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1 Introduction
In this paper, we discuss the nonlocal initial value problem

⎧⎨
⎩
x′(t) ∈ Ax(t) + F(t,x(t)), t ∈ I = [, ],

x() = g(x),
(.)

where A is the infinitesimal generator of a strongly continuous semigroup of bounded
linear operators (i.e., C-semigroup) T(t) in a Banach space X, and F : [, ]×X → Pc(X),
g : C([, ];X)→ X are given X-valued functions.
The study of nonlocal evolution equations was initiated by Byszewski []. Since these

represent mathematical models of various phenomena in physics, Byszewski’s work was
followed by many others [–]. Subsequently, many authors have contributed to the study
of the differential inclusions (.). Differential inclusions (.) were first considered by Aiz-
icovici and Gao [] when g and T(t) are compact. In [–] the semilinear evolution dif-
ferential inclusions (.) were discussed when A generates a compact semigroup. Xue and
Song [] established the existence of mild solutions to the differential inclusions (.)
when A generates an equicontinuous semigroup and F(t, ·) is l.s.c. for a.e. t ∈ [, ]. In []
the author proved the existence ofmild solutions of the differential inclusions (.) whenA
generates an equicontinuous semigroup and a Banach space X which is separable and uni-
formly smooth. In [] Zhu and Li studied the differential inclusions (.) when F admits a
strongly measurable selector. In [] the differential inclusions (.) were discussed when
{A(t)} is a family of linear (not necessarily bounded) operators. In [] local and global
existence results for differential inclusions with infinite delay in a Banach space were con-
sidered. Benchohra and Ntouyas [] studied the second-order initial value problems for
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delay integrodifferential inclusions. In [, ] the impulsive multivalued semilinear neu-
tral functional differential inclusions were discussed in the case that the linear semigroup
T(t) is compact. The purpose of this paper is to continue the study of these authors. By
using a new method, we prove the existence results of mild solutions for (.) under the
following conditions of g and T(t): g is either compact or Lipschitz continuous and T(t)
is an equicontinuous semigroup. So, our work extends and improves many main results
such as those in [–, , ].
The organization of this work is as follows. In Section , we recall some definitions and

facts about set-valued analysis and the measure of noncompactness. In Section , we give
the existence of mild solutions of the nonlocal initial value problem (.). In Section , an
example is given to show the applications of our results.

2 Preliminaries
Let (X,‖ · ‖) be a real Banach space. Let Pc(X) = {A ⊆ X : nonempty, closed, convex}.
A multivalued map G : X → X is convex (closed) valued if G(x) is convex (closed) for all
x ∈ X.We say thatG is bounded on bounded sets ifG(B) is bounded inX for each bounded
set B of X. The map G is called upper semicontinuous (u.s.c.) on X if for each x ∈ X the
set G(x) is a nonempty, closed subset of X, and if for each open set N of X containing
G(x), there exists an open neighborhoodM of x such that G(M) ⊆ N . Also, G is said to
be completely continuous if G(B) is relatively compact for every bounded subset B ⊆ X.
If the multivalued map G is completely continuous with nonempty compact values, then
G is u.s.c. if and only if G has a closed graph (i.e., xn → x, yn → y, yn ∈ G(xn) imply
y ∈ G(x)). Moreover, the following conclusions hold. Let D ⊂ X and G(x) be closed for
all x ∈ D, if G is u.s.c. and D is closed, then graph(G) is closed. If G(D) is compact and D
is closed, then G is u.s.c. if and only if graph(G) is closed. Finally, we say that G has a fixed
point if there exists x ∈ X such that x ∈G(x).
We denote by C([, ];X) the space of X-valued continuous functions on [, ] with the

norm ‖x‖ = sup{‖x(t)‖; t ∈ [, ]}, and by L(, ;X) the space of X-valued Bochner func-
tions on [, ] with the norm ‖x‖ = ∫ 

 ‖x(s)‖ds.
A C-semigroup T(t) is said to be compact if T(t) is compact for any t > . If the semi-

group T(t) is compact, then t → T(t)x is equicontinuous at all t >  with respect to x
in all bounded subsets of X; i.e., the semigroup T(t) is equicontinuous. If A is the gen-
erator of an analytic semigroup T(t) or a differentiable semigroup T(t), then T(t) is an
equicontinuous C-semigroup (see []). In this paper, we suppose that A generates an
equicontinuous semigroup T(t) on X. Since no confusion may occur, we denote by α the
Hausdorff measure of noncompactness on both X and C([, ];X).

Definition . A function x ∈ C([, ];X) is a mild solution of (.) if
() x(t) = T(t)g(x) +

∫ t
 T(t – s)v(s)ds,

() x() = g(x), where v ∈ SF ,x = {v ∈ L(I,X) : v(t) ∈ F(t,x(t))}.

To prove the existence results in this paper, we need the following lemmas.

Lemma . [] If W ⊆ C([, ];X) is bounded, then α(W (t)) ≤ α(W ) for all t ∈ [, ],
where W (t) = {x(t);x ∈ W } ⊆ X. Furthermore, if W is equicontinuous on [, ], then
α(W (t)) is continuous on [, ], and α(W ) = sup{α(W (t)); t ∈ [, ]}.
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Lemma . [] If {Wn}+∞
n= is a decreasing sequence of bounded closed nonempty subsets

of X and limn→+∞ α(Wn) = , then
⋂+∞

n= Wn is nonempty and compact in X.

Lemma . [] If {un}∞n= ⊂ L(, ;X) is uniformly integrable, then α({un(t)}∞n=) is mea-
surable and

α

({∫ t


un(s)ds

}∞

n=

)
≤ 

∫ t


α
({
un(s)

}∞
n=

)
ds. (.)

Lemma . [] If the semigroup T(t) is equicontinuous and η ∈ L(, ;
+), then the set
{t → ∫ t

 T(t – s)x(s)ds;x ∈ L(, ;
+),‖x(s)‖ ≤ η(s), for a.e. s ∈ [, ]} is equicontinuous on
[, ].

Lemma . [] If W is bounded, then for each ε > , there is a sequence {un}∞n= ⊆ W
such that

α(W )≤ α
({un}∞n=) + ε. (.)

A countable set {fn}∞n= ⊂ L(, ;X) is said to be semicompact if
(a) it is integrably bounded: ‖fn(t)‖ ≤ ω(t) for a.e. t ∈ [, ] and every n≥ , where

ω(·) ∈ L(, ;
+);
(b) the set {fn(t)}∞n= is relatively compact for a.e. t ∈ [, ].

Lemma . [] Every semicompact set is weakly compact in the space L(, ;X).

Lemma . [, ] If {fn}∞n= ⊂ L(, ;X) is semicompact, then {∫ t
 T(t – s)fn(s)ds}∞n= is

relatively compact in C([, ];X) and,moreover, if fn ⇀ f, then

∫ t


T(t – s)fn(s)ds→

∫ t


T(t – s)f(s)ds

as n→ ∞.

The map F :W ⊆ X → X is said to be α contraction if there exists a positive constant
k <  such that

α
(
F(Q)

) ≤ kα(Q)

for any bounded closed subset Q⊆W .

Lemma . [–] (Fixed point theorem) If W ⊆ X is a nonempty, bounded, closed,
convex and compact subset, the map F : W → W is upper semicontinuous with F(x) a
nonempty, closed, convex subset of W for each x ∈ W , then F has at least one fixed point
in W .

Lemma . [] (Fixed point theorem) If W ⊆ X is nonempty, bounded, closed and con-
vex, the map F :W → W is a closed α contraction map with F(x) a nonempty, convex and
compact subset of W for each x ∈W , then F has at least one fixed point in W .
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3 Main results
In this section, by using themeasure of noncompactness and fixed point theorems, we give
the existence results of the nonlocal initial value problem (.). Here we list the following
hypotheses.
() The C semigroup T(t) generated by A is equicontinuous. We denote

N = sup{‖T(t)‖; t ∈ [, ]}.
() g : C([, ];X) → X is continuous and compact, there exist positive constants c and

d such that ‖g(x)‖ ≤ c‖x‖ + d, ∀x ∈ C([, ];X).
() The multivalued operator F : [, ]×X → Pc(X) satisfies the hypotheses:

t → F(t,x) is measurable for every x ∈ X ;
x→ F(t,x) is u.s.c. for a.e. t ∈ [, ];

the set SF ,x = {v ∈ L(I,X) : v(t) ∈ F(t,x(t)); for a.e. t ∈ [, ]} is nonempty.
() There exists L ∈ L(, ;
+) such that for any bounded D⊂ X ,

α
(
F(t,D)

) ≤ L(t)α(D)

for a.e. t ∈ [, ].
() There exist a functionm ∈ L(, ;
+) and a nondecreasing continuous function

� :
+ → 
+ such that

∥∥F(t,x)∥∥ ≤ m(t)�
(‖x‖)

for all x ∈ X , and a.e. t ∈ [, ].

Remark . If dimX < ∞, then SF ,x = ∅ for each x ∈ C([, ];X) (see Lasota and Opial
[]). If dimX = ∞ and x ∈ C([, ];X), then the set SF ,x is nonempty if and only if the
function Y : [, ]→ 
 defined by Y (t) = inf{‖v‖ : v ∈ F(t,x(t))} belongs to L(, ;
+) (see
Hu and Papageorgiou []).

The following lemma plays a crucial role in the proof of the main theorem.

Lemma . [] Under assumptions ()-(), if we consider sequences {xn}∞n= ⊂ C([, ];X)
and {vn}∞n= ⊂ L(, ;X), where vn ∈ SF ,xn , such that xn → x, vn ⇀ v, then v ∈ SF ,x.

Now we give the existence results under the above hypotheses.

Theorem . If ()-() are satisfied, then there is at least one mild solution for (.) pro-
vided that there exists a constant R with

∫ 


m(s)ds <

∫ R

N(cR+d)


N�(s)

ds. (.)

Proof Define the operator � : C([, ];X) → C([, ];X) by

(�x)(t) =
{
y(t) ∈ C

(
[, ];X

)
: y(t) = T(t)g(x) +

∫ t


T(t – s)v(s)ds; v ∈ SF ,x

}
.

We shall show that the multivalued � has at least one fixed point. The fixed point is then
a mild solution of the problem (.).

http://www.boundaryvalueproblems.com/content/2013/1/153
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() We contract a bounded, convex, closed and compact set W ⊂ C([, ];X) such that
� mapsW into itself.
In view of (.), we know there exists a constant η >  such that

∫ 


m(s)ds <

∫ R

T+η


N�(s)

ds, (.)

where T =N(cR + d).
Then there exists a positive integer K such that

∫ T+Kη

T+η


N�(s)

ds <
∫ 


m(s)ds≤

∫ T+(K+)η

T+η


N�(s)

ds. (.)

Hence, we get  = t < t < t < · · · < tK– < tK =  such that

∫ t


m(s)ds =

∫ T+η

T+η


N�(s)

ds,

∫ t

t
m(s)ds =

∫ T+η

T+η


N�(s)

ds,

· · · ,
∫ tK–

tK–

m(s)ds =
∫ T+Kη

T+(K–)η


N�(s)

ds,

∫ 

tK–

m(s)ds≤
∫ T+(K+)η

T+Kη


N�(s)

ds.

We denote W = {x ∈ C([, ];X),‖x(t)‖i = sup{‖x(t)‖ : t ∈ [ti–, ti]} ≤ T + iη, i =
, , . . . ,K}, thenW ⊆ C([, ];X) is nonempty, bounded, closed and convex.
For any x ∈W, we have

(�x)(t) =
{
y(t) : y(t) = T(t)g(x) +

∫ t


T(t – s)v(s)ds; v(t) ∈ SF ,x

}
.

Therefore

∥∥y(t)∥∥ ≤ ∥∥T(t)g(x)∥∥ +
∥∥∥∥
∫ t


T(t – s)v(s)ds

∥∥∥∥ ≤ N
(
c‖x‖ + d

)
+N

∫ t


m(s)�

(∥∥x(s)∥∥)
ds

≤ N
(
c(T +Kη) + d

)
+N

∫ t


m(s)�

(∥∥x(s)∥∥)
ds

≤ N(cR + d) +N
∫ t


m(s)�

(∥∥x(s)∥∥)
ds ≤ T +N

∫ t


m(s)�

(∥∥x(s)∥∥)
ds,

and

‖y‖i = sup
{∥∥y(t)∥∥ : t ∈ [ti–, ti]

}

≤ sup

{
T +N

∫ t


m(s)�

(∥∥x(s)∥∥)
ds : t ∈ [ti–, ti]

}
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≤ T +N
∫ ti


m(s)�

(∥∥x(s)∥∥)
ds

≤ T +N
[∫ t


m(s)�

(∥∥x(s)∥∥)
ds +

∫ t

t
m(s)�

(∥∥x(s)∥∥)
ds

+ · · · +
∫ ti

ti–
m(s)�

(∥∥x(s)∥∥)
ds

]

≤ T +N
[∫ t


m(s)ds�(T + η) +

∫ t

t
m(s)ds�(T + η)

+ · · · +
∫ ti

ti–
m(s)ds�(T + iη)

]

≤ T +N
[∫ T+η

T+η


N�(s)

ds�(T + η) +
∫ T+η

T+η


N�(s)

ds�(T + η)

+ · · · +
∫ T+(i+)η

T+iη


N�(s)

ds�(T + iη)
]

≤ T + iη,

which implies � :W → W is a bounded operator.
DefineW = conv�(W), where convmeans the closure of the convex hull in C([, ];X).

Then W ⊂ C([, ];X) is nonempty bounded closed convex on [, ] with W ⊆ W.
Let Wn+ = conv�(Wn) for all n ≥ . Similarly to the above discussions, we know that
Wn+ ⊆Wn for n = , , . . . asW ⊆ W andW,W, . . . are both nonempty, closed, bounded
and convex. Thus {Wn}+∞

n= is a decreasing sequence consisting of subsets of C([, ];X).
Moreover, set

W =
+∞⋂
n=

Wn,

thenW is a convex, closed and bounded subset of C([, ];X) and �(W )⊆W .
Now, we claim that W is nonempty and compact in C([, ];X). To do so, from

Lemma ., we know for arbitrary given ε > , there exist sequences {vn}+∞
n= ⊂ SF ,Wn such

that

α
(
Wn+(t)

)
= α

(
(�Wn)(t)

)

≤ α
(∫ t


T(t – s)vn(s)∞n= ds

)
+ ε

≤ 
∫ t


α
(
T(t – s)vn(s)∞n=

)
ds + ε

≤ N
∫ t


α
(
vn(s)∞n=

)
ds + ε

≤ N
∫ t


α(F

(
s,Wn(s)

)
ds + ε

≤ N
∫ t


L(s)α

(
Wn(s)

)
ds + ε.

http://www.boundaryvalueproblems.com/content/2013/1/153
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Since this is true for arbitrary ε > , we have

α
(
Wn+(t)

) ≤ N
∫ t


L(s)α

(
Wn(s)

)
ds.

BecauseWn is decreasing for n, we can define

μ(t) = lim
n→+∞α

(
(Wn)(t)

)
.

Let n→ +∞, we have

μ(t) ≤ N
∫ t


L(s)μ(s)ds.

It implies thatμ(t) =  for all t ∈ [, ]. By Lemma ., we know that limn→+∞ α(Wn) = .
Using Lemma ., we obtainW =

⋂+∞
n= Wn is nonempty and compact in C([, ];X).

() We shall show that � is closed onW with closed convex values. It is very easy to see
that � has convex values.
Let us now verity that graph(�) is closed. Let {xn}∞n= ⊂ W with xn → x in C([, ];X),

and yn ∈ �xn with yn → y in C([, ];X). Moreover, let {vn}∞n= ⊂ L(, ;X) be a sequence
such that vn ∈ SF ,xn for any n≥ , and

yn(t) = T(t)g(xn) +
∫ t


T(t – s)vn(s)ds.

As xn → x in C([, ];X), we know that {xn}∞n= is a bounded set of C([, ];X), we denote
Rx = sup{‖xn‖ : n = , , . . .}.
From hypothesis (), we obtain

∥∥vn(t)∥∥ ≤ ∥∥F(t,xn(t)∥∥ ≤ m(t)�
(‖xn‖) ≤ m(t)�(Rx).

Then we have the set {vn}∞n= is integrably bounded for a.e. t ∈ [, ].
From hypothesis (), we know

α
({
vn(t)

}∞
n=

) ≤ α
(
F
(
t,

{
xn(t)

}∞
n=

)) ≤ L(t)α
({
xn(t)

}∞
n=

)
= 

for a.e. t ∈ [, ]. Then the set {vn(t)}∞n= is relatively compact for a.e. t ∈ [, ].
So, the set {vn(t)}∞n= is semicompact. By applying Lemma ., it yields that {vn(t)}∞n=

is weakly compact in L(, ;X). We get that there exists v ∈ L(, ;X) such that vn ⇀ v.
Therefore, we infer that

∫ t


T(t – s)vn(s)ds→

∫ t


T(t – s)v(s)ds.

Further, we have

yn(t) → T(t)g(x) +
∫ t


T(t – s)v(s)ds,

http://www.boundaryvalueproblems.com/content/2013/1/153
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and hence

y(t) = T(t)g(x) +
∫ t


T(t – s)v(s)ds.

By Lemma ., it implies that v ∈ SF ,x, i.e., y ∈ �(x). Therefore graph(�) is closed. And
hence � has closed values onW .
() � is u.s.c. onW .
Since �W ⊆ W is compact, W is closed and graph(�) is closed, we can come to the

conclusion that � is u.s.c. (see []).
Finally, due to fixed point Lemma ., � has at least one point x ∈ �(x), and x is a mild

solution to the semilinear evolution differential inclusions with the nonlocal conditions
(.). Thus the proof is complete. �

Remark . In [–] the authors discuss the nonlocal initial value problem (.) when
T(t) is compact. In [] the existence of mild solutions of the differential inclusions (.) is
proved when A generates an equicontinuous semigroup and Banach space X is separable
and uniformly smooth. In this paper, by using a new method, we prove the operator �

maps compact set W into itself. We do not impose any restriction on the coefficient L(t),
and we only require T(t) to be an equicontinuous semigroup. So, Theorem . generalizes
and improves the related results in [–, ].

Theorem . [] If ()-() are satisfied, then there is at least one mild solution for (.)
provided that there exists a constant R >  such that

N(cR + d) +N
∫ 


m(s)ds�(R)≤ R. (.)

Proof In view of (.), we get

∫ 


m(s)ds≤ R –N(cR + d)

N�(R)
<

∫ R

N(cR+d)


N�(s)

ds.

From Theorem ., the nonlocal initial value problem (.) has at least one mild solu-
tion. �

Remark . IfN = , c = 
 , d = ,�(x) = x and

∫ 
 m(s)ds = .We cannot obtain a constant

R such that



R + R≤ R.

By using Theorem ., we do not know whether or not equation (.) has a mild solution.
But we know there exists a constant R =  such that

∫ 


m(s)ds =  < ln =

∫ R

N(cR+d)


N�(s)

ds.

So, Theorem . is better than Theorem ..

http://www.boundaryvalueproblems.com/content/2013/1/153
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Theorem . [] If ()-() are satisfied and ‖g(x)‖ ≤ d, then there is at least one mild
solution for (.) provided that

∫ 


m(s)ds <

∫ +∞

d


N�(s)

ds. (.)

Proof In view of (.), we get there exists a constant R such that

∫ 


m(s)ds <

∫ R

R+d


N�(s)

ds.

By Theorem ., we complete the proof of this theorem. �

Next, we give the existence result for (.) when g is Lipschitz continuous.
We suppose that:
() There exists a constant c ∈ 
+ such that ‖g(u) – g(v)‖ ≤ c‖u – v‖ for all u, v ∈

C([, ];X). Therefore, ‖g(x)‖ ≤ c‖x‖ + d, where d = ‖g()‖.

Theorem . If () and ()-() are satisfied and

Nc + N
∫ 


L(s)ds < ,

then there is at least one mild solution for (.) provided that there exists a constant R
satisfying

∫ 


m(s)ds <

∫ +∞

T


N�(s)

ds. (.)

Proof With the same arguments as given in the first portion of the proof of Theorem .,
we know � :W → W is a bounded map with convex values and is closed onW.
Now, we prove the values of � are compact in C([, ];X).
Let x ∈ C([, ];X) and yn ∈ �(x). To prove that �(x) is compact, we have to show that

yn has a subsequence converging to a point y ∈ �(x). We have vn ∈ SF ,x such that

yn(t) = T(t)g(x) +
∫ t


T(t – s)vn(s)ds.

From hypothesis (), we obtain

∥∥vn(t)∥∥ ≤ ∥∥F(
t,x(t)

)∥∥ ≤ m(t)�
(‖x‖).

Then we have the set {vn}∞n= is integrably bounded for a.e. t ∈ [, ].
From hypothesis (), we know

α
({
vn(t)

}∞
n=

) ≤ α
(
F
(
t,x(t)

)) ≤ L(t)α
(
x(t)

)
= 

for a.e. t ∈ [, ]. Then the set {vn(t)}∞n= is relatively compact for a.e. t ∈ [, ].

http://www.boundaryvalueproblems.com/content/2013/1/153


Zhu et al. Boundary Value Problems 2013, 2013:153 Page 10 of 13
http://www.boundaryvalueproblems.com/content/2013/1/153

So, the set {vn(t)}∞n= is semicompact. By applying Lemma ., it yields that {vn(t)}∞n=
is weakly compact in L(, ;X). We get that there exists v ∈ L(, ;X) such that vn ⇀ v.
Therefore, we infer that

∫ t


T(t – s)vn(s)ds→

∫ t


T(t – s)v(s)ds,

and

lim
n→+∞ yn(t) = T(t)g(x) +

∫ t


T(t – s)v(s)ds = y(t).

By Lemma ., it implies that v ∈ SF ,x, i.e.,y ∈ �(x). Therefore � has compact values.
Next, we prove � is an α contraction map. For any B ⊆W, we have

α
(
(�B)(t)

)
= α

(
T(t)g(B) +

∫ t


T(t – s)SF ,B ds

)

≤ Ncα(B) + α

(∫ t


T(t – s)SF ,B ds

)
.

From Lemma ., we know for arbitrary given ε > , there exist sequences {vn}+∞
n= ⊂ SF ,B

such that

α

(∫ t


T(t – s)SF ,B ds

)
= α

(∫ t


T(t – s)vn(s)∞n= ds

)
+ ε

≤ 
∫ t


α
(
T(t – s)vn(s)∞n=

)
ds + ε

≤ N
∫ t


α
(
vn(s)∞n=

)
ds + ε

≤ N
∫ t


α
(
F
(
s,B(s)

))
ds + ε

≤ N
∫ t


L(s)α

(
B(s)

)
ds + ε

≤ Nα(B)
∫ 


L(s)ds + ε.

Since this is true for arbitrary ε > , we have

α

(∫ t


T(t – s)SF ,B ds

)
≤ Nα(B)

∫ 


L(s)ds.

Therefore, we obtain

α(�B)≤
(
Nc + N

∫ 


L(s)ds

)
α(B).

Noting Nc + N
∫ t
 L(s)ds < , therefore � is an α contraction map.

Finally, due to Lemma ., � has at least one fixed point. This completes the proof.
�
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4 An example
In this section, as an application of ourmain results, an example is presented.We consider
the following partial differential equation:

⎧⎪⎪⎨
⎪⎪⎩

∂u(ζ ,t)
∂t +�|α|≤maα(ζ )Dαu(ζ , t) ∈ f (t,u(ζ , t)), (ζ , t) ∈ � × [, ],

u(ζ , t) = , (ζ , t) ∈ ∂� × [, ],

u(ζ , ) =
∫
�

∫ 
 k(t, ζ ,η,u(η, t))dt dη, ζ ∈ �,

(.)

where � is a bounded domain in 
n with a smooth boundary ∂�, aα(ζ ) is a smooth real
function on �̄.
We suppose that
(a) The differential operator �|α|≤maα(ζ )Dα is strongly elliptic [].
(b) The function k : [, ]× � × � × 
 → 
 satisfies the following conditions:

(b) k(t, ζ ,η, r) is a continuous function about r for a.e. (t, ζ ,η) ∈ [, ]× � × �.
(b) k(t, ζ ,η, r) is measurable about (t, ζ ,η) for each fixed r ∈ 
.
(b) For any R > , there is βR ∈ L([, ]× � × � × 
;
+) such that

∣∣k(t, ζ ,η, r) – k
(
t, ζ ′,η, r

)∣∣ ≤ βR
(
t, ζ , ζ ′,η

)

for all (t, ζ ,η, r), (t, ζ ′,η, r) ∈ ([, ]× � × � × 
) with |r| ≤ R, and

lim
�ζ→

∫
�

∫ 


βR(t, ζ ,�ζ ,η)dt dη = 

uniformly for ζ ∈ �.
(b) There exist a(·) ∈ L(, ) and d(·) ∈ L([, ]× � × �,
+) such that

∣∣k(t, ζ ,η, r)∣∣ ≤ a(t)r + d(t, ζ ,η)

for all (t, ζ ,η, r) ∈ ([, ]× � × � × 
).

Let D(A) =Hm ∩Hm
 (�) and Au(ζ ) = –�|α|≤maα(ζ )Dαu(ζ , ·), then A generates an ana-

lytic semigroup on X = L(�) ([]). We suppose

g(u)(ζ ) =
∫

�

∫ 


k
(
t, ζ ,η,u(η, t)

)
dt dη.

From [], we obtain g satisfies hypothesis ().
Then equation (.) can be regarded as the following nonlocal semilinear evolution

equation:

⎧⎨
⎩
u′(t) ∈ Au(t) + f (t,u(t)), t ∈ I = [, ],

u() = g(u).
(.)

By usingTheorem., the problem (.) has at least onemild solutionu ∈ C([, ];L(�))
provided that hypotheses ()-() and (.) hold.
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