‖pH dt →  as n→ ∞. (.)

So, we can find τ ∈ I \ � such that

∥∥xn(τ ) – x(τ )
∥∥
H →  as n→ ∞.

Using the integration by parts formula for functions in Wpq(I) (see Zeidler [], Proposi-
tion .), for any t ∈ I , we have

∥∥xn(t) – x(t)
∥∥
H =

∥∥xn(τ ) – x(τ )
∥∥
H + 

∫ t

τ

(
ẋn(s) – ẋ(s),xn(s) – x(s)

)
ds

=
∥∥xn(τ ) – x(τ )

∥∥
H + 

∫ t

τ

(
hn(s) – h(s),xn(s) – x(s)

)
ds

– 
∫ t

τ

〈
A(xn)(s) –A(x)(s),xn(s) – x(s)

〉
ds

http://www.boundaryvalueproblems.com/content/2013/1/15
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– 
∫ t

τ

〈
Bxn(s) – Bx(s),xn(s) – x(s)

〉
ds

≤ ∥∥xn(τ ) – x(τ )
∥∥
H + 

∫ T



(
hn(t) – h(t),xn(t) – x(t)

)
dt

≤ ∥∥xn(τ ) – x(τ )
∥∥
H + 

∫ T



∣∣ϕ(t)∣∣∥∥xn(t) – x(t)
∥∥
H dt

≤ ∥∥xn(τ ) – x(τ )
∥∥
H + 

∥∥ϕ(t)
∥∥
Lq(I)

∥∥xn(t) – x(t)
∥∥
Lp(I,H). (.)

By (.), we see that

max
t∈I

∥∥xn(t) – x(t)
∥∥
H →  as n→ ∞.

So, xn(t) → x(t) inC(I,H). Since x = L– (h) with h ∈W , we conclude that L– (W )⊆ C(I,H)
is compact. From Lemma ., we can find a continuous map f : K̂ → Lq(I,H) such that
f (x)(t) ∈ extF(t,x(t)) a.e. on I for all x ∈ K̂ . Then L– ◦ f is a compact operator. On applying
the Schauder fixed point theorem, there exists an x ∈ K̂ such that x = L– ◦ f (x). This is a
solution of (.), and so Se 
= ∅ inWpq(I). �

For the relation theorem of the problem (.), we need the following definition and hy-
potheses.

Definition . A Carathéodory function μ : I × R+ → R+ is said to be a Kamke function
if it is integrally bounded on the bounded sets, μ(t, ) ≡  and the unique solution of the
differential equation ṡ(t) = μ(t, s(t)), s() =  is s(t)≡ .

(H) For each t ∈ I , there exists a Kamke function μ : I × R+ → R+ such that

h
(
F(·,x),F(·,x)

) ≤ μ
(
t,‖x – x‖H

)
for all x,x ∈H

and (H) hold.

Theorem . If hypotheses (H), (H) and (H) hold, then S̄e = S, where the closure is
taken in C(I,H).

Proof Let x ∈ S, then there exist f ∈ Lq(I,H) and f (x)(t) ∈ F(t,x(t)) a.e. on I such that

ẋ(t) +A
(
t,x(t)

)
+ Bx = f (t,x),

x() = ϕ(x).
(.)

As before, let W = {v ∈ Lq(I,H) : ‖v‖H ≤ ψ(t) a.e. on I}, then K̂ = L– (W ) ⊆ Wpq(I) is a
compact convex subset in C(I,H). For every y ∈ K̂ , we define the multifunction

Qε(t) =
{
v ∈ F(t, y) : (f – v,x – y) ≤ 


μ

(
t,‖x – y‖H

)
+ ε

}
.

Clearly, for every t ∈ I , Qε(t) 
= ∅, and it is graph measurable. On applying Aumann’s se-
lection theorem, we get a measurable function v : I → H such that v(t) ∈ Qε(t) almost

http://www.boundaryvalueproblems.com/content/2013/1/15
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everywhere on I . So, we define the multifunction

Rε(y) =
{
v ∈ SF(·,y) : (f – v,x – y) ≤ 


μ

(
t,‖x – y‖H

)
+ ε

}
.

We see that Rε : K̂ → Lq(I,H) has nonempty and decomposable values. It follows from
Theorem  of [] that Rε(·) is LSC. Therefore, y → Rε(y) is LSC and has closed and de-
composable values. So, we apply Lemma . to get a continuous map fε : K̂ → Lq(I,H)
such that fε(y) ∈ Rε(y) for all y ∈ K̂ . Invoking II-Theorem . of [] (in [, p.]), we
can find a continuous map gε : K̂ → Lq(I,H) such that gε(y)(t) ∈ extF(t, y) almost every-
where on I , and ‖fε(y) – gε(y)‖w ≤ ε for all y ∈ K̂ . Now, let ε →  and set fεn = fε , gεn = gε .
Note that ‖gεn (y)‖H ≤ ψ(t) a.e. on I with ψ ∈ Lq(I), so we have gεn ⇀ fεn in Lq(I,H). We
consider the following problem:

ẋ(t) +A(x)(t) + Bx = gεn (x)(t),

x() = ϕ(x),
(.)

where gεn (x) ∈ extRε(x). We see that L– gεn : K̂ → K̂ is a compact operator and by the
Schauder fixed point theorem, we obtain a solution xεn ∈ Se ⊂ Wpq(I) of (.). We see
that the sequence {xεn}n≥ ⊂ K̂ is uniformly bounded. So, by passing to a subsequence
if necessary, we may assume that xεn ⇀ x̂ in Wpq(I). From the proof of Theorem ., we
know that xεn → x̂ in C(I,H) and x̂() = ϕ(x̂). Note that Lxεn – Lx = gεn (xεn ) – f (x). So,
we have that(

ẋεn (t) – ẋ(t),xεn (t) – x(t)
)
+

(
A(xεn )(t) –A(x)(t),xεn (t) – x(t)

)
+

(
Bxεn (t) – Bx(t),xεn (t) – x(t)

)
=

(
gεn (xεn )(t) – f (x)(t),xεn (t) – x(t)

)
.

However,(
A(xεn )(t) –A(x)(t),xεn (t) – x(t)

) ≥ ,(
Bxεn (t) – Bx(t),xεn (t) – x(t)

) ≥  a.e. I.
(.)

Then(
ẋεn (t) – ẋ(t),xεn (t) – x(t)

)
≤ (

gεn (xεn )(t) – f (x)(t),xεn (t) – x(t)
)

=
(
gεn (xεn )(t) – fεn (xεn )(t),xεn (t) – x(t)

)
+

(
fεn (xεn )(t) – f (x)(t),xεn (t) – x(t)

)
. (.)

By gεn ⇀ fεn in Lq(I,H) and xεn → x̂ in Lp(I,H), we have that

(
gεn (xεn )(t) – fεn (xεn )(t),xεn (t) – x(t)

)
=

(
gεn (xεn )(t) – fεn (xεn )(t),xεn (t) – x̂(t)

)
+

(
gεn (xεn )(t) – fεn (xεn )(t), x̂(t) – x(t)

) →  a.e. I. (.)
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Hence, there exists a constant N > , one has that

∣∣(gεn (xεn )(t) – fεn (xεn )(t),xεn (t) – x(t)
)∣∣ < ε

as n >N. It follows that



d
dt

‖xεn – x‖H
=

( ˙xεn (t) – ẋ(t),xεn (t) – x(t)
)

≤ (
gεn (xεn )(t) – fεn (xεn )(t),xεn (t) – x(t)

)
+

(
fεn (xεn )(t) – f (x)(t),xεn (t) – x(t)

)
≤ (

fεn (xεn )(t) – f (x)(t),xεn (t) – x(t)
)
+ ε

≤ 

μ

(
t,‖xεn – x‖H

)
+ ε. (.)

Hence, ‖xε(t) – x(t)‖H ≤ Q(t), where Q() = ‖xε() – x()‖H and Q̇(t) = μ(t,Q(t)) + ε. By
(.), then Q() = . Let ε → , we have ‖xε(t) – x(t)‖H → . Therefore, x = x̂, i.e., xε → x
and xε ∈ Se, and so S ⊆ Se. Also, S is closed in C(I,H) (see the proof of Theorem .), thus
S = Se. �

5 Examples
As an application of the previous results, we introduce two examples. Let � be a bounded
domain in RN with smooth boundary ∂�, T = [,b],  < b < ∞. Firstly, consider the fol-
lowing nonlinear evolution equation with a discontinuous right-hand side:

∂u(t,x)
∂t

– div
(|∇u|p–∇u

)
+ |u|p–u = f

(
t,x,u(t,x)

)
on T × �,

u(t,x) =  on T × ∂�,

u(,x) =

b

∫ b


u(s,x)ds +



u(b,x) on �.

(.)

The p-Laplacian div(|∇u|p–∇u) arises in many applications such as Finsler geometry
and non-Newtonian fluids. In [], Liu showed the existence of anti-periodic solutions to
the problem (.) where f (t,x, ·) is continuous.
Since f (t,x, ·) is not continuous, the problem (.) need not have solutions. To obtain an

existence theorem for (.), we pass to a multivalued problem by, roughly speaking, filling
in the gaps at the discontinuity points of f (t,x, ·). So, we introduce the functions f(t,x,u)
and f(t,x,u) defined by

f(t,x,u) = limξ→uf (t,x, ξ ) = sup
ε>

inf|ξ–u|<ε
f (t,x, ξ )

and

f(t,x,u) = limξ→uf (t,x, ξ ) = inf
ε>

inf|ξ–u|<ε
f (t,x, ξ ).
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Set

f̂ (t,x,u) =
[
f(t,x,u), f(t,x,u)

]
=

{
v ∈ R : f(t,x,u) ≤ v≤ f(t,x,u)

}
.

Then, instead of (.), we study the following multivalued nonlinear evolution inclusion:

∂u(t,x)
∂t

– div
(|∇u|p–∇u

)
+ |u|p–u ∈ f̂

(
t,x,u(t,x)

)
on T × �,

u(t,x) =  on T × ∂�,

u(,x) =

b

∫ b


u(s,x)ds +



u(b,x) on �.

(.)

The hypotheses on the data of this problem (.) are the following:
(H) (i) fi(t,x,u) (i = , ) are Nemitsky-measurable, i.e., u : T × � → R for all

measurable, u→ fi(t,x,u) (i = , ) is measurable;
(ii) there exists a(t) ∈ Lq(t)+, C > , such that

∣∣fi(t,x,u)∣∣ ≤ a(t) +C‖u‖k–,

where  ≤ k < p.
In this case, the evolution triple is V =W ,p

 (�),H = L(�) and V * =W–,q(�). From the
Sobolev embedding theorem, we see that all embeddings are compact. Let us define the
following operator on V :

〈
A(u)(t), v

〉
=

∫
�

(|∇u|p–∇u · ∇v + |u|p–uv)dx.
By themonotone property of p-Laplacian, it is easy to verify thatA satisfies our hypothesis
(H). Let F : T ×H → Pkc(H) be defined by

F(t,u) =
{
g ∈ L(�) : f(t,x,u)≤ g(x) ≤ f(t,x,u)

}
.

The hypothesis (H) implies that (H) is satisfied. Note that f(t,x, ·) is lower semicon-
tinuous, f(t,x, ·) is upper semicontinuous, and so f̂ (t,x, ·) is USC (see [, Example .,
p.]). Let ϕ(u) = 

b
∫ b
 u(s,x)ds + 

u(b,x), it is easy to check that ϕ satisfies our hypoth-
esis (H)(ii). Then, we rewrite equivalently (.) as (.) , with A and F as above. Finally,
we can apply Theorem . to the problem (.) and obtain the following.

Theorem . If the hypothesis (H) holds, then the problem (.) has a nonempty set of
solutions u ∈ Lp(T ,W

,p
 (�)) such that ∂u

∂t ∈ Lq(T ,W–,p(�)).

Secondly, we present an example of a quasilinear distributed parameter control system,
with a priori feedback (i.e., state dependent control constraint set). So, let T = [,b] and
Z ⊆ RN be a bounded domain with C-boundary 
. Let Dk = ∂

∂zk
, k ∈ {, , . . . ,N}, � =

http://www.boundaryvalueproblems.com/content/2013/1/15
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∑N
k=

∂

∂zk
. We consider the following control system:

∂x
∂t

–
N∑
k=

DkAk(t, z,x,Dx) –�x = g
(
t, z,x(t, z)

)
u(t, z) a.e. on T × Z,

x|T×
 = , x(, z) =

b

∫ b


x(s, z)ds a.e. on Z,

u(t, z) ∈ extU
(
t, z,x(t, z)

)
a.e. on T × Z.

(.)

The hypotheses on the data (.) are the following:
(H) Ak (k = , , . . . ,N) : T × Z × R× RN → R are functions such that

(i) (t, z) → Ak(t, z,u,η) is measurable on T × Z for every (u,η) ∈ R× RN ,
(u,η) → Ak(t, z,u,η) is continuous on R× RN for all almost all (t, z) ∈ T ×Z;

(ii) |Ak(t, z,u,η)| ≤ α̂(t, z) + ĉ(z)(|u| + |η|) with a nonnegative function
α̂ ∈ L(I × Z) and ĉ(z) ∈ L∞(Z) for almost all t ∈ T ;

(iii)
∑N

k=(Ak(t, z,u,η) –Ak(t, z,u,η′))(ηk – η′
k) ≥ |η – η′| for almost all t ∈ T ;

(iv) Ak(t, z, , ) =  for all (t, z) ∈ T × Z.
(H) The function g : T × Z × R→ R satisfies the following:

(i) for all x ∈ R, (t, z) → g(t, z,x) is measurable;
(ii) for all (t, z) ∈ T × Z, x→ g(t, z,x) is continuous;
(iii) for almost all (t, z) ∈ T × Z and all x ∈ R, we have

∣∣g(t, z,x)∣∣ ≤ η(t, z) + η(t)|x|

with η ∈ L(T ,L(Z)), η ∈ L∞(T).
(H) U : T × Z × R→ Pkc(R) is a multifunction such that

(i) for all x ∈ R, (t, z) →U(t, z,x) is measurable;
(ii) for all (t, z) ∈ T × Z, x→U(t, z,x) is h-continuous;
(iii) for almost all (t, z) ∈ T × Z and all x ∈ R, |U(t, z,x)| ≤ γ , with γ > .

Let V =H
(Z),H = L(Z), V * =H–(Z). Then (V ,H ,V *) is an evolution triple with com-

pact embeddings. Let A : T ×V → V *, B : V → V * be the operators defined by

〈
A(t,u), v

〉
=

∫
�

N∑
k=

Ak(t,x,u,Du)Dkvdx,

〈
B(u), v

〉
=

∫
�

N∑
k=

DkuDkvdx

for all v ∈H
(Z). Let ϕ(u) = 

b
∫ b
 u(s, z)ds.

Evidently, using the hypothesis (H) , it is straightforward to check that A, B, ϕ satisfy
hypotheses (H), (H). Also, let F : T × L(Z) → Pkc(L(Z)) be defined by

F(t,x) =
{
y ∈ L(Z) : y(z) = g

(
t, z,x(z)

)
u(z),u(z) ∈ extU

(
t, z,x(t)

)
a.e. on Z

}
.

Using hypotheses (H) and (H), it is straightforward to check that F satisfies the hy-
pothesis (H).
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Rewrite the problem (.) in the following equivalent evolution inclusion form:

∂x
∂t

+A
(
t,x(t)

)
+ Bx ∈ extF(t,x) a.e. on T ,

x() = ϕ(x).
(.)

It is easy to get the following theorem by applying Theorem . to the problem (.).

Theorem . If hypotheses (H)-(H) hold, then the problem (.) has one solution x ∈
L(T ,H

(Z))∩C(T ,L(Z)) with ∂x
∂t ∈ L(T ,H–(Z)).
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