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Abstract
In this paper, we study a strongly coupled reaction-diffusion system which describes
two interacting species in prey-predator ecosystem with nonlinear cross-diffusions
and Holling type-II functional response. By a linear stability analysis, we establish some
stability conditions of constant positive equilibrium for the ODE and PDE systems. In
particular, it is shown that Turing instability can be induced by the presence of
cross-diffusion. Furthermore, based on Leray-Schauder degree theory, the existence
of non-constant positive steady state is investigated. Our results indicate that the
model has no non-constant positive steady state with no cross-diffusion, while large
cross-diffusion effect of the first species is helpful to the appearance of Turing
instability as well as non-constant positive steady state (stationary patterns).

Keywords: cross-diffusion; Holling type-II functional response; Turing instability;
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1 Introduction
Let � be a bounded domain in R

N with smooth boundary ∂�. In this paper, we are inter-
ested in a strongly coupled reaction-diffusion equations with Holling type-II functional
response

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut –�[(d + αu + β
+v )u] = u( – u

K – mv
+u ) in � × (,∞),

vt –�[(d + β
+u + αv)v] = v( mu

+u – θ ) in � × (,∞),
∂u
∂ν

= ∂v
∂ν

=  on ∂� × (,∞),

u(x, ) = u(x), v(x, ) = v(x) in �,

(.)

where ν is the unit outward normal to ∂�. The two unknown functions u(x, t) and v(x, t)
represent the spatial distribution densities of the prey and predator, respectively. The con-
stants di, αi, βi (i = , ), K , m and θ are all positive, and u, v are nonnegative functions
which are not identically zero. Moreover, di is the diffusion rate of the two species, αi ex-
presses the self-diffusion effect, βi is called the cross-diffusion coefficient, K accounts for
the carrying capacity of the prey, θ is the death rate of the predator, andm can be regarded
as themeasure of the interaction strength between the two species. In this model, the prey
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u and the predator v diffuse with fluxes

J = –
(
d + αu +

β

 + v

)
∇u +

βu
( + v)

∇v

and

J = –
(
d +

β

 + u
+ αv

)
∇v +

βv
( + u)

∇u,

respectively. The cross-diffusion terms βu
(+v) ∇v and βv

(+u) ∇u can be explained that the
prey keeps away from the predator while the predator moves away from a large group of
prey. For more detailed biological meaning of the parameters, one can make some refer-
ence to [–].
The ODE system of (.)

du
dt

= u
(
 –

u
K

–
mv
 + u

)
,

dv
dt

= v
(

mu
 + u

– θ

)
, t > , (.)

has been extensively studied in the existing literature; see, for example, [–]. The known
results mainly focused on the existence and uniqueness of a limit cycle. In [], Rosenzweig
argued that enrichment of the environment (larger carrying capacity K ) leads to destabi-
lizing of the coexistence equilibrium, which is the so-called paradox of enrichment. Cheng
[] first proved the uniqueness of limit cycle. Hsu and Shi [] discussed the relaxation os-
cillator profile of the unique limit cycle and found that (.) has a periodic orbit if m is
larger than a threshold value.
In mathematical biology, the classical prey-predator model (ODE system) reflects only

population changes due to predation in a situation where predator and prey densities are
not spatially dependent. It does not take into account either the fact that population is usu-
ally not homogeneously distributed, or the fact that predators and preys naturally develop
strategies for survival. Both of these considerations involve diffusion processes which can
be quite intricate as different concentration levels of predators and preys caused by dif-
ferent population movements. Such movements can be determined by the concentration
of the same species (diffusion) and that of other species (cross-diffusion). In view of this,
Shigesada, Kawasaki and Teramoto first proposed a strongly coupled reaction-diffusion
model with Lotka-Volterra type reaction term (SKTmodel) to describe spatial segregation
of interacting population species in one-dimensional space []. Since then the two-species
SKT competing system and its overall behaviors continue to be of great interest in litera-
ture to both mathematical analysis and real-life modeling [–]. For the studies on bio-
logical models, since each model has rich and interesting properties and often describes
complex biological process, it is very difficult to get some general conclusions for a class
of mathematical models. So research in mathematical biology has often been performed
by investigating a specific model, the focus of which is to discuss the influences of pa-
rameters on the behavior of species in the ecosystem. Thus, more and more attention has
been recently focused on three or multi-species systems and the SKT model in any space
dimension due to their more complicated patterns, and the SKT models with other types
of reaction terms have also been proposed and investigated [–]. The obtained results
mainly relate to the stability analysis of constant positive steady states and the existence of
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non-constant positive steady states (stationary patterns) [, , –], Turing instability
[, ], and the global existence of non-negative time-dependent solutions [, , , ].
The role of diffusion in the modeling of many biological processes has been extensively

studied. Starting with Turing’s seminal work [], diffusion and cross diffusion have been
observed as causes of the spontaneous emergence of ordered structures, called patterns,
in a variety of nonequilibrium situations. Diffusion-driven instability, also called Turing
instability, has also been verified empirically in some chemical and biological models [–
]. For the system with cross-diffusion, we can know that this kind of cross-diffusion
may be helpful to create non-constant positive steady-state solutions for the predator-
prey system, for example [, , ]. Recently, the authors of [] discussed a two-species
Holling-Tanner model with simple linear cross-diffusion

⎧⎨
⎩
ut –�(du + dv) = u(a – u) – buv

(+αu)(+βv) ,

vt –�(du + dv) = v(c – v
γu )

and showed that under some parameters the positive equilibrium is stable for a diffusion
system while unstable for a cross-diffusion system, which implies that cross-diffusion can
induce the Turing instability of the uniform equilibrium. In [], Xie investigated a class
of strongly coupled prey-predator models with four Holling-type functional responses:

⎧⎨
⎩
ut –�[(d + dv)u] = g(u, v),

vt –�[(d + d
+u )v] = g(u, v).

The results indicated that diffusion and cross-diffusion in these models cannot drive Tur-
ing instability. However, diffusion and cross-diffusion can still create non-constant posi-
tive solutions for the models.
As for reaction-diffusion system of (.), the diffusive predator-prey equations with no

self- and cross-diffusion (α = α = β = β =  in (.)) under Neumann boundary value
conditions have also been investigated (see, for example, [–]). Ko and Ryu [] ob-
tained some results on the global stability of the constant steady state solutions and the
existence of at least one non-constant equilibrium solution. Medvinsky et al. [] used
this model as a simple mathematical model to investigate the pattern formation of a
phytoplankton-zooplankton system, and their numerical studies show a rich spectrum of
spatiotemporal patterns. The discussion in [] shows this system possesses complex spa-
tiotemporal dynamics via a sequence of bifurcation of spatial nonhomogeneous periodic
orbits and spatial nonhomogeneous steady state solutions. In [], Peng and Shi proved
the non-existence of non-constant positive steady state solutions. Recently, the existence,
multiplicity and stability of positive solutions for the weakly coupled equations in (.)
with Dirichlet boundary conditions were investigated in [].
From the above introductions, one can learn that few studies have been conducted into

the occurrence of Turing instability for a strongly coupled reaction-diffusion system with
nonlinear cross-diffusion terms in the literature.Motivated by a series of pioneeringworks
such as [, , ], we are interested in the instability induced by cross-diffusion and the
stationary patterns of strongly coupled model (.). The aim of this paper is to discuss
Turing instability and establish the existence of non-constant positive steady states of
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system (.). The methods we employed are the classical linearization method and the
Leray-Schauder degree theory. However, while performing a priori estimates and stability
analysis, we must try a new method and techniques to solve difficulties caused by nonlin-
ear cross-diffusion terms βu

(+v) ∇v and βv
(+u) ∇u. Nonlinear cross-diffusion terms also add

complexity of computation of characteristic equations. Moreover, this paper focuses on
the influence of nonlinear cross-diffusion terms on the appearance of Turing instability,
and the discussion shows that large cross-diffusion coefficient of the first species is helpful
to the appearance of Turing instability as well as non-constant positive steady state.
The paper is organized as follows. In Section , we discuss the stability of a positive

equilibrium point for ODE and PDE systems and then obtain sufficient conditions of the
appearance of Turing pattern. The results imply that cross-diffusion β has a destabilizing
effect, which is helpful to the occurrence of Turing instability. In Section , we obtain
a priori upper and lower bounds for the positive steady states problem of (.) in order to
calculate the topological degree. In Section , the non-existence of non-constant positive
steady state for (.) with vanished cross-diffusions is discussed. In Section , we establish
the global existence of non-constant positive steady state of (.) for suitable values of
cross-diffusion coefficient β and then show that large cross-diffusion effect β can create
non-constant positive steady states.

2 Turing instability driven by cross-diffusion
Denote ξ = θ

m–θ
. It is known from [] that problem (.) has a unique positive equilibrium

w∗ =
(
u∗, v∗)T =

(
ξ ,

(K – ξ )( + ξ )
Km

)T

if and only if

m >
( +K)θ

K
. (.)

Moreover, problem (.) has a trivial equilibrium ∗ = (, )T and a semi-trivial equilib-
rium u∗ = (K , )T.
We first investigate the stability of positive equilibrium for a reaction-diffusion system.

Lemma . Suppose that θ < K(m – θ ) <m + θ , βm
m–θ

< β. Then the positive equilibrium
w∗ of (.) is uniformly asymptotically stable.

Proof For simplicity, we denote w = (u, v)T and

�(w) =
(
φ(w),φ(w)

)T =
((

d + αu +
β

 + v

)
u,

(
d +

β

 + u
+ αv

)
v
)T

,

F(w) =
(
f(w), f(w)

)T =
(
u
(
 –

u
K

–
mv
 + u

)
, v

(
mu
 + u

– θ

))T

.
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Then problem (.) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩

∂w
∂t –��(w) = F(w) in � × (,∞),
∂w
∂ν

=  on ∂� × (,∞),

w(x, ) = (u(x), v(x))T in �.

(.)

The linearization of problem (.) at the positive equilibrium w∗ is

⎧⎪⎪⎨
⎪⎪⎩

∂w
∂t –�w(w∗)�w = Fw(w∗)w in � × (,∞),
∂w
∂ν

=  on ∂� × (,∞),

w(x, ) = (u(x), v(x))T in �,

(.)

where �w(w∗) =
( d+αu∗+ β

+v∗ – βu∗
(+v∗)

– βv∗
(+u∗) d+

β
+u∗ +αv∗

)
, Fw(w∗) =

( b b
b 

)
. Here

b =  –
u∗

K
–

mv∗

( + u∗)
=

u∗

K( + u∗)
(
K –  – u∗),

b = –
mu∗

 + u∗ < , b =
mv∗

( + u∗)
> .

It is easy to verify that b <  if K(m – θ ) <m + θ .
Let {λi,ϕi}∞i= be a set of eigenpairs for –� in � with no flux boundary condition, where

 = λ < λ ≤ λ ≤ · · · , and let E(λi) be the eigenspace corresponding to λi in C(�), let
ϕij, j = , . . . ,dimE(λi), be an orthonormal basis of E(λi). Let

X =
{
w ∈ [

C(�)∩C(�)
]|∂w/∂ν =  on ∂�

}
, Xij =

{
cϕij|c ∈ R

}.
Then we can do the following decomposition:

X =
∞⊕
i=

Xi, where Xi =
dimE(λi)⊕

j=

Xij. (.)

For each i ≥ , Xi is invariant under the operator L = �w(w∗)� + Fw(w∗). Then problem
(.) has a non-trivial solution of the form w = cϕ exp{μt} (c ∈ R

 is a constant vector) if
and only if (μ,c) is an eigenpair for the matrix –λi�w(w∗) + Fw(w∗).
The characteristic equation of the matrix –λi�w(w∗) + Fw(w∗) is given by

pi(μ) = μ – trace
[
–λi�w

(
w∗) + Fw

(
w∗)]μ + det

[
–λi�w

(
w∗) + Fw

(
w∗)] = .

Notice that

trace
[
–λi�w

(
w∗) + Fw

(
w∗)]

= –
(
d + αu∗ +

β

 + v∗ + d +
β

 + u∗ + αv∗
)

λi + b < ,

det
[
–λi�w

(
w∗) + Fw

(
w∗)] = Aλ

i + Bλi +C,
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where

A =
(
d + αu∗ +

β

 + v∗

)(
d +

β

 + u∗ + αv∗
)
–

ββu∗v∗

( + u∗)( + v∗)
> ,

B = –
[
b

(
d +

β

 + u∗ + αv∗
)
+

βu∗

( + v∗)
b +

βv∗

( + u∗)
b

]
,

C = –bb > .

Obviously, if βm
m–θ

< β, then βu∗
(+v∗) b +

βv∗
(+u∗) b <  and so B > . Thus, det[–λi�w(w∗)+

Fw(w∗)] > . It follows from Routh-Hurwitz criterion that the two rootsμ,i,μ,i of pi(μ) =
 have both negative real parts for all i≥ .
In order to obtain the local stability of u∗, we need to prove that there exists a positive

constant δ such that

Re{μ,i},Re{μ,i} ≤ –δ for all i≥ . (.)

Let μ = λiζ , then

pi(μ) = λ
i ζ

 – trace
[
–λi�w

(
w∗) + Fw

(
w∗)]λiζ + det

[
–λi�w

(
w∗) + Fw

(
w∗)] � p̃i(ζ ).

Notice that λi → ∞ as i→ ∞. We can calculate that

lim
i→∞

p̃i(ζ )
λ
i

= ζ  +
(
d +

β

 + v∗ + d +
β

 + u∗

)
ζ +A� p̃(ζ ).

By Routh-Hurwitz criterion, the two roots ζ, ζ of p̃(ζ ) =  have both negative real parts.
Then we can conclude that there exists a positive constant δ̃ such that Re{ζ},Re{ζ} ≤
–δ̃. By continuity, we see that there exists i such that the two roots of p̃i(ζ ) =  satisfy
Re{ζ,i},Re{ζ,i} ≤ – δ̃

 for all i ≥ i. Then Re{μ,i},Re{μ,i} ≤ – λi δ̃
 ≤ – δ̃

 for all i≥ i. Let

δ =min

{
δ̃


, max
≤i≤i

{
Re{μ,i},Re{μ,i}

}}
.

Then (.) holds true. The theorem is thus proved. �

Similarly, we can also learn, by the proof of Lemma ., a series of stability results about
the positive equilibrium for problem (.) with different cross-diffusion cases.

Lemma . Suppose that θ < K(m– θ ) <m + θ , B < , β,β 
= . The positive equilibrium
w∗ of (.) is unstable if B – AC >  and

–B –
√
B – AC
A

< λi <
–B +

√
B – AC
A

for some i ≥ , whereas it is uniformly asymptotically stable if B – AC < .

Lemma . Suppose that θ < K(m– θ ) <m+ θ , β = β = . Then the positive equilibrium
w∗ of (.) is uniformly asymptotically stable for disappeared cross-diffusion.

http://www.boundaryvalueproblems.com/content/2013/1/155


Wen Boundary Value Problems 2013, 2013:155 Page 7 of 17
http://www.boundaryvalueproblems.com/content/2013/1/155

Lemma . Suppose that θ < K(m – θ ) <m + θ , β = , β 
= . Then the positive equilib-
rium w∗ of (.) is uniformly asymptotically stable.

Now we consider the case when β 
= , β = . For simplicity, denote

A =
(
d + αu∗ +

β

 + v∗

)(
d + αv∗), B = –

[
b

(
d + αv∗) + βu∗

( + v∗)
b

]
.

Then

det
[
–λi�w

(
w∗) + Fw

(
w∗)] = Aλ


i + Bλi +C.

We thus have the following result.

Lemma . Suppose that θ < K(m – θ ) <m + θ , β 
= , β = . The positive equilibrium
w∗ of (.) is unstable if B < , B

 – AC >  and

–B –
√
B
 – AC

A
< λi <

–B +
√
B
 – AC

A

for some i ≥ , whereas it is uniformly asymptotically stable if B > , or B <  and B
 –

AC < .

Now we consider the corresponding ODE system. Let w = (u(t), v(t))T be a positive so-
lution of (.). It is easy to show that u(t) and v(t) are both well posed. Similar to the proof
of Lemma ., we can get the following stability result.

Lemma . Assume that θ < K(m – θ ) <m + θ . The positive equilibrium point w∗ of (.)
is locally asymptotically stable. In particular, w∗ is globally asymptotically stable if θ <
K(m – θ ) <m.

Proof According to the proof of Lemma ., we can easily obtain local asymptotical sta-
bility of w∗ for ODE system (.).
Define the following Lyapunov function:

E(t) = E(w)(t) =
(
u – u∗ – u∗ ln

u
u∗

)
+ ρ

(
v – v∗ – v∗ ln

v
v∗

)
,

where ρ is a positive constant to be determined. Obviously, E(w∗) = , and E(w) >  if
w 
=w∗. We compute the derivative of E(t) for system (.):

dE
dt

=
u – u∗

u
du
dt

+ ρ
v – v∗

v
dv
dt

= –
[(


K

–
mv∗

( + u)( + u∗)

)(
u – u∗) + m

 + u

(
 –

ρ

 + u∗

)(
u – u∗)(v – v∗)].

It is easy to demonstrate that 
K – mv∗

(+u)(+u∗) >  if K(m– θ ) <m. On the other hand, we can
choose ρ = u∗ and then  – ρ

+u∗ = 
+u∗ > . Then we get

dE
dt

<  if w 
=w∗.
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By the Lyapunov-LaSalle invariance principle [],w∗ is globally asymptotically stable. So
the proof of Lemma . is completed. �

Based on the above discussion, we now can establish some sufficient conditions for the
occurrence of Turing instability induced by cross-diffusion. Ourmain result in this section
is the following theorem.

Theorem . Assume that θ < K(m– θ ) <m+ θ . The stability of the constant equilibrium
w∗ is stable for the ODE dynamics (.) while unstable for the PDE dynamics (.) if one of
the following two conditions is fulfilled:
(C) B < , B – AC > , and –B–

√
B–AC
A < λi < –B+

√
B–AC
A for some i ≥ ,

(C) β = , B < , B
 – AC > , and –B–

√
B–AC

A
< λi <

–B+
√

B–AC
A

for some
i ≥ .

Remark. TheTuring instability refers to ‘diffusion driven instability’, i.e., the stability of
the constant equilibrium changing from stable for the ODE dynamics, to unstable for the
PDE dynamics. Lemma . and Theorem . imply that cross-diffusion β has a destabi-
lizing effect, which is helpful to the occurrence of Turing instability. Moreover, we can see
that sufficiently large cross-diffusion β can guarantee B <  and B < , even B –AC > 
and B

 – AC >  under a proper parameter condition. So large cross-diffusion effect β

can induce Turing instability.

3 Prior bounds for the positive steady states of the PDE system
The corresponding steady state problem of (.) is

⎧⎨
⎩
–��(w) = F(w) in �,
∂w
∂ν

=  on ∂�.
(.)

In this section, we give a priori positive upper and lower bounds for positive solutions to
the elliptic system (.). For this, we need to make use of the following two results.

Lemma . (Maximum principle []) Let g(x,w) ∈ C(� × R
) and bj(x) ∈ C(�), j =

, . . . ,N .
() If w ∈ C(�)∩C(�) satisfies

⎧⎨
⎩
–�w(x) ≤ ∑N

j= bj(x)wxj + g(x,w(x)) in �,
∂w
∂ν

≤  on ∂�,

and w(x) =max� w, then g(x,w(x)) ≥ .
() If w ∈ C(�)∩C(�) satisfies

⎧⎨
⎩
–�w(x) ≥ ∑N

j= bj(x)wxj + g(x,w(x)) in �,
∂w
∂ν

≥  on ∂�,

and w(x) =min� w, then g(x,w(x)) ≤ .

http://www.boundaryvalueproblems.com/content/2013/1/155
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Lemma . (Harnack inequality []) Let w ∈ C(�) ∩ C(�) be a positive solution to
–�w(x) = c(x)w(x) with c ∈ C(�) subject to the homogeneous Neumann boundary condi-
tion. Then there exists a positive constant C = C(N ,�,‖c‖∞) such that

max
�

w ≤ Cmin
�

w.

In this paper, we assume that the classical solution is in [C(�)∩C(�)]. The results of
upper and lower bounds can be stated as follows.

Theorem . (Upper bound) For any positive classical solution w of (.), there exist two
positive constants Ci = Ci(dj,αj,βj, j = , ,K , θ ), i = , , such that

max
�

u ≤ C, max
�

v ≤ C.

Proof Problem (.) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩
–�φ = u( – u

K – mv
+u ) in �,

–�φ = v( mu
+u – θ ) in �,

∂φ
∂ν

= ∂φ
∂ν

=  on ∂�.

(.)

Let x ∈ � be a point such that φ(x) =max� φ. Applying Lemma . to the first equa-
tion in (.) yields u(x)≤ K and

max
�

u ≤ 
d

max
�

φ =

d

(
d + αu(x) +

β

 + v(x)

)
u(x) ≤

(
 +

αK + β

d

)
K � C.

Denote φ = φ + φ. Let x ∈ � be a point such that φ(x) =max� φ. Since

–�φ =
(
 –

u
K

)
u – θv,

from Lemma ., we can obtain v(x) ≤ u(x)
θ

≤ C
θ
and

max
�

v ≤ 
d

max
�

φ =

d

φ(x)

=

d

[(
d + αu(x) +

β

 + v(x)

)
u(x) +

(
d +

β

 + u(x)
+ αv(x)

)
v(x)

]

≤ 
d

[
(d + αC + β)C +

(
d + β +

αC

θ

)
C

θ

]
� C.

This completes the proof. �

Theorem . (Lower bound) Suppose that mK
+K 
= θ . For any positive classical solution w

of (.), there exists a positive constant ci = ci(N ,�,dj,αj,βj, j = , ,K ,m, θ ), i = , , such
that

min
�

u ≥ c, min
�

v≥ c.

http://www.boundaryvalueproblems.com/content/2013/1/155
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Proof Since the inequalities

∥∥∥∥  – u
K – mv

+u

d + αu + β
+v

∥∥∥∥∞
,
∥∥∥∥

mu
+u – θ

d + β
+u + αv

∥∥∥∥∞
≤ C̄ = C̄(dj,αj,βj, j = , ,K ,m, θ ),

Harnack inequality in Lemma . shows that there exist two positive constants M̄i =
M̄i(N ,�,dj,αj,βj, j = , ,K ,m, θ ), i = , , such that

max
�

φi ≤ M̄imin
�

φi, i = , .

Thus,

max� u
min� u

≤ max� φ

min� φ

d + αmax� u + β
+min

�
v

d + αmin� u + β
+max

�
v

≤ M̄
d + αC + β

d + β
+C

�M′
.

By the same way, we have

max� v
min� v

≤ max� φ

min� φ

d + β
+min

�
u + αmax� v

d + β
+max

�
u + αmin� v

≤ M̄
d + β + αC

d + β
+C

�M′
.

On the other hand, by integrating the second equation in (.), we have
∫
�
v( mu

+u –θ )dx =
, which implies that there exists a point y ∈ � such that mu(y)

+u(y)
– θ = , i.e.,

mu(y) = θ
(
 + u(y)

)
.

So u(y) ≥ θ
m and

min
�

u ≥ max� u
M′


≥ u(y)

M′


≥ θ

mM′

� c.

Now we need to prove v has a positive lower bound. Suppose on the contrary that
min� v ≥ c >  does not hold. Then there exists a sequence {d,n,d,n,α,n,α,n,β,n,β,n}∞n=
with (d,n,d,n,α,n,α,n,β,n,β,n) ∈ [d,∞) × [d,∞) × [α,∞) × [α,∞) × [β,∞) ×
[β,∞) such that the corresponding nonnegative solution (un, vn) of (.) with (d,d,α,
α,β,β) = (d,n,d,n,α,n,α,n,β,n,β,n) satisfies

min
�

un ≥ c, min
�

vn →  as n→ ∞,

and then

max
�

vn →  as n→ ∞. (.)

We may assume, by passing to a subsequence if necessary, that as n→ ∞,

(d,n,d,n,α,n,α,n,β,n,β,n) → (d,d,α,α,β,β),

(un, vn)→ (ũ, ṽ).

http://www.boundaryvalueproblems.com/content/2013/1/155
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By (.) and the Lp regularity theory of elliptic equations, we can conclude that un, vn ∈
W ,P(�) for any p > . Then, for p > N , by Sobolev embedding theorem, we have un, vn ∈
C,α(�). It follows, by passing to a subsequence if necessary, that (un, vn) converges uni-
formly to the nonnegative function (ũ, ṽ) in C(�) as n→ ∞. Then

 < c ≤ min
�

ũ≤ max
�

ũ ≤ C,  ≤ max
�

ṽ ≤ C.

By (.), we note that ṽ≡ . Moreover, since

–�

[(
d,n + α,nun +

β,n

 + vn

)
un

]
= un

(
 –

un
K

–
mvn
 + un

)
,

we have

–�
[
(d + β + αũ)ũ

]
= ũ

(
 –

ũ
K

)
.

Multiplying the above equation by – ũ
K
ũ and then integrating the resulting equation over�,

we can obtain

 ≥ –
∫

�

d + β + αũ
ũ

|∇ũ| dx =
∫

�

(
 –

ũ
K

)

dx≥ .

Thus, ũ ≡ K and then (un, vn) → (K , ) as n → ∞. At the same time, we consider the
integral equation

∫
�

vn
(

mun
 + un

– θ

)
dx = , ∀n≥ .

However, since mun
+un – θ → mK

+k – θ 
=  as n → ∞, we can conclude that vn( mun
+un – θ ) is

positive or negative as n is large enough. It is a contradiction. �

4 Non-existence of non-constant positive steady states
The aim of this section is to investigate the non-existence of non-constant positive steady
states of problem (.) with no cross-diffusion.

Theorem . Let β = β = , θ >mK( + αK
d

). Then there exists a positive constant D =
D(N ,�,d,α,α,K ,m, θ ) such that problem (.)has no non-constant positive steady state
provided that d ≥ D.

Proof For any U ∈ L(�), denote Ū = 
|�|

∫
�
U dx. Assume that w = (u, v)T is a positive

solution of (.) with β = β = . Multiplying the two equations in (.) by u–ū
u and v–v̄

v ,
respectively, and integrating the results over � by parts, we can obtain

∫
�

(
(d + αu)ū

u
|∇u| + (d + αv)v̄

v
|∇v|

)
dx

=
∫

�

[(
f(u, v) – f(ū, v̄)

)
(u – ū) +

(
f(u, v) – f(ū, v̄)

)
(v – v̄)

]
dx

http://www.boundaryvalueproblems.com/content/2013/1/155
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=
∫

�

[(
mv

( + u)( + ū)
–


K

)
(u – ū) +

(
m

( + u)( + ū)
–

m
 + ū

)
(u – ū)(v – v̄)

]
dx

<
∫

�

[(
mv –


K

+ ε

)
(u – ū) +C(ε)(v – v̄)

]
dx,

where ε is the arbitrary small positive constant arising from Young’s inequality.
Similar to the proof of Lemma . and Lemma ., we can conclude that

 < c̃ ≤ u≤
(
 +

αK
d

)
K � C̃,

 < c̃ ≤ v≤ K
d

(
 +

αK
d

)[
d +

d
θ

+K
(
 +

αK
d

)(
α +

α

θ

)]
� C̃.

It follows from the Poincaré inequality that

λ

∫
�

[
dc̃
C̃

 (u – ū) +
dc̃
C̃

 (v – v̄)
]
dx

≤
∫

�

[(
mC̃ –


K

+ ε

)
(u – ū) +C(ε)(v – v̄)

]
dx.

SincemC̃ – 
K <  if

d >
mK(d + αK)

dθ –mK(d + αK)

[
d +K

(
α +

α

θ

)(
 +

αK
d

)]
,

we may choose ε sufficiently small and d sufficiently large such that mC̃ – 
K + ε < ,

λ
d c̃
C̃

 > C(ε). Thus, we can conclude that u≡ ū, v≡ v̄. Then the proof is completed. �

5 Existence of non-constant positive steady states
In this section, we shall use the Leray-Schauder degree theory to develop a general setting
to establish the existence of stationary patterns for system (.). Denote

X+ = {w ∈X|w >  on �},
B(C) =

{
w = (u, v)T ∈ X+|C– < u, v < C on �

}
,

where C is a positive constant whose existence is guaranteed by Theorems . and ..
Since the determinant det[�w(w)] is positive for all non-negative w, [�w(w∗)]– exists

and det{[�w(w∗)]–} is positive, thus w is a positive solution of system (.) if and only if

�(w)�w – (I –�)–
{[

�w(w)
]–[F(w) +∇w�ww(w)∇w

]
+w

}
=  in X+, (.)

where (I–�)– is the inverse of I–� inX, subject to the homogeneous Neumann bound-
ary condition. Since �(·) is a compact perturbation of the identity operator, the Leray-
Schauder degree deg(�(·), ,B(C)) is well defined if �(w) 
=  for any w ∈ ∂B(C). Further,
we calculate

Dw�
(
w∗) = I – (I –�)–

{[
�w

(
w∗)]–Fw

(
w∗) + I

}
in L(X,X).

http://www.boundaryvalueproblems.com/content/2013/1/155
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Werecall that if Dw� does not have any pure imaginary or zero eigenvalue, the index of the
operator � at the fixed point w∗ is defined as index(�(·),w∗) = (–)r , where r is the total
number of eigenvalues of Dw� with negative real parts (countingmultiplicities). Then the
degree deg(�(·), ,B(C)) is equal to the sum of the indexes over all solutions to equation
� =  in B(C), provided that � 
=  on ∂B(C).
In order to calculate r, we employ the eigenspaces of –�. Using the decomposition (.)

we investigate the eigenvalues of matrix Dw�(w∗). First, we know Xij is invariant under
Dw�(w∗) for each i ∈ N and each j ∈ [,dimE(λi)] ∩ N, i.e., Dw�(w∗), w ∈ Xij for any
w ∈ Xij. Hence, μ is an eigenvalue of Dw�(w∗) on Xij if and only if it is an eigenvalue of
the matrix

I –


 + λi

{[
�w

(
w∗)]–Fw

(
w∗) + I

}
=


 + λi

{
λiI –

[
�w

(
w∗)]–Fw

(
w∗)}.

So Dw�(w∗) is invertible if and only if, for any i ≥ , the matrix 
+λi

{λiI – [�w(w∗)]– ×
Fw(w∗)} is non-singular. Denote

H(λ)�H
(
w∗,λ

)
= det

{
λI –

[
�w

(
w∗)]–Fw

(
w∗)}.

Wenotice that ifH(λi) 
= , then for each j ∈ [,dimE(λi)], the number of negative eigenval-
ues of Dw�(w∗) on Xij is odd if and only if H(λi) < . In conclusion, we have the following
result.

Lemma. Assume that, for each i≥ , thematrix λiI–[�w(w∗)]–Fw(w∗) is non-singular.
Then

index
(
�(·),w∗) = (–)σ , where σ =

∑
i≥,H(λi)<

dimE(λi).

According to the above lemma, we should consider the sign ofH(λi) in order to calculate
index(�(·),w∗). Since

H(λ) = det
{[

�w
(
w∗)]–}det{λ�w

(
w∗) – Fw

(
w∗)}

and det{[�w(w∗)]–} > , we only need to consider the sign of det{λ�w(w∗)–Fw(w∗)}. A di-
rect calculation shows

det
{
λ�w

(
w∗) – Fw

(
w∗)} = Aλ

 +Aλ +A � q(λ),

where

A =
(
d + αu∗ +

β

 + v∗

)(
d +

β

 + u∗ + αv∗
)
–

ββu∗v∗

( + u∗)( + v∗)
> ,

A = –
[(

d +
β

 + u∗ + αv∗
)
b +

βu∗

( + v∗)
b +

βv∗

( + u∗)
b

]
,

A = –bb > .

http://www.boundaryvalueproblems.com/content/2013/1/155
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Let λ̄ and λ̄ be the two roots of q(λ) =  with Re{λ̄} ≤ Re{λ̄}. Then

λ̄λ̄ = det
{
Fw

(
w∗)} > .

So the signs of Re λ̄ and Re λ̄ are identical. Perform the following limits:

lim
β→∞

q(λ)
β

= λ
(
�λ

 +�
)
,

where

� =


 + v∗

(
d +

β

 + u∗ + αv∗
)
–

βu∗v∗

( + u∗)( + v∗)
> ,

� = –
u∗

( + v∗)
b < .

Then we have the following result.

Lemma . Assume that θ < K(m – θ ) <m + θ . Then there exists a positive constant β∗


such that for any β ≥ β∗
 , the two roots λ̄, λ̄ of q(λ) =  are all real and satisfy

lim
β→∞ λ̄ = , lim

β→∞ λ̄ = –
�

�
� λ̄ > . (.)

Moreover, we can conclude that

⎧⎪⎪⎨
⎪⎪⎩
 < λ̄ < λ̄,

q(λ) <  when λ ∈ (λ̄, λ̄),

q(λ) >  when λ ∈ (–∞, λ̄)∪ (λ̄, +∞).

(.)

Now we establish the global existence of non-constant positive solution to (.) with
respect to the cross-diffusion coefficients β, as the other parameters are all fixed positive
constants.

Theorem . Assume that the parameters d, d, α, α, β, K ,M and θ are all fixed and
satisfy d ≥ D, mK

+K 
= θ and

mK
(
 +

αK
d

)
< θ < K(m – θ ) <m + θ . (.)

Let λ̄ be given by the limit in (.). If λ̄ ∈ (λn,λn+) for some n ≥  and the sum σn =∑n
i= dimE(λi) is odd, then there exists a positive constant β∗

 such that, if β > β∗
 , problem

(.) has at least one non-constant positive steady state.

Proof By Lemma ., there exists a positive constant β∗
 such that, if β > β∗

 , (.) holds
and

 = λ < λ̄ < λ̄, λ̄ ∈ (λn,λn+). (.)

http://www.boundaryvalueproblems.com/content/2013/1/155
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Wewill prove that for any β > β∗
 , (.) has at least one non-constant positive steady state.

The proof will be fulfilled by contradiction. Suppose on the contrary that the assertion is
not true for some β = β̄ ≥ β∗

 . Let β be fixed as β̄.
For t ∈ [, ], define

d(t)≡ d, d(t) = D + t(d – D),

αi(t)≡ αi, β(t) ≡ tβ̄, β(t) = tβ

and

�(t;w) =
(
φ(t;w),φ(t;w)

)T

=
((

d(t) + α(t)u +
β(t)
 + v

)
u,

(
d(t) +

β(t)
 + u

)
v + α(t)v

)T

,

and then consider the problem
⎧⎨
⎩
–��(t;w) = F(w) in �,
∂w
∂ν

=  on ∂�.
(.)

Then w is a non-constant positive steady state of (.) if and only if it is a non-constant
positive solution of problem (.) for t = . It is obvious that w∗ is the unique constant
positive solution of (.) for any t ∈ [, ]. From (.), we know that for any t ∈ [, ], w is
a positive solution of problem (.) if and only if

�(t;w)�w – (I –�)–
{[

�w(t;w)
]–[F(w) +∇w�ww(t;w)∇w

]
+w

}
=  in X+.

It is obvious that �(;w) = �(w). Theorem . indicates that �(;w) =  only has the
constant positive solution w∗ in X+. A direct calculation shows that

Dw�
(
t;w∗) = I – (I –�)–

{[
�w

(
t;w∗)]–Fw

(
w∗) + I

}
.

In particular,

Dw�
(
;w∗) = I – (I –�)–

{[
�̂w

(
w∗)]–Fw

(
w∗) + I

}
,

Dw�
(
;w∗) = I – (I –�)–

{[
�w

(
w∗)]–Fw

(
w∗) + I

}
= Dw�

(
w∗).

Here �̂w(w∗) = diag(d + αu∗, D + αv∗). Moreover, we already know that

H(λ) = det
{[

�w
(
w∗)]–}q(λ) (.)

and det{[�w(w∗)]–} > .
For t = , by (.), (.) and (.), we have

⎧⎪⎪⎨
⎪⎪⎩
H(λ) =H() > ,

H(λi) <  when ≤ i ≤ n,

H(λi) >  when i > n.
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Thus,  is not an eigenvalue of the matrix λiI – [�w(w∗)]–Fw(w∗) for all i≥ , and

∑
i≥,H(λi)<

dimE(λi) =
n∑
i=

dimE(λi) = σn

is odd. It follows from Lemma . that

index
(
�(; ·),w∗) = (–)r = (–)σn = –. (.)

For t = , we have

index
(
�(; ·),w∗) = (–) =  (.)

from Theorem ..
On the other hand, by Theorems . and ., there exists a positive constant M such

that for all t ∈ [, ], the positive solution of (.) satisfies M– < u, v <M and �(t;w) 
= 
on ∂B(M). By the homotopy invariance of the topological degree, we can obtain

deg
(
�(; ·), ,B(M)

)
= deg

(
�(; ·), ,B(M)

)
. (.)

Now, by our supposition, both equations �(;w) =  and �(;w) =  have only the con-
stant positive solution w∗ in B(M). Thus, by (.) and (.),

deg
(
�(; ·), ,B(M)

)
= index

(
�(; ·),w∗) = –,

deg
(
�(; ·), ,B(M)

)
= index

(
�(; ·),w∗) = ,

which contradicts (.). The proof is completed. �

Remark . Condition (.) may be fulfilled if m is much larger than K , and K is rather
small in comparison with m and θ . Moreover, the conclusion in Theorem . coincides
with the discussion in Section . So we know that large cross-diffusion effect β is helpful
to the formation of stationary patterns.

Remark . The results of Theorems ., . and . show that large cross-diffusion effect
of the first species can create not only Turing patterns but also stationary patterns (non-
constant positive steady states).
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