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Abstract
This paper is concerned with the existence of solutions to a boundary value problem
of a fourth-order impulsive differential equation with a control parameter λ. By
employing some existing critical point theorems, we find the range of the control
parameter in which the boundary value problem admits at least one solution. It is also
shown that under certain conditions there exists an interval of the control parameter
in which the boundary value problem possesses infinitely many solutions. The main
results are also demonstrated with examples.
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1 Introduction
Fourth-order two-point boundary value problems of ordinary differential equations are
widely employed by engineers to describe the beam deflection with two simply supported
ends [–]. One example is the following fourth-order two-point boundary value problem:

⎧⎨
⎩u(iv)(t) +Au′′(t) + Bu(t) = λf (t,u(t)), t ∈ [, ],

u() = u() = u′′() = u′′() = ,
(.)

where u(iv)(t), u′′′(t), u′′(t) are the fourth, third, and second derivatives of u(t) with respect
to t, respectively, f ∈ C([, ]×R,R), A and B are two real constants. System (.) has been
studied in [–] and the references therein. For a beam, t =  and t =  in (.) refer to
the two ends of the beam. At other locations of the beam, t ∈ (, ), there may be some
sudden changes in loads placed on the beam, or some unexpected forces working on the
beam. These sudden changes may result in impulsive effects for the governing differen-
tial equation. This motivates us to consider the following boundary value problem for a
fourth-order impulsive differential equation:

⎧⎪⎪⎨
⎪⎪⎩
u(iv)(t) +Au′′(t) + Bu(t) = λf (t,u(t)), t �= tj, t ∈ [, ],

�u′′(tj) = Ij(u′(tj)), –�u′′′(tj) = Ij(u(tj)), j = , , . . . ,m,

u() = u() = u′′() = u′′() = ,

(.)
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where Ij, Ij ∈ C(R,R),  = t < t < t < · · · < tm < tm+ = , and the operator � is defined as
�U(tj) =U(t+j ) –U(t–j ), where U(t+j ) (U(t–j )) denotes the right-hand (left-hand) limit of U
at tj and λ >  is referred to as a control parameter.
We are mainly concerned with the existence of solutions of system (.). A function

u(t) ∈ C([, ]) is said to be a (classical) solution of (.) if u(t) satisfies (.). In literature,
tools employed to establish the existence of solutions of impulsive differential equations
include fixed point theorems, the upper and lower solutions method, the degree theory,
critical point theory and variational methods. See, for example, [–]. In this paper, we
establish the existence of solutions of (.) by converting the problem to the existence of
critical points of some variational structure. In this paper we regard λ as a parameter and
find the ranges inwhich (.) admits at least one and infinitelymany solutions, respectively.
Note that when λ =  system (.) reduces to the one studied in []. Our results extend
those ones in [].
The rest of this paper is organized as follows. In Section  we present some preliminary

results. Our main results and their proofs are given in Section .

2 Preliminaries
Throughout we assume that A and B satisfy

A≤  ≤ B. (.)

Let

H

(
[, ]

)
=

{
u ∈ L

(
[, ]

)
: u′ ∈ L

(
[, ]

)
,u() = u() = 

}
,

and

H([, ]) = {
u ∈ L

(
[, ]

)
: u′,u′′ ∈ L

(
[, ]

)}
.

Take X :=H([, ])∩H
([, ]) and define

‖u‖X =
(∫ 



(∣∣u′′(t)
∣∣ –A

∣∣u′∣∣ + B|u|)dt) 

, u ∈ X. (.)

Since A and B satisfy (.), it is straightforward to verify that (.) defines a norm for the
Sobolev space X and this norm is equivalent to the usual norm defined as follows:

‖u‖ =
(∫ 


u′′(t) dt

) 

.

It follows from (.) that

‖u‖ ≤ ‖u‖X .

For the norm in C([, ]),

‖u‖∞ =max
(
max
t∈[,]

∣∣u(t)∣∣, max
t∈[,]

∣∣u′(t)
∣∣),

we have the following relation.
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Lemma . Let M =  + 
π
. Then ‖u‖∞ ≤ M‖u‖X , ∀u ∈ X.

Proof The proof follows easily from Wirtinger’s inequality [], Lemma . of [] and
Hölder’s inequality. The detailed argument is similar to the proof of Lemma . in [],
and we thus omit it here. �

Define a functional ϕλ as

ϕλ(u) = �(u) – λ�(u), u ∈ X, (.)

where

�(u) =


‖u‖X +

m∑
j=

∫ u′(tj)


Ij(s)ds +

m∑
j=

∫ u(tj)


Ij(s)ds (.)

and

�(u) =
∫ 


F(t,u)dt, (.)

with

F(t,u) =
∫ u(t)


f (t, s)ds.

Note that ϕλ is Fréchet differentiable at any u ∈ X, and for any v ∈ X we have

ϕ′
λ(u)(v) = lim

h→

ϕλ(u + hv) – ϕλ(u)
h

=
∫ 



(
u′′(t)v′′(t) –Au′(t)v′(t) + Bu(t)v(t)

)
dt +

m∑
j=

Ij
(
u(tj)

)
v(tj)

+
m∑
j=

Ij
(
u′(tj)

)
v′(tj) – λ

∫ 


f
(
t,u(t)

)
v(t)dt. (.)

Next we show that a critical point of the functional ϕλ is a solution of system (.).

Lemma . If u ∈ X is a critical point of ϕλ, then u is a solution of system (.).

Proof Suppose that u ∈ X is a critical point of ϕλ. Then for any v ∈ X one has

λ

∫ 


f
(
t,u(t)

)
v(t)dt =

∫ 



(
u′′(t)v′′(t) –Au′(t)v′(t) + Bu(t)v(t)

)
dt

+
m∑
j=

Ij
(
u(tj)

)
v(tj) +

m∑
j=

Ij
(
u′(tj)

)
v′(tj). (.)

For j ∈ {, , . . . ,m}, choose v ∈ X such that v(t) =  for t ∈ [, tj]∪ [tj+, ], then we have

∫ tj+

tj

(
u(iv) +Au′′(t) + Bu(t)

)
v(t)dt = λ

∫ tj+

tj
f
(
t,u(t)

)
v(t)dt.
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Thus

u(iv) +Au′′(t) + Bu(t) = λf
(
t,u(t)

)
a.e. t ∈ (tj, tj+).

Therefore, by (.) we have

m∑
j=

(
�u′′′(tj) + Ij

(
u(tj)

))
v(tj) –

m∑
j=

(
�u′′(tj) – Ij

(
u′(tj)

))
v′(tj) = .

Next we show that u satisfies

–�u′′′(tj) = Ij
(
u(tj)

)
, j = , , . . . ,m.

Suppose on the contrary that there exists some j ∈ {, , . . . ,m} such that

�u′′′(tj) + Ij
(
u(tj)

) �= .

Pick

v(t) =
(
t – tj t

) m+∏
i=,i�=j

(


t –



(tj + ti)t + tjtit +



ti –



tjti

)
,

then

v′(t) = 
(
t – tj

) m+∏
i=,i�=j

(


t –



(tj + ti)t + tjtit +



ti –



tjti

)

+
(
t – tjt

) m+∑
k=,k �=j

{(
t – (tk + tj)t + tktj

)

·
m+∏

i=,i�=j,k

(


t –



(tj + ti)t + tjtit +



ti –



tjti

)}
.

Clearly, v ∈ X. Simple calculations show that v(ti) = , i = , , . . . , j–, j+, . . . ,m+, v(tj) �=
 and v′(ti) = , i = , , . . . ,m + . Thus



tj

(
�u′′′(tj) + Ij

(
u(tj)

)) m+∏
i=,i�=j

(ti – tj) = ,

which is a contradiction. Similarly, one can show that �u′′(tj) = Ij(u′(tj)), j = , , . . . ,m.
Therefore, u is a solution of (.). �

For r, r ∈R with r < r, we define

α(r, r) = sup
v∈�–((r,r))

�(v) – supu∈�–((–∞,r)) �(u)
�(v) – r

(.)
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and

β(r, r) = inf
v∈�–((r,r))

supu∈�–((r,r)) �(u) –�(v)
r –�(v)

. (.)

For r ∈R, we define

ρ(r) = inf
v∈�–((–∞,r))

supu∈�–((–∞,r)) �(u) –�(v)
r –�(v)

, (.)

ρ(r) = sup
v∈�–((r,+∞))

�(v) – supu∈�–((–∞,r]) �(u)
�(v) – r

. (.)

3 Main results
3.1 Existence of at least one solution
In this section we derive conditions under which system (.) admits at least one solution.
For this purpose, we introduce the following assumption.
(H) Assume that there exist two positive constants k and k such that for each u ∈ X

 ≤
m∑
j=

∫ u′(tj)


Ij(s)ds≤ k max

j∈{,,...,m}
∣∣u′(tj)

∣∣ (.)

and

 ≤
m∑
j=

∫ u(tj)


Ij(s)ds≤ k max

j∈{,,...,m}
∣∣u(tj)∣∣. (.)

Let k =  – A
 + B

 and k = k + k + 
k with k given in (.) and k given in (.). For

constants c, c, and c satisfying

c <
√
kMc <

√
kMc < c, (.)

we define

a(c, c) =
∫ 
 max|u|≤c F(t,u)dt –

∫ 
 F(t,u(t))dt

c – kM
 c

(.)

and

b(c, c) =
∫ 
 F(t,u(t))dt –

∫ 
 max|u|≤c F(t,u)dt

kM
 c – c

, (.)

where

u(t) = ct( – t). (.)

Note that for every c >  and t ∈ [, ] we have |u(t)| = ct( – t) ≤ c
 < c. Since A ≤

 ≤ B, then k > . Thus, if c and c satisfy (.), then c > c and
∫ 
 max|u|≤c F(t,u)dt –∫ 

 F(t,u(t))dt >  and hence a(c, c) > .

http://www.boundaryvalueproblems.com/content/2013/1/154
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Theorem . Assume that (H) is satisfied. If there exist constants c, c, and c satisfying
(.) and

 < a(c, c) < b(c, c), (.)

then, for each λ ∈ (λ,λ), system (.) admits at least one solution u and ‖u‖X < c
M

, where
λ = 

M
 b(c,c)

and λ = 
M

 a(c,c)
.

Proof By Lemma ., it suffices to show the functional ϕλ defined in (.) has at least one
critical point. We prove this by verifying the conditions given in [, Theorem .]. Note
that � defined in (.) is a nonnegative Gâteaux differentiable, coercive, and sequentially
weakly lower semicontinuous functional, and its Gâteaux derivative admits a continuous
inverse on X∗. Moreover, � defined in (.) is a continuously Gâteaux differentiable func-
tional whose Gâteaux derivative is compact. Set

r =
c

M

, r =

c
M


.

Note that u(t) = ct( – t) ∈ X. It then follows from (H) that

�(u) =


‖u‖X +

m∑
j=

∫ u′
(tj)


Ij(s)ds +

m∑
j=

∫ u(tj)


Ij(s)ds

=
(
 –

A

+

B


)
c +

m∑
j=

∫ c–ctj


Ij(s)ds +

m∑
j=

∫ ctj(–tj)


Ij(s)ds

= kc +
m∑
j=

∫ c–ctj


Ij(s)ds +

m∑
j=

∫ ctj(–tj)


Ij(s)ds

≤ kc + kmax
j

|c – ctj| + kmax
j

∣∣ctj( – tj)
∣∣

≤ kc + kc +


kc

= kc (.)

and

�(u) ≥ 

‖u‖X = kc. (.)

By (.) we have

r =
c

M

< kc ≤ �(u) ≤ kc <

c
M


= r.

For u ∈ X satisfying �(u) < r, by Lemma ., one has

|u| ≤ ‖u‖∞ ≤ M
‖u‖X ≤ M

�(u) < M
 r = c, t ∈ [, ],

http://www.boundaryvalueproblems.com/content/2013/1/154
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which implies that

�(u) =
∫ 


F
(
t,u(t)

)
dt ≤

∫ 


max
|u|≤c

F(t,u)dt.

Hence

sup
u∈�–((r,r))

�(u) ≤ sup
u∈�–((–∞,r))

�(u) ≤
∫ 


max
|u|≤c

F(t,u)dt. (.)

For u ∈ X with �(u) < r, one can similarly obtain

sup
u∈�–((–∞,r))

�(u) ≤
∫ 


max
|u|≤c

F(t,u)dt. (.)

It follows from the definition of β(r, r) that

β(r, r) ≤
supu∈�–((–∞,r)) �(u) –�(u)

r –�(u)
. (.)

Note that �(u) < r. By (.) one has

β(r, r) ≤
∫ 
 max|u|≤c F(t,u)dt –

∫ 
 F(t,u(t))dt

r –�(u)
.

Making use of �(u) < r,
∫ 
 max|u|≤c F(t,u)dt –

∫ 
 F(t,u(t))dt > , and (.), we obtain

β(r, r) ≤
∫ 
 max|u|≤c F(t,u)dt –

∫ 
 F(t,u(t))dt

c
M


– kc

= M


∫ 
 max|u|≤c F(t,u)dt –

∫ 
 F(t,u(t))dt

c – kM
 c

= M
a(c, c) > .

By (.), and note that �(u) > r, one has

α(r, r) ≥
�(u) – supu∈�–((–∞,r)) �(u)

�(u) – r
.

By (.) we have

α(r, r) ≥
∫ 
 F(t,u(t))dt –

∫ 
 max|u|≤c F(t,u)dt

�(u) – r
.

Note that (.) implies that

∫ 


F
(
t,u(t)

)
dt –

∫ 


max
|u|≤c

F(t,u)dt > ,

http://www.boundaryvalueproblems.com/content/2013/1/154
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which, together with (.), gives

α(r, r) ≥
∫ 
 F(t,u(t))dt –

∫ 
 max|u|≤c F(t,u)dt

kc – r

= M


∫ 
 F(t,u(t))dt –

∫ 
 max|u|≤c F(t,u)dt

kM
 c – c

= M
b(c,d).

Therefore, β(r, r) ≤ M
a(c, c) < M

b(c,d) ≤ α(r, r). Thus all the conditions in [,
Theorem .] are verified, and hence for each λ ∈ (λ,λ) the functional ϕλ = � – λ� ad-
mits at least one critical point u such that r < �(u) < r. Consequently, system (.) admits
at least one solution u and ‖u‖X < c

M
. �

In particular, if we take c = , then (.) and (.) become

a(c, c) =
∫ 
 max|u|≤c F(t,u)dt –

∫ 
 F(t,u(t))dt

c – kM
 c

and

b(c, c) = b(, c) =
∫ 
 F(t,u(t))dt
kM

 c
.

Correspondingly, conditions (.) and (.) reduce to

√
kMc < c (.)

and

∫ 


max
|u|≤c

F(t,u)dt <
c

kM
 c

∫ 


F
(
t,u(t)

)
dt. (.)

If (.) and (.) hold, then

λ =
kc∫ 

 F(t,u(t))dt
:= λ̂

and

λ =
c – kM

 c

M
 (

∫ 
 max|u|≤c F(t,u)dt –

∫ 
 F(t,u(t))dt)

≥ c
M


∫ 
 max|u|≤c F(t,u)dt

:= λ̂ > λ̂.

As a consequence, we have the following result.

Corollary . Assume that (H) is satisfied. If there exist two constants c and c satisfy-
ing (.) and (.), then for each λ ∈ (λ̂, λ̂) system (.) admits at least one nontrivial
solution u.

http://www.boundaryvalueproblems.com/content/2013/1/154
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Example . Consider the boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(iv)(t) = λt, t �= t, t ∈ [, ],

�u′′(t) = 
u

′(t), t = 
 ,

–�u′′′(t) = 
u(t), t = 

 ,

u() = u() = u′′() = u′′() = .

(.)

Here, f (t,u) = t, I(s) = 
 s, I(s) =


 s, A = B =  and m = . It is easy to verify that (H)

is satisfied with k = 
 and k = 

 . Direct calculations give F(t,u) = tu, k = , k = 
 and

M =  + 
π

≈ .. Let c = ., c = , c = ,, then c, c, c satisfy (.) and a(c, c) ≈
.× – < b(c, c) ≈ .× –. Thus, it follows from Theorem . that system (.)
has at least one solution for λ ∈ (λ,λ) = (., .).

3.2 Existence of infinitely many solutions
In this section, we derive some conditions under which system (.) admits infinitelymany
distinct solutions. To this end, we need the following assumptions.
(H) Assume that

{t, t, . . . , tm} ⊆
[


,



]
.

(H) Assume that

F(t,u) ≥ , for (t,u) ∈
([

,



]
∪

[


, 

])
×R.

Let k = ,(  –


·A + 
·B) and k = k + k with k given in (.). We define

γ := lim inf
r→+∞ ρ(r), γ := lim inf

r→(infX �)+
ρ(r), (.)

where ρ(r) is given (.). Let

μ = M
 lim inf

ξ→+∞

∫ 
 max|u|≤ξ F(t,u)dt

ξ  , μ =

k

lim sup
ξ→+∞

∫ 



F(t, ξ )dt

ξ  .

Theorem . Assume that (H), (H), and (H) are satisfied. If

μ < μ (.)

holds, then for each λ ∈ ( 
μ
, 

μ
) system (.) has an unbounded sequence of solutions in X.

Proof We apply [, Theorem .] to show that the functional ϕλ defined in (.) has an
unbounded sequence of critical points.
We first show that γ < +∞. Let {ξn} be a sequence of positive numbers such that ξn →

+∞ as n→ ∞ and

lim
n→+∞

∫ 
 max|u|≤ξn F(t,u)dt

ξ 
n

= lim inf
ξ→+∞

∫ 
 max|u|≤ξ F(t, ξ )dt

ξ  .

http://www.boundaryvalueproblems.com/content/2013/1/154
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For any positive integer n, we let rn = ξn
M


. For u ∈ X satisfying �(u) < rn, similar to the

proof of Theorem ., one can show that

‖u‖∞ ≤ M
�(u) < ξ 

n , t ∈ [, ],

which implies that

�(u) =
∫ 


F(t,u)dt ≤

∫ 


max
|u|≤ξn

F(t,u)dt.

Note that �() =�() = , thus we have

ρ(rn) = inf
v∈�–((–∞,rn))

supu∈�–((–∞,rn)) �(u) –�(v)
rn –�(v)

≤ supu∈�–((–∞,rn)) �(u) –�()
rn –�()

=
supu∈�–((–∞,rn)) �(u)

rn

≤ M

∫ 
 max|u|≤ξn F(t,u)dt

ξ 
n

,

which, together with (.), gives us

γ ≤ M
 lim inf

ξ→+∞

∫ 
 max|u|≤ξ F(t,u)dt

ξ  = μ < +∞.

This shows that ( 
μ
, 

μ
) ⊆ (, 

γ
). For any fixed λ ∈ ( 

μ
, 

μ
), it follows from [, Theo-

rem .] that either ϕλ = � – λ� has a global minimum or there is a sequence {un} of
critical points (local minima) of ϕλ such that limn→+∞ ‖un‖X = +∞.
Next we show that the functional ϕλ has no global minimum for λ ∈ ( 

μ
, 

μ
). Since λ >


μ

= k/lim supξ→+∞

∫ 




F(t,ξ )dt

ξ
, we can choose a constant M such that, for each n ∈ N =

{, , . . .},

sup
ξ≥n

∫ 



F(t, ξ )dt

ξ  >M >
k
λ
.

Thus, there exists ξn ≥ n such that

∫ 



F(t, ξn)dt

ξ 
n

>M.

Define un(t) as follows:

un(t) =

⎧⎪⎪⎨
⎪⎪⎩
ξn(t – 

 t
 + 

 t), t ∈ [,  ),

ξn, t ∈ [  ,

 ],

ξn(–t + 
 t

 – 
 t +


 ), t ∈ (  , ].

http://www.boundaryvalueproblems.com/content/2013/1/154
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This, together with (H), yields

�(un) = ,
(


–


 · A +


 · B

)
ξ 
n +

m∑
j=

∫ ξn


Ij(s)ds

≤ kξ 
n + kξ 

n

= kξ 
n .

It then follows from (H) that

ϕλ(un) = �(un) – λ�(un)

≤ kξ 
n – λ

∫ 





F(t, ξn)dt

≤ ξ 
n (k – λM).

Note that k – λM < . Thus the functional ϕλ is unbounded from below and hence it has
no global minimum and the proof is complete. �

Corollary . Assume that (H), (H), and (H) are satisfied. If

lim inf
ξ→+∞

∫ 
 max|u|≤ξ F(t,u)dt

ξ  <


M


and

lim sup
ξ→+∞

∫ 



F(t, ξ )dt

ξ  > k

hold, then (.) has an unbounded sequence of solutions in X.

Let

μ = M
 lim inf

ω→+

∫ 
 max|u|≤ω F(t,u)dt

ω , μ =

k

lim sup
ω→+

∫ 



F(t,ω)dt

ω .

Theorem . Assume that (H), (H), and (H) are satisfied. If

μ < μ (.)

holds, then for each λ ∈ ( 
μ
, 

μ
) system (.) has a sequence of non-zero solutions in X,

which weakly converges to .

Proof The proof is similar to that of Theorem . by showing that γ < +∞ and  is not a
local minimum of the functional ϕλ = � – λ� . �
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Example . Consider

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(iv)(t) – u′′(t) + u = λf (t,u), t �= t, t ∈ [, ],

�u′′(t) = 
u

′(t), t = 
 ,

–�u′′′(t) = 
u(t), t = 

 ,

u() = u() = u′′() = u′′() = ,

(.)

where f (t,u) = tu( + sinu) + tu cosu.

Here I(s) = 
 s, I(s) =


 s, A = –, B =  andm = . Note that

∫ u′(t)


I(s)ds =

∫ u′(t)






s ds =



∣∣u′(t)
∣∣,

∫ u(t)


I(s)ds =

∫ u(t)






s ds =



∣∣u(t)∣∣,
t =




∈
[


,



]
,

F(t,u) = t( + sinu)u,

so (H), (H), and (H) are satisfied. Moreover, we have k ≈ ., and

lim
ξ→+∞ inf

∫ 
 max|u|≤ξ F(t,u)dt

ξ  = , lim
ξ→+∞ sup

∫ 



F(t, ξ )dt

ξ  = .

Therefore, condition (.) holds and Theorem . applies: For λ ∈ (.,+∞), (.)
admits an unbounded sequence of solutions in X.

Example . Consider the boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(iv)(t) – u′′(t) + u = λf (t,u), t �= t, t ∈ [, ],

�u′′(t) = 
u

′(t), t = 
 ,

–�u′′′(t) = 
u(t), t = 

 ,

u() = u() = u′′() = u′′() = ,

(.)

where

f
(
t,u(t)

)
=

⎧⎨
⎩tu(. + 

 cos(ln |u|) – 
 sin(ln(|u|))) if u �= ,

 if u = .

In this example, I(s) = 
 s, I(s) =


 s, A = – and B = . The assumptions (H), (H),

and (H) clearly hold.
Direct calculations give

F
(
t,u(t)

)
=

⎧⎨
⎩tu(. + 

 cos(ln |u|)) if u �= ,

 if u = ,

http://www.boundaryvalueproblems.com/content/2013/1/154
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k ≈ . and

lim
w→+

inf

∫ 
 max|u|≤w F(t,u)dt

w = ., lim
w→+

sup

∫ 



F(t,w)dt

w = ..

Hence (.) holds. Therefore it follows from Theorem . that (.) admits a sequence
of distinct solutions in X provided that λ ∈ (., .).
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