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Abstract
In this paper, we consider the following system:

{
�u = u, �v = v, x ∈ �,
∂u
∂ν

= f (x, v), ∂v
∂ν

= g(x,u), x ∈ ∂�,

where � is a bounded domain in R
N (N ≥ 3) with smooth boundary, ∂

∂ν
is the outer

normal derivative and f ,g : ∂� ×R →R
+ are positive and continuous functions.

Under certain assumptions on f (x, t) and g(x, t), but without the usual (AR) condition,
we prove that the problem has at least one positive strong pair solution (u, v) (see
Definition 1.4 below) by applying a linking theorem for strong indefinite functional.
MSC: 35A01; 35J20; 35J25
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1 Introduction andmain result
In this paper, we mainly study the following system:

⎧⎨
⎩�u = u, �v = v, x ∈ �,

∂u
∂ν

= f (x, v), ∂v
∂ν

= g(x,u), x ∈ ∂�,
(.)

where� is a bounded domain inRN (N ≥ )with smooth boundary, ∂
∂ν

is the outer normal
derivative and f , g : ∂� ×R →R

+ are positive and continuous functions.
Existence results for nonlinear elliptic systems have received a lot of interest in recent

years (see [–]), particularly when the nonlinear term appears as a source in the equa-
tion, complemented with Dirichlet boundary conditions. To our knowledge, about the
system with nonlinear boundary conditions, there are not many results. Here we refer to
[, , ].
We are mainly motivated by [] and [].
In [], Li and one of the authors considered

⎧⎨
⎩–�u + u = f (x, v), x ∈R

N ,

–�v + v = g(x,u), x ∈R
N .

(.)
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Under some given conditions, we proved that (.) had at least one positive solution pair
(u, v) ∈H(RN )×H(RN ).
In [], Bonder, Pinasco, Rossi studied

⎧⎨
⎩�u = u, �v = v, x ∈ �,

∂u
∂ν

=Hv(x,u, v), ∂v
∂ν

=Hu(x,u, v), x ∈ ∂�.
(.)

They assumed that H satisfied the following conditions:
(H̃) |H(x,u, v)| ≤ C(|u|p+ + |v|q+ + ).
(H̃) The Ambrosetti-Rabinowitz type condition: For R large, if |(u, v)| ≥ R,


α

∂H
∂u

(x,u, v)u +

β

∂H
∂v

(x,u, v)u≥ H(x,u, v) > , (.)

where p +  ≥ α > p >  and q +  ≥ β > q >  with

 >

α
+


β
, (.)

max

{
p
α
+
q
β
;

q
q + 

p + 
α

+
p

p + 
q + 
β

}
<  +


N – 

, (.)

q
q + 

p + 
α

< , and
p

p + 
q + 
β

< . (.)

When N ≥ , they also assumed

max

{
p
α
+
q
β
;

q
q + 

p + 
α

+
p

p + 
q + 
β

}
<

N + 
(N – )

. (.)

(H̃) | ∂H
∂u (x,u, v)| ≤ (|u|p + |v| p(q+)p+ + ), | ∂H

∂v (x,u, v)| ≤ (|u| q(p+)q+ + |v|q + ).
(H̃) H(x,u, v) =H(x, –u, –v).
They obtained infinitely many nontrivial solutions of (.) under the assumptions (H̃)

to (H̃) by using variational arguments and a fountain theorem. Note that (.) implies

∣∣H(x,u, v)
∣∣ ≥ c

(|u|α + |v|β)
–C (.)

(see Lemma . in []). Therefore it is not difficult to verify that any (PS) sequence (or (C)c
sequence) of the corresponding functional is bounded in some suitable space.
The crucial part in the nonlinear boundary conditions case is to find the proper func-

tional setting for (.) that allows us to treat our problem variationally. We accomplish
this by defining a self-adjoint operator that takes into account the boundary conditions
together with the equations and considering its fractional powers that satisfy a suitable
‘integration by parts’ formula. In order to obtain nontrivial solutions, we use a linking
theorem (see []).
The assumptions we impose on f (x, t) and g(x, t) are as follows:
(H) f , g ∈ C(∂� ×R

,R) with f (x, t) = g(x, t) =  for any (x, t) ∈ ∂� × (–∞, ],

f (x, t) >  and g(x, t) >  for any (x, t) ∈ ∂� × (, +∞).

http://www.boundaryvalueproblems.com/content/2013/1/159
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(H) limt→
f (x,t)
t = limt→

g(x,t)
t =  uniformly in x ∈ ∂�.

(H) There is a positive constant C >  such that

∣∣f (x, t)∣∣ ≤ C
(
 + |t|p–), ∣∣g(x, t)∣∣ ≤ C

(
 + |t|q–), ∀(x, t) ∈ ∂� ×R

, (.)

where p,q >  and satisfy


p
+

q
>  –


N – 

. (.)

(H) lim|t|→+∞ F(x,t)
t = lim|t|→+∞ G(x,t)

t = +∞ uniformly in x ∈ ∂�, where F(x, t) :=∫ t
 f (x, s)ds, G(x, t) :=

∫ t
 g(x, s)ds.

(H) For all  < t < s, x ∈ ∂� or s < t < , x ∈ ∂�, there are two positive constants C,∗,
C,∗ such that

H(x, t)≤ H(x, s) +C,∗, H(x, t)≤ H(x, s) +C,∗, (.)

where H(x, t) = tf (x, t) – F(x, t), H(x, t) = tg(x, t) – G(x, t) with H(x, t),H(x, t) >  for
any t > , x ∈ ∂�.

Remark . By (.), there exist l andm with l +m = , l,m > 
 such that


p
>


–
l – 


N – 

,

q
>


–
m – 


N – 

. (.)

Remark . (H) was first introduced by Miyagaki and Souto in []. A typical pair of
functions f (x, t) = tp–, g(x, t) = tq–, t > , p,q > ; f (x, t) = g(x, t) = , t ≤  satisfy (H) to
(H). However, the pair of functions f (x, t) = t( ln t + ), g(x, t) = t( ln t + ), t > ; f (x, t) =
g(x, t) = , t ≤  satisfy (H) but do not satisfy the usual (AR) condition and (H̃) in this
paper.

Remark . The assumptions we impose on f and g are different from the assumptions
in []. To our best knowledge, it is the first time the group assumptions have been used
to deal with a system with nonlinear boundary conditions.

In order to state our main result, first we give a definition.

Definition . We say that (u, v) is a strong solution of (.) if

u ∈W , p
p– (�), v ∈W , q

q– (�)

and (u, v) satisfies (.) a.e. in �.

Our main results is as follows.

Theorem . Let (H)-(H) hold. Then system (.) possesses at least one positive strong
solution pair z = (u, v).

http://www.boundaryvalueproblems.com/content/2013/1/159
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Themain difficulties to deal with system (.) consist in at least three aspects. Firstly, due
to the type of growth of the functions f and g , we cannot work with the usual H(�), and
thenwe need fractional Sobolev spaces. Secondly, althoughwe have a variational problem,
the functional associated to it always has a strong indefinite quadratic part. So, the func-
tional possesses no mountain-pass structure but the linking geometric structure, which
is more complicated to handle. Thirdly, as we do not assume that the functions f and g
satisfy the (AR) conditions, it is much more difficult to show that any (C)c sequence is
uniformly bounded in E (see Section ).
To prove Theorem ., we try to find a critical point of the functional � (see (.)) in E.

We prove that � has a linking geometric structure and use a linking theorem under (C)c
condition (see Theorem . in []) to get a (C)c-sequence {zn} ⊂ E of �. The main diffi-
culty now will be to prove that {zn} is uniformly bounded in E without the (AR) condition.
Then we prove that any (C)c-sequence {zn} ⊂ E of � is bounded. To overcome this diffi-
culty, we use some techniques used in [, ] for which the assumptions (H), (H) play
important roles. As {zn} is bounded, then we can prove that {zn} has a subsequence which
converges to a nontrivial critical point of �. Hence, by the strong maximum principle, we
can prove that the pair solution (u, v) is positive.
The paper is organized as follows. In Section , we give some preliminaries. We prove

our main result in Section .

2 Some preliminaries
In this section we mainly give some preliminaries which will be used in Section . We
follow the structure in [].
Throughout this paper, we consider the space L(�)× L(∂�) which is a Hilbert space

with the inner product, which we denote by 〈·, ·〉, given by

〈
(u, v), (ϕ,ψ)

〉
=

∫
�

uϕ dx +
∫

∂�

vψ dσ , for any (u, v), (ϕ,ψ) ∈ L(�)× L(∂�).

Now we let A :D(A)⊂ L(�)× L(∂�) → L(�)× L(∂�) be the operator defined by

A(u,u|∂�) =
(
–�u + u,

∂u
∂ν

)
,

where D(A) = {(u,u|∂�) : u ∈ H(�)}. It is not difficult to verify that D(A) is dense in
L(�)× L(∂�). Note that A is invertible with its inverse given by

A–(h,h) = (u,u|∂�),

where u is the solution of
⎧⎨
⎩–�u + u = h, in �,

∂u
∂ν

= h, on ∂�.
(.)

By standard regularity (see []), it follows thatA– is bounded and compact.Hence,R(A) =
L(�)× L(∂�). Therefore, in order to see that A (hence A–) is self-adjoint, it suffices to

http://www.boundaryvalueproblems.com/content/2013/1/159
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prove that A is symmetric ([], p.). In fact, for u, v ∈ D(A), applying Green’s formula,
we obtain

〈Au, v〉 =
∫

�

(–�u + u)vdx +
∫

∂�

∂u
∂ν

vdσ =
∫

�

(–�v + v)udx +
∫

∂�

∂v
∂ν

udσ = 〈v,Au〉.

Hence A is symmetric. Also we can check that A (and so A–) is positive. For any u ∈D(A)
and by Green’s formula again, we have

〈Au,u〉 =
∫

�

(–�u + u)udx +
∫

∂�

∂u
∂ν

udσ =
∫

�

(|∇u| + u
)
dx ≥ .

Hence there is a sequence of eigenvalues (λn) ∈ R with eigenfunctions (ϕn,ψn) ∈ L(�)×
L(∂�) satisfying  < λ ≤ λ ≤ · · · ≤ λn ≤ · · · ↗ and ϕn ∈H(�), ϕn|∂� = ψn,

⎧⎨
⎩–�ϕn + ϕn = λnϕn, in �,

∂ϕn
∂ν

= λnψn, on ∂�.
(.)

Now we consider the following fractional powers of A, i.e., for  < l < ,

Al :D
(
Al) → L(�)× L(∂�), with Alu =

∞∑
n=

λl
nan(ϕn,ψn),

where u =
∑∞

n= an(ϕn,ψn). Let El =D(Al), which is aHilbert space under the inner product

(u,ϕ)El =
〈
Alu,Alϕ

〉
.

Note that El ⊂Hl(�). Indeed, if we define A :H(�)⊂ L(�) → L(�) by

Au = –�u + u,

and A :H(�) ⊂D(A) ⊂ L(∂�) → L(∂�) by

Au =
∂u
∂ν

,

then Ā = (A,A) satisfies

A = Ā|(u,u), u ∈D(A)∩D(A),

and hence

Al = Āl|(u,u), u ∈D
(
Al

) ∩D

(
Al

)
.

Since D(A) =H(�) ⊂D(A), we have D(Al
) ⊂D(Al

). Therefore,

El =D
(
Al) =D

(
Al

)
.

http://www.boundaryvalueproblems.com/content/2013/1/159
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Noting that � is smooth, it follows from the results of p. in [] (see also [, ]) that

El =D
(
Al

) ⊂Hl(�).

The following compact result will be useful later.

Proposition . (Theorem ., []) Given l > 
 and r ≥  so that 

r ≥ 
 –

l– 


N– , the inclu-

sion map i : El → Lr(∂�) is well defined and bounded. Moreover, if 
r >


 –

l– 


N– , then the
inclusion is compact.

Denote E = El × Em, where l + m = , l, m are the same as in Remark . and define
B : E × E →R by

B
(
(u, v), (ϕ,ψ)

)
=

〈
Alu,Amψ

〉
+

〈
Alϕ,Amv

〉
.

Associated to B, we have the quadratic form

Q(z) :=


B(z, z) =

〈
Alu,Amv

〉
.

It is easy to see (one can refer to []) that the bounded self-adjoint operator L : E → E de-
fined by (Lz,η) := B(z,η) has exactly two eigenvalues + and –, and that the corresponding
eigenvalues E+ and E– are given by

E+ =
{(
u,A–mAlu

)
: u ∈ El} and E– =

{(
u, –A–mAlu

)
: u ∈ El},

where we use the notation A–m = (Am)–. Then E = E+ ⊕ E–. The spaces E+ and E– are
orthogonal with respect to the bilinear B, that is,

B
(
z+, z–

)
= , ∀z+ ∈ E+, z– ∈ E–.

Moreover, we have



∥∥z±∥∥

E =Q
(
z±)

=
∫

�

∣∣Alu
∣∣ dx,

if z± = (u,±(A–mAlu)). We see also that for z = (u, v), z = z+ + z– with z+ = ( (u+A
–lAmv)
 ,

(A–mAlu+v)
 ), z– = ( (u–A

–lAmuv)
 , (–A

–mAlu+v)
 ) and

〈
Alu,Amv

〉
=


B(z, z) =



〈Lz, z〉 = 


(∥∥z+∥∥

E –
∥∥z–∥∥

E

)
. (.)

From (.), Remark . and Proposition ., we can define the functionalH : E →R as

H(u, v) =
∫

∂�

F(x, v)dσ +
∫

∂�

G(x,u)dσ . (.)

http://www.boundaryvalueproblems.com/content/2013/1/159
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Lemma . The functionalH defined by (.) is of class C and its derivative is given by

H′(u, v)(ϕ,ψ) =
∫

∂�

f (x, v)ψ dσ +
∫

∂�

g(x,u)ϕ dσ .

Moreover,H′ is compact.

Proof From (.), Hölder’s inequality and Proposition ., we have

∣∣∣∣
∫

∂�

f (x, v)ψ dσ

∣∣∣∣ ≤
∫

∂�

∣∣f (x, v)ψ∣∣dσ

≤
∫

∂�

(
 + |v|p–)|ψ |dσ

≤ ‖v‖p–Lp(∂�)‖ψ‖Lp(∂�) + ‖ψ‖Lp(∂�)|∂�| p–p
≤ C

(‖v‖p–Em + 
)‖ψ‖Em .

Similarly, we have

∣∣∣∣
∫

∂�

g(x,u)ϕ dσ

∣∣∣∣ ≤ C
(‖u‖q–El + 

)‖ϕ‖El .

HenceH′ is well defined and bounded in E. A standard argument yields thatH is Fréchet
differentiable withH′ continuous. By Proposition . we know thatH′ is compact (see []
for the details). �

Now we define the functional � : E →R for (.) given by

�(z) =Q(z) –H(z). (.)

Moreover, � is class C(E,R).

Definition . We say that z = (u, v) ∈ E = El × Em is an (l,m)-weak solution of (.) if z
is a critical point of �. In other words, for every (ϕ,ψ) ∈ E, we have

〈
Alu,Amψ

〉
+

〈
Alϕ,Amv

〉
–

∫
∂�

f (x, v)ψ dσ –
∫

∂�

g(x,u)ϕ dσ = . (.)

Now we give a regularity result of an (l,m) weak solution.

Proposition . If (u, v) ∈ E is an (l,m)-weak solution of (.), then u ∈ W , p
p– (�), v ∈

W , q
q– (�) and

�u = u in �,
∂u
∂ν

= f (x, v) on ∂�, (.)

�v = v in �,
∂v
∂ν

= g(x,u) on ∂�. (.)

In other words, (u, v) is a strong solution of (.).

http://www.boundaryvalueproblems.com/content/2013/1/159
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Proof Although the proof is only needed to make some minor modifications as that of
Theorem . in [], for the readers’ convenience, we give its detailed proof.
Let us consider ϕ =  in (.), then

〈
Alu,Amψ

〉
–

∫
∂�

f (x, v)ψ =  (.)

for all ψ ∈ Em.
If we take ψ ∈H(�), then we have

〈
Alu,Amψ

〉
= 〈u,Aψ〉 =

∫
�

(–�ψ +ψ)udx +
∫

∂�

∂ψ

∂ν
udσ . (.)

On the other hand, by (.) and Proposition ., we have

∫
∂�

∣∣f (x, v)∣∣ p
p– dσ ≤

∫
∂�

(
 + |v|p–) p

p– dσ ≤ C
∫

∂�

(
 + |v|p)dσ

≤ C +C‖v‖pEm < +∞, (.)

i.e., f (x, v) ∈ L
p

p– (∂�). Then from basic elliptic theory (Theorem ., p., []) there exists
one function w ∈W , p

p– (�) such that

�w = w in �,
∂w
∂ν

= f (x, v) on ∂�.

Then we get

 =
∫

�

(–�w +w)ψ dx =
∫

�

(–�ψ +ψ)wdx +
∫

∂�

w
∂ψ

∂ν
dσ –

∫
∂�

f (x, v)ψ dσ . (.)

From (.), (.) and (.), we have

〈u –w,Aψ〉 =
∫

�

(u –w)(–�ψ +ψ)dx +
∫

∂�

(u –w)
∂ψ

∂ν
= ,

which implies that u = w. We have gotten that u ∈ W , p
p– (�). Finally, since u = w, we

conclude that u satisfies (.). We can make the same argument for v. �

3 The proof of our main result
In this section, we mainly want to prove Theorem .. First we present a linking theorem
from []. Thenwe prove that it can be applied to our functional setting stated in Section .
Suppose that f (x, t), g(x, t) satisfy the assumptions (H)-(H), then it is easy to see that

for any ε >  there is a Cε >  such that for (x, t) ∈ ∂� ×R
 we have

∣∣f (x, t)∣∣ ≤ ε|t| +Cε |t|p–,
∣∣g(x, t)∣∣ ≤ ε|t| +Cε |t|q– (.)

and

∣∣F(x, t)∣∣ ≤ ε|t| +Cε |t|p,
∣∣G(x, t)∣∣ ≤ ε|t| +Cε |t|q. (.)

http://www.boundaryvalueproblems.com/content/2013/1/159
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Since f (x, t) = g(x, t) =  when t ≤ , (u, v) = (, ) ∈ E is a solution of (.). So we are
interested in nontrivial and nonnegative solutions of (.).
Recall that {zn} ⊂ E is called a Palais-Smale sequence of a C functional I on E at level

c ((PS)c-sequence for short) if I(zn) → c and I ′(zn) →  in E∗ as n → ∞. If I(zn) → c and
( + ‖zn‖E)I ′(zn) →  in E∗ as n → ∞, then {zn} will be called a Cerami sequence at level c
((C)c-sequence for short). A standard way to prove the existence of a positive solution to
(.) is to get a (PS)c or (C)c sequence for � and then to prove that the sequence converges
to a solution to (.). In this paper, we want to get a (C)c sequence by a linking theorem
(Theorem ., in []). So, we need to recall some terminology (see, e.g., [, ]).
Let H– be a closed separable subspace of a Hilbert space H with the norm ‖ · ‖H and let

H+ := (H–)⊥. For u ∈H , we shall write u = u+ +u–, where u± ∈H±. OnH we define a new
norm

‖u‖τ :=max

{∥∥u+∥∥H ,
∞∑
k=


k

∣∣〈u–, ek 〉∣∣
}
,

where {ek} is a total orthonormal sequence inH–. The topology generated by ‖ · ‖τ will be
called the τ -topology. Recall from [] that a homotopy h = I – g : A× [, ] → H , where
A⊂H , is called admissible if:

(i) h is τ -continuous, i.e., h(un, sn) → h(u, s) in τ -topology as n→ ∞ whenever un → u
in τ -topology and sn → s as n→ ∞.

(ii) g is τ -locally finite-dimensional, i.e., for each (u, s) ∈ A× [, ], there is a
neighborhood U of (u, s) in the product topology of (E, τ ) and [, ] such that
g(U ∩ (A× [, ])) is contained in a finite-dimensional subspace of H .

Admissible maps are defined similarly. Recall also that admissible maps and homotopies
are necessarily continuous, and on bounded subsets of H the τ -topology coincides with
the product topology of H–

weak and H+
strong.

Let � ∈ C(H ,R), R > r >  and z ∈H+ \ {} and define

M =
{
z = z– + tz : ‖z‖ ≤ R, t ≥ 

}
, N =

{
z ∈H+ : ‖z‖ = r

}
and

� :=
{
h ∈ C

(
M × [, ],H

)|h is admissible,h(u, ) = u and

�
(
h(u, s)

) ≤ max
{
�(u), –

}
for all s ∈ [, ]

}
.

Proposition . (Theorem ., []) Let H = H+ ⊕ H– be a separable Hilbert space with
H– orthogonal to H+. Suppose that

(i) �(z) = 
 (‖z+‖ – ‖z–‖) –�(z), where � ∈ C(H ,R) is bounded below, weakly

sequentially lower semi-continuous and � ′ is weakly sequentially continuous.
(ii) There exist z ∈H+\{}, α > , and R > r >  such that �|N ≥ α and �|∂M ≤ .

Then there exists a (C)c-sequence for �, where

c := inf
h∈�

sup
u∈M

�
(
h(u, )

)
.

Moreover, c ≥ α.

http://www.boundaryvalueproblems.com/content/2013/1/159
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For fixed z ∈ E+\{} and R > r > , let

MR =
{
z = z– + ρz : z– ∈ E–,‖z‖E ≤ R,ρ ≥ 

}
, Nr =

{
z ∈ E+ : ‖z‖E = r

}
.

Lemma . There exist r >  and α >  such that �|Nr ≥ α.

Proof For any z ∈Nr , z = (u, v) ∈ E+, we know that v = A–mAlu or, equivalently, u = A–lAmv.
By (.) and Proposition ., we have

∣∣∣∣
∫

∂�

F(x, v)dσ +
∫

∂�

G(x,u)dσ

∣∣∣∣
≤

∫
∂�

(∣∣F(x, v)∣∣ + ∣∣G(x,u)∣∣)dσ

≤
∫

∂�

[(
ε|v| +Cε |v|p

)
+

(
ε|u| +Cε |uq

)]
dσ

≤ ε‖u‖El +Cε‖u‖pEl + ε‖v‖Em +Cε‖v‖qEm
≤ ε‖z‖E +Cε‖z‖pE + ε‖z‖E +Cε‖z‖qE .

Since p,q > , we have if ‖z‖E = r is small enough,

�(z) =
∫

�

AluAmvdx –
∫

∂�

F(x, v)dσ –
∫

∂�

G(x,u)dσ

≥ 

‖z‖E – ε‖z‖E –Cε‖z‖pE –Cε‖z‖qE ≥ α > 

for some α > . �

Lemma . For the r given by Lemma . and any z = (u, v) ∈ E+\{} with ‖z‖E = ,
there exists R > r such that �|∂MR ≤ , where MR = {z = z– + ρz : ‖z‖E ≤ R,ρ ≥ }.

Proof If z ∈ ∂MR, then z = z– + ρz with either : ‖z‖E = R, ρ ≥  or : ‖z‖E < R, ρ = .
(i) If ρ = , then we have z ∈ E–, z = (u, –A–mAlu) and

�(z) = –


∥∥z–∥∥

E –
∫

∂�

F(x, v) –
∫

∂�

G(x,u) ≤ ,

since F(x, t),G(x, t)≥  for any (x, t) ∈ ∂� ×R
.

(ii) Assume that ρ > . We argue by contradiction. Suppose that there exists a sequence
{zn} ∈ ∂Mn, zn = ρnz +z–n , ρn > , ‖z‖E = , ‖zn‖E = n such that�(zn) > . If zn = (un, vn) :=
(ρnu + ϕn,ρnv +ψn), then by the definitions of E+ and E–, we have

〈
Alun,Amvn

〉
=

∫
�

AlunAmvn dx

=
∫

�

Al(ρnu + ϕn)Am(ρnv +ψn)dx

=
∫

�

(
ρnAlu +Alϕn

)(
ρnAmv +Amψn

)
dx

http://www.boundaryvalueproblems.com/content/2013/1/159
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=
∫

�

(
ρ
n
∣∣Alu

∣∣ – ρnAluAlϕn + ρnAluAlϕn –
∣∣Amψn

∣∣)dx
=

ρ
n


‖z‖E –


∥∥z–n∥∥

E .

Hence,

�(zn) =


(
ρ
n‖z‖E –

∥∥z–n∥∥
E

)
–

∫
∂�

F(x, vn)dσ –
∫

∂�

G(x,un)dσ > .

Therefore,

�(zn)
‖zn‖E

=



(
ρ
n

‖zn‖E
‖z‖E –

‖z–n‖E
‖zn‖E

)
–

∫
∂�

F(x, vn) +G(x,un)
‖zn‖E

dσ > .

Denote δn := ρn
‖zn‖E , w

–
n :=

z–n
‖zn‖E = (ϕ̃n, ψ̃n). Then

�(zn)
‖zn‖E

=


(
δn –

∥∥w–
n
∥∥
E

)
–

∫
∂�

F(x, vn) +G(x,un)
‖zn‖E

dσ > . (.)

Since F(x, t),G(x, t)≥  for any (x, t) ∈ ∂� ×R
, by (.) we know that δn ≥ ‖w–

n‖E .
On the other hand, δn + ‖w–

n‖E = , which implies that δn → δ ≥  for some δ ≥  and
w–
n ⇀ w = (ϕ̃, ψ̃) ∈ E as n→ ∞, where ⇀ denotes the weak convergence in E.
If δ = , then from (.) we get

∥∥w–
n
∥∥ → ,

∫
∂�

F(x, vn)
‖zn‖E

dσ → ,
∫

∂�

G(x,un)
‖zn‖E

dσ → .

Therefore,

 = δn +
∥∥w–

n
∥∥
E → ,

which is impossible.
If δ > , since δn → δ >  and ‖zn‖E → +∞ as n → ∞, it follows that ρn → +∞. If

x ∈ ∂� is such that δu + ϕ̃ �= , we have

lim
n→+∞

ρnu + ϕn

‖zn‖E = δu + ϕ̃(x) �= ,

thus,

un = ρnu + ϕn → ∞, (.)

as n→ ∞.
Similarly, if δu(x) + ψ̃(x) �= , we have

vn = ρnv +ψn → ∞, (.)

as n→ ∞.
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Wang and Yang Boundary Value Problems 2013, 2013:159 Page 12 of 17
http://www.boundaryvalueproblems.com/content/2013/1/159

Since �(zn)
‖zn‖E

>  and F(x, t),G(x, t)≥ , we get

 <


(
δn –

∥∥w–
n
∥∥
E

)
–

∫
∂�

[
F(x, vn)

vn

(
vn

‖zn‖E
)

+
G(x,un)

un

(
un

‖zn‖E
)]

dσ

≤ 

(
δn –

∥∥w–
n
∥∥
E

)
–

∫
{δu+ψ̃ �=}

F(x, vn)
vn

(
vn

‖zn‖E
)

dσ

–
∫

{δu+ϕ̃ �=}
G(x,un)

un

(
un

‖zn‖E
)

dσ .

Note that

un
‖zn‖E =

ρnu + ϕn

‖zn‖E ⇀ δu + ϕ̃ in El

and

vn
‖zn‖E =

ρnv +ψn

‖zn‖E ⇀ δv + ψ̃ in Em,

as n→ +∞. Hence, by Proposition . we may assume, passing to a subsequence, that

un
‖zn‖E =

ρnu + ϕn

‖zn‖E → δu + ϕ̃,
vn

‖zn‖E =
ρnv +ψn

‖zn‖E → δv + ψ̃ a.e. in ∂�,

as n → +∞. By (.), (.) and (H), taking limit in (.), using Fatou’s lemma and the
fact that lim infn→∞ ‖w–

n‖E ≥ ‖w–‖E , we obtain

 ≤ 

(
δ –

∥∥w–∥∥
E

)
–

∫
{δv+ψ̃ �=}

(+∞)(δv + ψ̃) dσ –
∫

{δu+ϕ̃ �=}
(+∞)(δu + ϕ̃) dσ

→ –∞,

which is impossible, thus the lemma is proved. �

Lemma . If {zn} is a (C)c-sequence of �, then {zn} is bounded in E.

Proof Suppose that {zn} ⊂ E is a (C)c sequence for �, that is,

�(zn)→ c,
∥∥�′(zn)

∥∥
E∗

(
 + ‖zn‖E

) → ,

which shows that

c + o() = �(zn),
〈
�′(zn), zn

〉
= o(), (.)

where o() →  as n→ +∞.
We suppose, by contradiction, that

‖zn‖E → +∞, (.)

http://www.boundaryvalueproblems.com/content/2013/1/159
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and let wn = zn
‖zn‖ E := (w

n,w
n). Then wn ∈ E with

‖wn‖E = .

By Proposition ., {wn} contains a subsequence, denoted again by {wn} = {(w
n,w

n)} such
that we may assume that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w
n(x)⇀ w(x) in El, w

n(x)⇀ w(x) in Em;

w
n(x)→ w(x), w

n(x) → w(x) a.e. in ∂�;

w
n → w in Lα(∂�) ( ≤ α < (N–)

N–l );

w
n → w in Lβ (∂�) (≤ β < (N–m)

N–m ).

(.)

Let ∂��= = {x ∈ ∂�,w(x) �= (, )}. Then we have

lim
n→+∞wn(x) = lim

n→+∞
zn(x)
‖zn‖E = w(x) �= (, ) in ∂��=,

and (.) implies that

|zn| → +∞ a.e. in ∂��=.

We may assume, without loss of generality, that

|un| → +∞ a.e. in ∂��=. (.)

By (H), we see that

lim
n→+∞

G(x,un(x))
|un(x)| = +∞ a.e. in ∂��=.

This means that

lim
n→+∞

G(x,un(x))
|un(x)|

∣∣w
n(x)

∣∣ = +∞ a.e. in ∂��=. (.)

By (H), there is an N >  such that

G(x, s)
|s| >  (.)

for any x ∈ ∂� and s ∈ R
 with |s| ≥ N. Since G(x, s) is continuous on ∂� × [–N,N],

there is anM >  such that

∣∣G(x, s)∣∣ ≤ M, (.)

for (x, t) ∈ �̄ × [–N,N]. From (.) and (.), we see that there is a constant C, such
that for any (x, s) ∈ ∂� ×R

, we have

G(x, s)≥ C,

http://www.boundaryvalueproblems.com/content/2013/1/159
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which shows that

G(x,un(x)) –C
‖zn‖E

≥ .

This means that

G(x,un(x))
|un(x)|

∣∣w
n(x)

∣∣ – C
‖zn‖E

≥ . (.)

Since by (.) we have that

c + o() = �(zn) =
〈
Alun,Amvn

〉
–

∫
∂�

[
F(x, vn) +G(x,un)

]
dσ ,

which shows that

 ← c + o()
‖zn‖E

=
〈
Alw

n,A
mw

n
〉
–

∫
∂�

[F(x, vn) +G(x,un)]
‖zn‖E

dσ . (.)

Since F(x, t)≥ , we have



+ o() = o() +




∫
�

(∣∣Alw
n
∣∣ + ∣∣Amw

n
∣∣)dx ≥ o() +

〈
Alw

n,A
mw

n
〉

=
∫

∂�

[F(x, vn) +G(x,un)]
‖zn‖E

dσ

≥
∫

∂�

G(x,un)
‖zn‖E

dσ . (.)

We claim that |∂��=| = .
If |∂��=| �= , then by Fatou’s lemma, (H) and Hölder’s inequality, we get

+∞ = +∞|∂��=|

=
[∫

∂��=
lim inf
n→+∞

G(x,un(x))
|un(x)|

∣∣w
n(x)

∣∣ dσ –
∫

∂��=
lim sup
n→+∞

C
‖zn‖E

dσ

]

=
∫

∂��=
lim inf
n→+∞

(
G(x,un(x))
|un(x)|

∣∣w
n(x)

∣∣ – C
‖zn‖E

)
dσ

≤ lim inf
n→+∞

∫
∂��=

(
G(x,un(x))
|un(x)|

∣∣w
n(x)

∣∣ – C
‖zn‖E

)
dσ

≤ lim inf
n→+∞

∫
∂�

(
G(x,un(x))
|un(x)|

∣∣w
n(x)

∣∣ – C
‖zn‖E

)
dσ

= lim inf
n→+∞

∫
∂�

G(x,un(x))
‖un‖ dσ – lim

n→+∞

∫
∂�

C
‖zn‖E

dσ

= lim inf
n→+∞

∫
∂�

G(x,un(x))
‖zn‖E

dσ

≤ 

+ o(),

which is impossible.
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This shows that

|∂��=| = .

Hence w(x) = (, ) a.e. in ∂�.
Since �(tzn) is continuous in t ∈ [, ], there exists tn ∈ [, ] (n = , , . . .), such that

�(tnzn) = max
≤t≤

�(tzn).

As 〈�′(zn), zn〉 = o(), we see that

〈
�′(tnzn), tnzn

〉
= o().

By (H), then we get for t ∈ [, ] that

�(tzn) ≤ �(tnun)

= �(tnzn) –
〈
�′(tnzn), tnzn

〉
+ o()

=
∫

∂�

[(
tnvnf (x, tnvn) – F(x, tnvn)

)
+

(
tnung(x, tnun) – G(x, tnun)

)]
dσ + o()

≤
∫

∂�

[(
vnf (x, vn) – F(x, vn) +C,∗

)
+

(
ung(x,un) – G(x,un) +C,∗

)]
dσ + o()

= c + (C,∗ +C,∗)|∂�| + o(). (.)

On the other hand, taking t = R
‖zn‖E ∈ [, ] and zn = (un,un), by (.) then wn = (un ,un)

‖zn‖E :=
(θn, θn) ∈ E × E and θn →  in Lr(∂�) ( ≤ r < (N–)

N– ). From (.) and θn →  in Lr(∂�)
(≤ r < (N–)

N– ) as n→ ∞, we obtain

�(Rwn) = R – 
∫

∂�

[
F(x,Rθn) +G(x,Rθn)

]
dσ = R + o().

So we have

R + o() = �(Rwn) ≤ c + (C,∗ +C,∗)|∂�| + o().

Letting n → ∞, we get

R ≤ (C,∗ +C,∗)|∂�| + c.

Letting R → ∞, we get a contradiction. This proves that ‖zn‖E ≤ C < +∞ for some con-
stant C. �

Proof of Theorem . Under the assumptions (H)-(H), we know that the functional �

given by (.) is in C(E,R). By Lemma ., there exist r >  and α >  such that �|Nr ≥ α,
where Nr = {z ∈ E+ : ‖z‖E = r}. By Lemma ., for such an r, there exist R > r and suitable
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z ∈ E+\{} such that �|∂MR ≤ , where MR was given before Lemma .. Note that E =
E+ ⊕ E– and for z = (u, v) ∈ E, we have

�(z) =


∥∥z+∥∥

E –


∥∥z–∥∥

E –
∫

∂�

[
F(x, v) +G(x,u)

]
dσ .

Since from Proposition . and Remark . we know that E ⊂⊂ Lq(∂�) × Lp(∂�), from
(.) and Fatou’s lemma, we know that

H(z) =
∫

∂�

[
F(x, v) +G(x,u)

]
dσ

isC andH ≥  is weakly sequentially lower semicontinuous andH′ is weakly sequentially
continuous in E∗. Hence by Proposition . there exists a (C)c-sequence {zn} for �, where
c ≥ α > . By Lemma ., {zn} is bounded in E. So, up to a subsequence, we may assume
that zn ⇀ z �= (, ) in E, as n → ∞. From Lemma ., we know that H′ is compact. So it
is easy to check that �′(z) →  in E∗. Hence z is a nontrivial solution pair of (.). Obvi-
ously, z = (u, v) ∈ E is a nonnegative solution pair of (.). Applying the strong maximum
principle, we obtain that u >  and v > . This completes the proof. �
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