RESEARCH

Boundary Value Problems a SpringerOpen Journal

Open Access

Solutions and nonnegative solutions for a weighted variable exponent impulsive integro-differential system with multi-point and integral mixed boundary value problems

Rong Dong and Qihu Zhang*

*Correspondence: zhangqh1999@yahoo.com.cn; zhangqihu@yahoo.com Department of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China

Abstract

This paper investigates the existence of solutions for a weighted p(t)-Laplacian impulsive integro-differential system with multi-point and integral mixed boundary value problems via Leray-Schauder's degree; sufficient conditions for the existence of solutions are given. Moreover, we get the existence of nonnegative solutions. **MSC:** 34B37

Keywords: weighted p(t)-Laplacian; impulsive integro-differential system; Leray-Schauder's degree

1 Introduction

In this paper, we consider the existence of solutions and nonnegative solutions for the following weighted p(t)-Laplacian integro-differential system:

$$-\Delta_{p(t)}u + f(t, u, (w(t))^{\frac{1}{p(t)-1}}u', S(u), T(u)) = 0, \quad t \in (0,1), t \neq t_i,$$
(1)

where $u: [0,1] \to \mathbb{R}^N$, $f(\cdot, \cdot, \cdot, \cdot, \cdot): [0,1] \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$, $t_i \in (0,1)$, i = 1, ..., k, with the following impulsive boundary value conditions:

$$\lim_{t \to t_i^+} u(t) - \lim_{t \to t_i^-} u(t) = A_i \left(\lim_{t \to t_i^-} u(t), \lim_{t \to t_i^-} (w(t))^{\frac{1}{p(t)-1}} u'(t) \right), \quad i = 1, \dots, k,$$
(2)

 $\lim_{t \to t_i^+} w(t) |u'|^{p(t)-2} u'(t) - \lim_{t \to t_i^-} w(t) |u'|^{p(t)-2} u'(t)$

$$=B_{i}\left(\lim_{t\to t_{i}^{-}}u(t),\lim_{t\to t_{i}^{-}}(w(t))^{\frac{1}{p(t)-1}}u'(t)\right), \quad i=1,\ldots,k,$$
(3)

$$u(0) = \int_0^1 g(t)u(t) dt, \qquad u(1) = \sum_{\ell=1}^{m-2} \alpha_\ell u(\xi_\ell) - \int_0^1 h(t)u(t) dt, \tag{4}$$

where $p \in C([0,1], \mathbb{R})$ and p(t) > 1, $-\Delta_{p(t)}u := -(w(t)|u'|^{p(t)-2}u')'$ is called the weighted p(t)-Laplacian; $0 < t_1 < t_2 < \cdots < t_k < 1$, $0 < \xi_1 < \cdots < \xi_{m-2} < 1$; $\alpha_\ell \ge 0$ ($\ell = 1, \dots, m-2$); $g \in L^1[0,1]$ is nonnegative, $\int_0^1 g(t) dt = \sigma \in [0,1]$; $h \in L^1[0,1]$, $\int_0^1 h(t) dt = \delta$; $A_i, B_i \in C(\mathbb{R}^N \times \mathbb{R})$

© 2013 Dong and Zhang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 $\mathbb{R}^{N}, \mathbb{R}^{N}$; *T* and *S* are linear operators defined by $(Su)(t) = \int_{0}^{1} h_{*}(t,s)u(s) ds$, $(Tu)(t) = \int_{0}^{t} k_{*}(t,s)u(s) ds$, $t \in [0,1]$, where $k_{*}, h_{*} \in C([0,1] \times [0,1], \mathbb{R})$.

If $\sigma < 1$ and $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta \neq 1$, we say the problem is nonresonant, but if $\sigma = 1$ or $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta = 1$, we say the problem is resonant.

Throughout the paper, o(1) means functions which are uniformly convergent to 0 (as $n \to +\infty$); for any $v \in \mathbb{R}^N$, v^i will denote the *j*th component of *v*; the inner product in \mathbb{R}^N will be denoted by $\langle \cdot, \cdot \rangle$, $|\cdot|$ will denote the absolute value and the Euclidean norm on \mathbb{R}^N . Denote J = [0,1], $J' = (0,1) \setminus \{t_1, \ldots, t_k\}$, $J_0 = [t_0, t_1]$, $J_i = (t_i, t_{i+1}]$, $i = 1, \ldots, k$, where $t_0 = 0$, $t_{k+1} = 1$. Denote by J_i^o the interior of J_i , $i = 0, 1, \ldots, k$. Let

$$PC(J, \mathbb{R}^N) = \left\{ x: J \to \mathbb{R}^N \middle| \begin{array}{l} x \in C(J_i, \mathbb{R}^N), i = 0, 1, \dots, k \\ \text{and } \lim_{t \to t_i^+} x(t) \text{ exists for } i = 1, \dots, k \end{array} \right\}$$

 $w \in PC(J, \mathbb{R})$ satisfy $0 < w(t), \forall t \in (0, 1) \setminus \{t_1, \dots, t_k\}$, and $(w(t))^{\frac{-1}{p(t)-1}} \in L^1(0, 1)$,

$$PC^{1}(J, \mathbb{R}^{N}) = \left\{ x \in PC(J, \mathbb{R}^{N}) \middle| \begin{array}{l} x' \in C(J_{i}^{o}, \mathbb{R}^{N}), \lim_{t \to t_{i}^{+}} (w(t))^{\frac{1}{p(t)-1}} x'(t) \\ \text{and } \lim_{t \to t_{i+1}^{-}} (w(t))^{\frac{1}{p(t)-1}} x'(t) \text{ exists for } i = 0, 1, \dots, k \end{array} \right\}$$

For any $x = (x^1, ..., x^N) \in PC(J, \mathbb{R}^N)$, denote $|x^i|_0 = \sup\{|x^i(t)| \mid t \in J'\}$.

Obviously, $PC(J, \mathbb{R}^N)$ is a Banach space with the norm $||x||_0 = (\sum_{i=1}^N |x^i|_0^2)^{\frac{1}{2}}$, and $PC^1(J, \mathbb{R}^N)$ is a Banach space with the norm $||x||_1 = ||x||_0 + ||(w(t))^{\frac{1}{p(t)-1}}x'||_0$. Denote $L^1 = L^1(J, \mathbb{R}^N)$ with the norm

$$\|x\|_{L^{1}} = \left(\sum_{i=1}^{N} |x^{i}|_{L^{1}}^{2}\right)^{\frac{1}{2}}, \quad \forall x \in L^{1}, \text{ where } |x^{i}|_{L^{1}} = \int_{0}^{1} |x^{i}(t)| dt.$$

In the following, $PC(J, \mathbb{R}^N)$ and $PC^1(J, \mathbb{R}^N)$ will be simply denoted by PC and PC^1 , respectively. We denote

$$u(t_i^+) = \lim_{t \to t_i^+} u(t), \qquad u(t_i^-) = \lim_{t \to t_i^-} u(t),$$

$$w(0) |u'|^{p(0)-2} u'(0) = \lim_{t \to 0^+} w(t) |u'|^{p(t)-2} u'(t),$$

$$w(1) |u'|^{p(1)-2} u'(1) = \lim_{t \to 1^-} w(t) |u'|^{p(t)-2} u'(t),$$

$$A_i = A_i \Big(\lim_{t \to t_i^-} u(t), \lim_{t \to t_i^-} (w(t))^{\frac{1}{p(t)-1}} u'(t)\Big), \quad i = 1, \dots, k$$

$$B_i = B_i \Big(\lim_{t \to t_i^-} u(t), \lim_{t \to t_i^-} (w(t))^{\frac{1}{p(t)-1}} u'(t)\Big), \quad i = 1, \dots, k$$

The study of differential equations and variational problems with nonstandard p(t)growth conditions has attracted more and more interest in recent years (see [1–4]). The
applied background of these kinds of problems includes nonlinear elasticity theory [4],
electro-rheological fluids [1, 3], and image processing [2]. Many results have been obtained on these kinds of problems; see, for example, [5–15]. Recently, the applications of
variable exponent analysis in image restoration have attracted more and more attention

[16–19]. If $p(t) \equiv p$ (a constant), (1)-(4) becomes the well-known *p*-Laplacian problem. If p(t) is a general function, one can see easily $-\Delta_{p(t)}cu \neq c^{p(t)-1}(-\Delta_{p(t)}u)$ in general, but $-\Delta_p cu = c^{p-1}(-\Delta_p u)$, so $-\Delta_{p(t)}$ represents a non-homogeneity and possesses more non-linearity, thus $-\Delta_{p(t)}$ is more complicated than $-\Delta_p$. For example:

(a) If $\Omega \subset \mathbb{R}^N$ is a bounded domain, the Rayleigh quotient

$$\lambda_{p(x)} = \inf_{u \in W_0^{1,p(x)}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} dx}{\int_{\Omega} \frac{1}{p(x)} |u|^{p(x)} dx}$$

is zero in general, and only under some special conditions $\lambda_{p(x)} > 0$ (see [9]), when $\Omega \subset \mathbb{R}$ (N = 1) is an interval, the results show that $\lambda_{p(x)} > 0$ if and only if p(x) is monotone. But the property of $\lambda_p > 0$ is very important in the study of p-Laplacian problems, for example, in [20], the authors use this property to deal with the existence of solutions.

(b) If $w(t) \equiv 1$ and $p(t) \equiv p$ (a constant) and $-\Delta_p u > 0$, then u is concave, this property is used extensively in the study of one-dimensional p-Laplacian problems (see [21]), but it is invalid for $-\Delta_{p(t)}$. It is another difference between $-\Delta_p$ and $-\Delta_{p(t)}$.

In recent years, many results have been devoted to the existence of solutions for the Laplacian impulsive differential equation boundary value problems; see, for example, [22–29]. There are some methods to deal with these problems, for example, sub-super-solution method, fixed point theorem, monotone iterative method, coincidence degree. Because of the nonlinear property of $-\Delta_p$, results on the existence of solutions for *p*-Laplacian impulsive differential equation boundary value problems are rare (see [30–33]). In [34], using the coincidence degree method, the present author investigates the existence of solutions for *p*(*r*)-Laplacian impulsive differential equation with multi-point boundary value conditions, when the problem is nonresonant. Integral boundary conditions for evolution problems have various applications in chemical engineering, thermo-elasticity, underground water flow and population dynamics. There are many papers on the differential equations with integral boundary value problems; see, for example, [35–38].

In this paper, when p(t) is a general function, we investigate the existence of solutions and nonnegative solutions for the weighted p(t)-Laplacian impulsive integro-differential system with integral and multi-point boundary value conditions. Results on these kinds of problems are rare. Our results contain both of the cases of resonance and nonresonance. Our method is based upon Leray-Schauder's degree. The homotopy transformation used in [34] is unsuitable for this paper. Moreover, this paper will consider the existence of (1) with (2), (4) and the following impulsive condition:

$$\lim_{t \to t_i^+} (w(t))^{\frac{1}{p(t)-1}} u'(t) - \lim_{t \to t_i^-} (w(t))^{\frac{1}{p(t)-1}} u'(t)$$
$$= D_i \left(\lim_{t \to t_i^-} u(t), \lim_{t \to t_i^-} (w(t))^{\frac{1}{p(t)-1}} u'(t) \right), \quad i = 1, \dots, k,$$
(5)

where $D_i \in C(\mathbb{R}^N \times \mathbb{R}^N, \mathbb{R}^N)$, the impulsive condition (5) is called a linear impulsive condition (LI for short), and (3) is called a nonlinear impulsive condition (NLI for short). In general, *p*-Laplacian impulsive problems have two kinds of impulsive conditions, including LI and NLI; but Laplacian impulsive problems only have LI in general. It is another difference between *p*-Laplacian impulsive problems and Laplacian impulsive problems.

Moreover, since the Rayleigh quotient $\lambda_{p(x)} = 0$ in general and the p(t)-Laplacian is nonhomogeneity, when we deal with the existence of solutions of variable exponent impulsive problems like (1)-(4), we usually need the nonlinear term that satisfies the sub- $(p^- - 1)$ growth condition, but for the *p*-Laplacian impulsive problems, the nonlinear term only needs to satisfy the sub-(p - 1) growth condition.

Let $N \ge 1$, the function $f: J \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$ is assumed to be Caratheodory, by which we mean:

- (i) For almost every $t \in J$, the function $f(t, \cdot, \cdot, \cdot, \cdot)$ is continuous;
- (ii) For each $(x, y, s, z) \in \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N$, the function $f(\cdot, x, y, s, z)$ is measurable on J;
- (iii) For each R > 0, there is a $\alpha_R \in L^1(J, \mathbb{R})$ such that, for almost every $t \in J$ and every $(x, y, s, z) \in \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N$ with $|x| \le R$, $|y| \le R$, $|s| \le R$, $|z| \le R$, one has

$$\left|f(t, x, y, s, z)\right| \leq \alpha_R(t).$$

We say a function $u: J \to \mathbb{R}^N$ is a solution of (1) if $u \in PC^1$ with $w(t)|u'|^{p(t)-2}u'$ absolutely continuous on J_i^o , i = 0, 1, ..., k, which satisfies (1) a.e. on *J*.

In this paper, we always use C_i to denote positive constants, if it cannot lead to confusion. Denote

$$z^- = \inf_{t \in J} z(t),$$
 $z^+ = \sup_{t \in J} z(t)$ for any $z \in PC(J, \mathbb{R}).$

We say *f* satisfies the sub- $(p^- - 1)$ growth condition if *f* satisfies

$$\lim_{|u|+|v|+|s|+|z|\to+\infty} \frac{f(t, u, v, s, z)}{(|u|+|v|+|s|+|z|)^{q(t)-1}} = 0 \quad \text{for } t \in J \text{ uniformly,}$$

where $q(t) \in PC(J, \mathbb{R})$ and $1 < q^- \le q^+ < p^-$.

We will discuss the existence of solutions for system (1)-(4) or (1) with (2), (4) and (5) in the following three cases:

Case (i): $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta = 1$; Case (ii): $\sigma = 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta \neq 1$; Case (iii): $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta < 1$.

This paper is organized as five sections. In Section 2, we present some preliminaries and give the operator equation which has the same solutions of (1)-(4) in the three cases, respectively. In Section 3, we give the existence of solutions for system (1)-(4) or (1) with (2), (4) and (5) when $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta = 1$. In Section 4, we give the existence of solutions for system (1)-(4) or (1) with (2), (4) and (5) when $\sigma = 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta \neq 1$. Finally, in Section 5, we give the existence of solutions and nonnegative solutions for system (1)-(4) or (1) with (2), (4) and (5) when $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta < 1$.

2 Preliminary

For any $(t, x) \in J \times \mathbb{R}^N$, denote $\varphi(t, x) = |x|^{p(t)-2}x$. Obviously, φ has the following properties.

Lemma 2.1 (see [34]) φ *is a continuous function and satisfies:*

(i) For any $t \in [0,1]$, $\varphi(t, \cdot)$ is strictly monotone, i.e.,

$$\langle \varphi(t,x_1) - \varphi(t,x_2), x_1 - x_2 \rangle > 0$$
 for any $x_1, x_2 \in \mathbb{R}^N, x_1 \neq x_2$.

(ii) There exists a function $\alpha : [0, +\infty) \to [0, +\infty), \alpha(s) \to +\infty$ as $s \to +\infty$ such that

$$\langle \varphi(t,x),x\rangle \geq \alpha(|x|)|x| \quad for \ all \ x \in \mathbb{R}^N.$$

It is well known that $\varphi(t, \cdot)$ is a homeomorphism from \mathbb{R}^N to \mathbb{R}^N for any fixed $t \in J$. Denote

$$\varphi^{-1}(t,x)=|x|^{\frac{2-p(t)}{p(t)-1}}x\quad\text{for }x\in\mathbb{R}^N\backslash\{0\},\varphi^{-1}(t,0)=0,\forall t\in J.$$

It is clear that $\varphi^{-1}(t, \cdot)$ is continuous and sends bounded sets to bounded sets.

In this section, we will do some preparation and give the operator equation which has the same solutions of (1)-(4) in three cases, respectively. At first, let us now consider the following simple impulsive problem with boundary value condition (4):

$$\{ w(t)\varphi(t,u'(t)) \}' = f(t), \quad t \in (0,1), t \neq t_i, \\ \lim_{t \to t_i^+} u(t) - \lim_{t \to t_i^-} u(t) = a_i, \quad i = 1, \dots, k, \\ \lim_{t \to t_i^+} w(t)|u'|^{p(t)-2}u'(t) - \lim_{t \to t_i^-} w(t)|u'|^{p(t)-2}u'(t) = b_i, \quad i = 1, \dots, k, \\ \}$$

$$\{ (6)$$

where $a_i, b_i \in \mathbb{R}^N$; $f \in L^1$.

Denote $a = (a_1, \ldots, a_k), b = (b_1, \ldots, b_k)$. Obviously, $a, b \in \mathbb{R}^{kN}$.

We will discuss it in three cases, respectively.

2.1 Case (i)

Suppose that $\sigma < 1$ and $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta = 1$. If *u* is a solution of (6) with (4), we have

$$w(t)\varphi(t,u'(t)) = w(0)\varphi(0,u'(0)) + \sum_{t_i < t} b_i + \int_0^t f(s) \, ds, \quad \forall t \in J'.$$
(7)

Denote $\rho_1 = w(0)\varphi(0, u'(0))$. It is easy to see that ρ_1 is dependent on a, b and $f(\cdot)$. Define the operator $F : L^1 \to PC$ as

$$F(f)(t) = \int_0^t f(s) \, ds, \quad \forall t \in J, \forall f \in L^1.$$

By solving for u' in (7) and integrating, we find

$$u(t) = u(0) + \sum_{t_i < t} a_i + F\left\{\varphi^{-1}\left[t, \left(w(t)\right)^{-1}\left(\rho_1 + \sum_{t_i < t} b_i + F(f)(t)\right)\right]\right\}(t), \quad \forall t \in J,$$

which together with boundary value condition (4) implies

$$u(0) = \frac{1}{(1-\sigma)} \int_0^1 g(t) \left(F\left\{ \varphi^{-1} \left[t, \left(w(t) \right)^{-1} \left(\rho_1 + \sum_{t_i < t} b_i + F(f)(t) \right) \right] \right\}(t) + \sum_{t_i < t} a_i \right) dt,$$

and

$$\begin{split} &\sum_{\ell=1}^{m-2} \alpha_{\ell} \left\{ \sum_{t_{i} < \xi_{\ell}} a_{i} + \int_{0}^{\xi_{\ell}} \varphi^{-1} \bigg[t, (w(t))^{-1} \bigg(\rho_{1} + \sum_{t_{i} < t} b_{i} + F(f)(t) \bigg) \bigg] dt \right\} \\ &- \sum_{i=1}^{k} a_{i} - \int_{0}^{1} \varphi^{-1} \bigg[t, (w(t))^{-1} \bigg(\rho_{1} + \sum_{t_{i} < t} b_{i} + F(f)(t) \bigg) \bigg] dt \\ &- \int_{0}^{1} h(t) \bigg(F \bigg\{ \varphi^{-1} \bigg[t, (w(t))^{-1} \bigg(\rho_{1} + \sum_{t_{i} < t} b_{i} + F(f)(t) \bigg) \bigg] \bigg\} (t) + \sum_{t_{i} < t} a_{i} \bigg) dt = 0. \end{split}$$

Denote $W = \mathbb{R}^{2kN} \times L^1$ with the norm

$$\|\omega\| = \sum_{i=1}^k |a_i| + \sum_{i=1}^k |b_i| + \|\vartheta\|_{L^1}, \quad \forall \omega = (a,b,\vartheta) \in W,$$

then W is a Banach space.

For any $\omega \in W$, we denote

$$\begin{split} \Lambda_{\omega}(\rho_{1}) &= \sum_{\ell=1}^{m-2} \alpha_{\ell} \left\{ \sum_{t_{i} < \xi_{\ell}} a_{i} + \int_{0}^{\xi_{\ell}} \varphi^{-1} \bigg[t, \big(w(t) \big)^{-1} \bigg(\rho_{1} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t) \bigg) \bigg] dt \right\} \\ &- \sum_{i=1}^{k} a_{i} - \int_{0}^{1} \varphi^{-1} \bigg[t, \big(w(t) \big)^{-1} \bigg(\rho_{1} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t) \bigg) \bigg] dt \\ &- \int_{0}^{1} h(t) \bigg(F \bigg\{ \varphi^{-1} \bigg[t, \big(w(t) \big)^{-1} \bigg(\rho_{1} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t) \bigg) \bigg] \bigg\} (t) + \sum_{t_{i} < t} a_{i} \bigg) dt. \end{split}$$

Denote $\xi_{m-1} = 1$. Then

$$\begin{split} \Lambda_{\omega}(\rho_{1}) &= -\sum_{\ell=1}^{m-2} \alpha_{\ell} \left\{ \sum_{\xi_{\ell} \leq t_{i}} a_{i} + \int_{\xi_{\ell}}^{1} \varphi^{-1} \Big[t, (w(t))^{-1} \Big(\rho_{1} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t) \Big) \Big] dt \right\} \\ &+ \int_{0}^{1} h(t) \Big(\int_{t}^{1} \varphi^{-1} \Big[t, (w(t))^{-1} \Big(\rho_{1} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t) \Big) \Big] dt + \sum_{t_{i} \geq t} a_{i} \Big) dt \\ &= -\sum_{\ell=1}^{m-2} \Big(\alpha_{\ell} - \int_{\xi_{\ell}}^{\xi_{\ell+1}} h(t) dt \Big) \int_{\xi_{\ell}}^{1} \varphi^{-1} \Big[t, (w(t))^{-1} \Big(\rho_{1} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t) \Big) \Big] dt \\ &- \sum_{\ell=1}^{m-2} \int_{\xi_{\ell}}^{\xi_{\ell+1}} h(t) \int_{\xi_{\ell}}^{t} \varphi^{-1} \Big[s, (w(s))^{-1} \Big(\rho_{1} + \sum_{s_{i} < s} b_{i} + F(\vartheta)(s) \Big) \Big] ds dt \\ &+ \int_{0}^{\xi_{1}} h(t) \int_{t}^{1} \varphi^{-1} \Big[s, (w(s))^{-1} \Big(\rho_{1} + \sum_{s_{i} < s} b_{i} + F(\vartheta)(s) \Big) \Big] ds dt \\ &- \sum_{\ell=1}^{m-2} \alpha_{\ell} \sum_{\xi_{\ell} \leq t_{i}} a_{i} + \int_{0}^{1} h(t) \sum_{t_{i} \geq t} a_{i} dt. \end{split}$$

Throughout the paper, we denote

$$\begin{split} E &= \int_{0}^{\xi_{1}} \left| h(t) \right| \int_{t}^{1} \left(w(s) \right)^{\frac{-1}{p(s)-1}} ds \, dt + \sum_{\ell=1}^{m-2} \int_{\xi_{\ell}}^{\xi_{\ell+1}} h(t) \int_{\xi_{\ell}}^{t} \left(w(s) \right)^{\frac{-1}{p(s)-1}} ds \, dt \\ &+ \sum_{\ell=1}^{m-2} \left(\alpha_{\ell} - \int_{\xi_{\ell}}^{\xi_{\ell+1}} h(t) \, dt \right) \int_{\xi_{\ell}}^{1} \left(w(s) \right)^{\frac{-1}{p(s)-1}} ds, \\ \delta^{*} &= \sum_{\ell=1}^{m-2} \alpha_{\ell} + \int_{0}^{1} \left| h(t) \right| dt. \end{split}$$

Lemma 2.2 Suppose that $h(t) \ge 0$ on $[\xi_1, 1]$, $\alpha_\ell \ge \int_{\xi_\ell}^{\xi_{\ell+1}} h(t) dt$ ($\ell = 1, ..., m-2$) and $h(t) \le 0$ on $[0, \xi_1]$. Then the function $\Lambda_{\omega}(\cdot)$ has the following properties:

(i) For any fixed $\omega \in W$, the equation

$$\Lambda_{\omega}(\rho_1) = 0 \tag{8}$$

has a unique solution $\widetilde{\rho_1}(\omega) \in \mathbb{R}^N$.

(ii) The function ρ₁: W → ℝ^N, defined in (i), is continuous and sends bounded sets to bounded sets. Moreover, for any ω = (a, b, ϑ) ∈ W, we have

$$\left|\widetilde{\rho_{1}}(\omega)\right| \leq 3N \left[(2N)^{p^{+}} \left(\delta^{*} \frac{E+1}{E} \sum_{i=1}^{k} |a_{i}| \right)^{p^{\#}-1} + \sum_{i=1}^{k} |b_{i}| + \|\vartheta\|_{L^{1}} \right],$$

where the notation $M^{p^{\#}-1}$ means

$$M^{p^{\#}-1} = \begin{cases} M^{p^{+}-1}, & M > 1, \\ M^{p^{-}-1}, & M \le 1. \end{cases}$$

Proof (i) From Lemma 2.1, it is immediate that

$$\langle \Lambda_{\omega}(x_1) - \Lambda_{\omega}(x_2), x_1 - x_2 \rangle < 0 \quad \text{for } x_1 \neq x_2, \forall x_1, x_2 \in \mathbb{R}^N,$$

and hence, if (8) has a solution, then it is unique.

Set $R_0 = 3N[(2N)^{p^+} (\delta^* \frac{E+1}{E} \sum_{i=1}^k |a_i|)^{p^\# - 1} + \sum_{i=1}^k |b_i| + \|\vartheta\|_{L^1}].$

Suppose that $|\rho_1| > R_0$, it is easy to see that there exists some $j_0 \in \{1, ..., N\}$ such that the absolute value of the j_0 th component $\rho_1^{j_0}$ of ρ_1 satisfies

$$\left|\rho_{1}^{j_{0}}\right| \geq \frac{|\rho_{1}|}{N} > 3\left[(2N)^{p^{+}} \left(\delta^{*}\frac{E+1}{E}\sum_{i=1}^{k}|a_{i}|\right)^{p^{\#}-1} + \sum_{i=1}^{k}|b_{i}| + \|\vartheta\|_{L^{1}}\right].$$

Thus the j_0 th component of $\rho_1 + \sum_{t_i < t} b_i + F(\vartheta)(t)$ keeps sign on J, namely, for any $t \in J$, we have

$$\left| \left(\rho_1^{j_0} + \sum_{t_i < t} b_i^{j_0} + F(\vartheta)^{j_0}(t) \right) \right| \ge \frac{2|\rho_1|}{3N} > (2N)^{p^+} \left(\delta^* \frac{E+1}{E} \sum_{i=1}^k |a_i| \right)^{p^*-1} + \sum_{i=1}^k |b_i| + \|\vartheta\|_{L^1}$$

Obviously, we have

$$\left| \left(\rho_1 + \sum_{t_i < t} b_i + F(\vartheta)(t) \right) \right| \leq \frac{4|\rho_1|}{3} \leq 2N \left| \left(\rho_1^{j_0} + \sum_{t_i < t} b_i^{j_0} + F(\vartheta)^{j_0}(t) \right) \right|,$$

then it is easy to see that the j_0 th component of $\Lambda_{\omega}(\rho_1)$ keeps the same sign of $\rho_1^{j_0}$. Thus,

$$\Lambda_{\omega}(\rho_1) \neq 0.$$

Let us consider the equation

$$\lambda \Lambda_{\omega}(\rho_1) + (1 - \lambda)\rho_1 = 0, \quad \lambda \in [0, 1].$$
(9)

According to the preceding discussion, all the solutions of (9) belong to $b(R_0 + 1) = \{x \in \mathbb{R}^N \mid |x| < R_0 + 1\}$. Therefore

$$d_B[\Lambda_{\omega}(\rho_1), b(R_0+1), 0] = d_B[I, b(R_0+1), 0] \neq 0,$$

it means the existence of solutions of $\Lambda_{\omega}(\rho_1) = 0$.

In this way, we define a function $\widetilde{\rho}_1(\omega) : W \to \mathbb{R}^N$, which satisfies $\Lambda_{\omega}(\widetilde{\rho}_1(\omega)) = 0$.

(ii) By the proof of (i), we also obtain $\widetilde{\rho_1}$ sends bounded sets to bounded sets, and

$$\left|\widetilde{\rho_{1}}(\omega)\right| \leq 3N \left[(2N)^{p^{+}} \left(\delta^{*} \frac{E+1}{E} \sum_{i=1}^{k} |a_{i}| \right)^{p^{\#}-1} + \sum_{i=1}^{k} |b_{i}| + \|\vartheta\|_{L^{1}} \right].$$

It only remains to prove the continuity of $\tilde{\rho_1}$. Let $\{\omega_n\}$ be a convergent sequence in Wand $\omega_n \to \omega$, as $n \to +\infty$. Since $\{\tilde{\rho_1}(\omega_n)\}$ is a bounded sequence, it contains a convergent subsequence $\{\tilde{\rho_1}(\omega_{n_j})\}$. Suppose that $\tilde{\rho_1}(\omega_{n_j}) \to \rho_0$ as $j \to +\infty$. Since $\Lambda_{\omega_{n_j}}(\tilde{\rho_1}(\omega_{n_j})) = 0$, letting $j \to +\infty$, we have $\Lambda_{\omega}(\rho_0) = 0$, which together with (i) implies $\rho_0 = \tilde{\rho_1}(\omega)$, it means $\tilde{\rho_1}$ is continuous. This completes the proof.

Now we denote by $N_f(u) : [0,1] \times PC^1 \to L^1$ the Nemytskii operator associated to f defined by

$$N_f(u)(t) = f(t, u(t), (w(t)))^{\frac{1}{p(t)-1}} u'(t), S(u), T(u)) \quad \text{on } J.$$
(10)

We define $\rho_1 : PC^1 \to \mathbb{R}^N$ as

$$\rho_1(u) = \widetilde{\rho_1}(A, B, N_f)(u), \tag{11}$$

where $A = (A_1, ..., A_k), B = (B_1, ..., B_k).$

It is clear that $\rho_1(\cdot)$ is continuous and sends bounded sets of PC^1 to bounded sets of \mathbb{R}^N , and hence it is compact continuous.

If u is a solution of (6) with (4), we have

$$u(t) = u(0) + \sum_{t_i < t} a_i + F\left\{\varphi^{-1}\left[t, (w(t))^{-1}\left(\widetilde{\rho_1}(\omega) + \sum_{t_i < t} b_i + F(f)(t)\right)\right]\right\}(t), \quad \forall t \in [0, 1].$$

For fixed $a, b \in \mathbb{R}^{kN}$, we denote $K_{(a,b)} : L^1 \to PC^1$ as

$$K_{(a,b)}(\vartheta)(t) = F\left\{\varphi^{-1}\left[t, \left(w(t)\right)^{-1}\left(\widetilde{\rho_1}(a,b,\vartheta) + \sum_{t_i < t} b_i + F(\vartheta)(t)\right)\right]\right\}(t), \quad \forall t \in J.$$

Define $K_1: PC^1 \to PC^1$ as

$$K_{1}(u)(t) = F\left\{\varphi^{-1}\left[t, (w(t))^{-1}\left(\rho_{1}(u) + \sum_{t_{i} < t} B_{i} + F(N_{f}(u))(t)\right)\right]\right\}(t), \quad \forall t \in J.$$

Lemma 2.3 (i) The operator $K_{(a,b)}$ is continuous and sends equi-integrable sets in L^1 to relatively compact sets in PC^1 .

(ii) The operator K_1 is continuous and sends bounded sets in PC^1 to relatively compact sets in PC^1 .

Proof (i) It is easy to check that $K_{(a,b)}(\vartheta)(\cdot) \in PC^1$, $\forall \vartheta \in L^1$, $\forall a, b \in \mathbb{R}^{kN}$. Since $(w(t))^{\frac{-1}{p(t)-1}} \in L^1$ and

$$K_{(a,b)}(\vartheta)'(t) = \varphi^{-1}\left[t, \left(w(t)\right)^{-1}\left(\widetilde{\rho_1}(a,b,\vartheta) + \sum_{t_i < t} b_i + F(\vartheta)\right)\right], \quad \forall t \in [0,1],$$

it is easy to check that $K_{(a,b)}(\cdot)$ is a continuous operator from L^1 to PC^1 .

Let now *U* be an equi-integrable set in L^1 , then there exists $\alpha \in L^1$ such that

 $|u(t)| \le \alpha(t)$ a.e. in *J* for any $u \in L^1$.

We want to show that $\overline{K_{(a,b)}(U)} \subset PC^1$ is a compact set.

Let $\{u_n\}$ be a sequence in $K_{(a,b)}(U)$, then there exists a sequence $\{\vartheta_n\} \in U$ such that $u_n = K_{(a,b)}(\vartheta_n)$. For any $t_1, t_2 \in J$, we have

$$\left|F(\vartheta_n)(t_1)-F(\vartheta_n)(t_2)\right|=\left|\int_0^{t_1}\vartheta_n(t)\,dt-\int_0^{t_2}\vartheta_n(t)\,dt\right|=\left|\int_{t_1}^{t_2}\vartheta_n(t)\,dt\right|\leq \left|\int_{t_1}^{t_2}\alpha(t)\,dt\right|.$$

Hence the sequence $\{F(\vartheta_n)\}$ is uniformly bounded and equi-continuous. By the Ascoli-Arzela theorem, there exists a subsequence of $\{F(\vartheta_n)\}$ (which we rename the same) which is convergent in *PC*. According to the bounded continuity of the operator $\tilde{\rho_1}$, we can choose a subsequence of $\{\tilde{\rho_1}(a, b, \vartheta_n) + F(\vartheta_n)\}$ (which we still denote $\{\tilde{\rho_1}(a, b, \vartheta_n) + F(\vartheta_n)\}$) which is convergent in *PC*, then $w(t)^{\frac{1}{p(t)-1}} K_{(a,b)}(\vartheta_n)'(t) = \varphi^{-1}(t, \tilde{\rho_1}(a, b, \vartheta_n) + \sum_{t_i < t} b_i + F(\vartheta_n))$) is convergent in *PC*.

Since

$$K_{(a,b)}(\vartheta_n)(t) = F\left\{\varphi^{-1}\left[t, \left(w(t)\right)^{-1}\left(\widetilde{\rho_1}(a,b,\vartheta_n) + \sum_{t_i < t} b_i + F(\vartheta_n)\right)\right]\right\}(t), \quad \forall t \in [0,1],$$

it follows from the continuity of φ^{-1} and the integrability of $w(t)^{\frac{-1}{p(t)-1}}$ in L^1 that $K_{(a,b)}(\vartheta_n)$ is convergent in *PC*. Thus $\{u_n\}$ is convergent in *PC*¹.

(ii) It is easy to see from (i) and Lemma 2.2.

This completes the proof.

Let us define $P_1: PC^1 \to PC^1$ as

$$P_1(u) = \frac{\int_0^1 g(t) [K_1(u)(t) + \sum_{t_i < t} A_i] dt}{1 - \sigma}.$$

It is easy to see that P_1 is compact continuous.

Lemma 2.4 Suppose that $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta = 1$; $h(t) \ge 0$ on $[\xi_1, 1]$, $\alpha_{\ell} \ge \int_{\xi_{\ell}}^{\xi_{\ell+1}} h(t) dt$ ($\ell = 1, ..., m-2$) and $h(t) \le 0$ on $[0, \xi_1]$. Then u is a solution of (1)-(4) if and only if u is a solution of the following abstract operator equation:

$$u = P_1(u) + \sum_{t_i < t} A_i + K_1(u).$$
(12)

Proof Suppose that u is a solution of (1)-(4). By integrating (1) from 0 to t, we find that

$$w(t)\varphi(t,u'(t)) = \rho_1(u) + \sum_{t_i < t} B_i + F(N_f(u))(t), \quad \forall t \in (0,1), t \neq t_1, \dots, t_k.$$
(13)

It follows from (13) and (4) that

$$u(t) = u(0) + \sum_{t_i < t} A_i + F \left\{ \varphi^{-1} \left[t, \left(w(t) \right)^{-1} \left(\rho_1(u) + \sum_{t_i < t} B_i + F \left(N_f(u) \right) \right) \right] \right\}(t), \quad \forall t \in [0, 1], u(0) = \frac{1}{(1 - \sigma)} \times \int_0^1 g(t) \left(F \left\{ \varphi^{-1} \left[t, \left(w(t) \right)^{-1} \left(\rho_1(u) + \sum_{t_i < t} B_i + F \left(N_f(u) \right) \right) \right] \right\}(t) + \sum_{t_i < t} A_i \right) dt = \frac{\int_0^1 g(t) [K_1(u)(t) + \sum_{t_i < t} A_i] dt}{1 - \sigma} = P_1(u).$$
(14)

Combining the definition of ρ_1 , we can see

$$u = P_1(u) + \sum_{t_i < t} A_i + K_1(u).$$

Conversely, if u is a solution of (12), then (2) is satisfied. It is easy to check that

$$u(0) = P_{1}(u) = \frac{\int_{0}^{1} g(t) [K_{1}(u)(t) + \sum_{t_{i} < t} A_{i}] dt}{1 - \sigma},$$

$$u(0) = \sigma u(0) + \int_{0}^{1} g(t) \bigg[K_{1}(u)(t) + \sum_{t_{i} < t} A_{i} \bigg] dt = \int_{0}^{1} g(t)u(t) dt,$$
 (15)

and

$$u(1) = P_1(u) + \sum_{i=1}^k A_i + K_1(u)(1).$$

By the condition of the mapping ρ_1 , we have

$$\begin{split} &\sum_{\ell=1}^{m-2} \alpha_{\ell} \left\{ \sum_{t_{i} < \xi_{\ell}} A_{i} + \int_{0}^{\xi_{\ell}} \varphi^{-1} \bigg[t, (w(t))^{-1} \bigg(\rho_{1} + \sum_{t_{i} < t} B_{i} + F(N_{f}(u))(t) \bigg) \bigg] dt \right\} \\ &- \sum_{i=1}^{k} A_{i} - \int_{0}^{1} \varphi^{-1} \bigg[t, (w(t))^{-1} \bigg(\rho_{1} + \sum_{t_{i} < t} B_{i} + F(N_{f}(u))(t) \bigg) \bigg] dt \\ &- \int_{0}^{1} h(t) \bigg(F \bigg\{ \varphi^{-1} \bigg[t, (w(t))^{-1} \bigg(\rho_{1} + \sum_{t_{i} < t} B_{i} + F(N_{f}(u))(t) \bigg) \bigg] \bigg\} (t) + \sum_{t_{i} < t} A_{i} \bigg) dt = 0. \end{split}$$

Thus

$$u(1) = \sum_{\ell=1}^{m-2} \alpha_{\ell} u(\xi_{\ell}) - \int_{0}^{1} h(t)u(t) dt.$$
(16)

It follows from (15) and (16) that (4) is satisfied. From (12), we have

$$w(t)\varphi(t, u'(t)) = \rho_1(u) + \sum_{t_i < t} B_i + F(N_f(u))(t), \quad t \in (0, 1), t \neq t_i,$$
(17)
$$(w(t)\varphi(t, u'))' = N_f(u)(t), \quad t \in (0, 1), t \neq t_i.$$

It follows from (17) that (3) is satisfied.

Hence u is a solution of (1)-(4). This completes the proof.

2.2 Case (ii)

Suppose that $\sigma = 1$ and $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta \neq 1$. If *u* is a solution of (6) with (4), we have

$$w(t)\varphi(t,u'(t)) = w(0)\varphi(0,u'(0)) + \sum_{t_i < t} b_i + \int_0^t f(s) \, ds, \quad \forall t \in J'.$$

Denote $\rho_2 = w(0)\varphi(0, u'(0))$. It is easy to see that ρ_2 is dependent on a, b and $f(\cdot)$. Boundary value condition (4) implies that

$$\begin{split} &\int_{0}^{1}g(t)\bigg(F\bigg\{\varphi^{-1}\bigg[t,\big(w(t)\big)^{-1}\bigg(\rho_{2}+\sum_{t_{i}$$

For any $\omega \in W$, we denote

$$\Gamma_{\omega}(\rho_2) = \int_0^1 g(t) \left(F\left\{ \varphi^{-1} \left[t, \left(w(t) \right)^{-1} \left(\rho_2 + \sum_{t_i < t} b_i + F(\vartheta)(t) \right) \right] \right\}(t) + \sum_{t_i < t} a_i \right) dt.$$

Throughout the paper, we denote $E_1 = \int_0^1 (w(t))^{\frac{-1}{p(t)-1}} dt$.

Lemma 2.5 The function $\Gamma_{\omega}(\cdot)$ has the following properties:

- (i) For any fixed $\omega \in W$, the equation $\Gamma_{\omega}(\rho_2) = 0$ has a unique solution $\widetilde{\rho_2}(\omega) \in \mathbb{R}^N$.
- (ii) The function ρ₂: W → ℝ^N, defined in (i), is continuous and sends bounded sets to bounded sets. Moreover, for any ω = (a, b, ϑ) ∈ W, we have

$$\left|\widetilde{\rho_{2}}(\omega)\right| \leq 3N \left[(2N)^{p^{+}} \left(\frac{E_{1}+1}{E_{1}} \sum_{i=1}^{k} |a_{i}| \right)^{p^{\#}-1} + \sum_{i=1}^{k} |b_{i}| + \|\vartheta\|_{L^{1}} \right],$$

where the notation $M^{p^{\#}-1}$ means

$$M^{p^{\#}-1} = \begin{cases} M^{p^{+}-1}, & M > 1, \\ M^{p^{-}-1}, & M \le 1. \end{cases}$$

Proof Similar to the proof of Lemma 2.2, we omit it here.

We define $\rho_2 : PC^1 \to \mathbb{R}^N$ as $\rho_2(u) = \widetilde{\rho_2}(A, B, N_f)(u)$, where $A = (A_1, \dots, A_k)$, $B = (B_1, \dots, B_k)$.

It is clear that $\rho_2(\cdot)$ is continuous and sends bounded sets of PC^1 to bounded sets of \mathbb{R}^N , and hence it is compact continuous.

For fixed $a, b \in \mathbb{R}^{kN}$, we denote $K^*_{(a,b)} : L^1 \to PC^1$ as

$$K^*_{(a,b)}(\vartheta)(t) = F\left\{\varphi^{-1}\left[t, \left(w(t)\right)^{-1}\left(\widetilde{\rho_2}(a,b,\vartheta) + \sum_{t_i < t} b_i + F(\vartheta)(t)\right)\right]\right\}(t), \quad \forall t \in J.$$

Define $K_2: PC^1 \to PC^1$ as

$$K_{2}(u)(t) = F\left\{\varphi^{-1}\left[t, (w(t))^{-1}\left(\rho_{2}(u) + \sum_{t_{i} < t} B_{i} + F(N_{f}(u))(t)\right)\right]\right\}(t), \quad \forall t \in J.$$

Similar to the proof of Lemma 2.3, we have the following.

Lemma 2.6 (i) The operator $K^*_{(a,b)}$ is continuous and sends equi-integrable sets in L^1 to relatively compact sets in PC^1 .

(ii) The operator K_2 is continuous and sends bounded sets in PC^1 to relatively compact sets in PC^1 .

Let us define $P_2 : PC^1 \to PC^1$ *as*

$$P_{2}(u) = \frac{\sum_{\ell=1}^{m-2} \alpha_{\ell} [\sum_{t_{i} < \xi_{\ell}} A_{i} + K_{2}(u)(\xi_{\ell})] - \sum_{i=1}^{k} A_{i}}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta} - \frac{K_{2}(u)(1) + \int_{0}^{1} h(t) [K_{2}(u)(t) + \sum_{t_{i} < t} A_{i}] dt}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta}.$$

It is easy to see that P_2 is compact continuous.

Lemma 2.7 Suppose that $\sigma = 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta \neq 1$, then *u* is a solution of (1)-(4) if and only if *u* is a solution of the following abstract operator equation:

$$u = P_2(u) + \sum_{t_i < t} A_i + K_2(u)$$

Proof Similar to the proof of Lemma 2.4, we omit it here.

2.3 Case (iii)

Suppose that $\sigma < 1$ and $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta < 1$. If *u* is a solution of (6) with (4), we have

$$w(t)\varphi(t,u'(t)) = w(0)\varphi(0,u'(0)) + \sum_{t_i < t} b_i + \int_0^t f(s) \, ds, \quad \forall t \in J'.$$

Denote $\rho_3 = w(0)\varphi(0, u'(0))$. It is easy to see that ρ_3 is dependent on a, b and $f(\cdot)$. From $u(0) = \int_0^1 g(t)u(t) dt$, we have

$$u(0) = \frac{1}{(1-\sigma)} \times \int_0^1 g(t) \left(F\left\{ \varphi^{-1} \left[t, \left(w(t) \right)^{-1} \left(\rho_3 + \sum_{t_i < t} b_i + F(f)(t) \right) \right] \right\}(t) + \sum_{t_i < t} a_i \right) dt.$$
(18)

From $u(1) = \sum_{\ell=1}^{m-2} \alpha_{\ell} u(\xi_{\ell}) - \int_0^1 h(t) u(t) dt$, we obtain

$$u(0) = \frac{\sum_{\ell=1}^{m-2} \alpha_{\ell} \{\sum_{t_i < \xi_{\ell}} a_i + \int_0^{\xi_{\ell}} \varphi^{-1}[t, (w(t))^{-1}(\rho_3 + \sum_{t_i < t} b_i + F(f)(t))] dt\}}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta} - \frac{\sum_{i=1}^k a_i + \int_0^1 \varphi^{-1}[t, (w(t))^{-1}(\rho_3 + \sum_{t_i < t} b_i + F(f)(t))] dt}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta} - \frac{\int_0^1 h(t)(F\{\varphi^{-1}[t, (w(t))^{-1}(\rho_3 + \sum_{t_i < t} b_i + F(f)(t))]\}(t) + \sum_{t_i < t} a_i) dt}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta}.$$
(19)

For fixed $\omega \in W$, we denote

$$\begin{split} \Upsilon_{\omega}(\rho_{3}) &= \frac{1}{(1-\sigma)} \int_{0}^{1} g(t) \left(F \left\{ \varphi^{-1} \left[t, \left(w(t) \right)^{-1} \left(\rho_{3} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t) \right) \right] \right\}(t) + \sum_{t_{i} < t} a_{i} \right) dt \\ &- \frac{\sum_{\ell=1}^{m-2} \alpha_{\ell} \{ \sum_{t_{i} < \xi_{\ell}} a_{i} + \int_{0}^{\xi_{\ell}} \varphi^{-1} [t, (w(t))^{-1} (\rho_{3} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t))] dt \}}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta} \\ &+ \frac{\sum_{i=1}^{k} a_{i} + \int_{0}^{1} \varphi^{-1} [t, (w(t))^{-1} (\rho_{3} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t))] dt}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta} \\ &+ \frac{\int_{0}^{1} h(t) (F \{ \varphi^{-1} [t, (w(t))^{-1} (\rho_{3} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t))] \}(t) + \sum_{t_{i} < t} a_{i}) dt}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta} \\ &+ \frac{\varphi_{0} \in \mathbb{R}^{N}. \end{split}$$

From (18) and (19), we have $\Upsilon_{\omega}(\rho_3) = 0$.

Obviously, $\Upsilon_{\omega}(\rho_3)$ can be rewritten as

$$\begin{split} \Upsilon_{\omega}(\rho_{3}) &= \frac{1}{(1-\sigma)} \int_{0}^{1} g(t) \left(F \left\{ \varphi^{-1} \left[t, \left(w(t) \right)^{-1} \left(\rho_{3} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t) \right) \right] \right\}(t) + \sum_{t_{i} < t} a_{i} \right) dt \\ &+ \frac{\sum_{\ell=1}^{m-2} \alpha_{\ell} \{ \sum_{\xi_{\ell} \le t_{i}} a_{i} + \int_{\xi_{\ell}}^{1} \varphi^{-1} [t, (w(t))^{-1} (\rho_{3} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t))] dt \}}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta} \\ &+ \frac{(1 - \sum_{\ell=1}^{m-2} \alpha_{\ell}) \int_{0}^{1} \varphi^{-1} [t, (w(t))^{-1} (\rho_{3} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t))] dt}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta} \\ &+ \frac{\sum_{i=1}^{k} a_{i} (1 - \sum_{\ell=1}^{m-2} \alpha_{\ell})}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta} \\ &+ \frac{\int_{0}^{1} h(t) (F \{ \varphi^{-1} [t, (w(t))^{-1} (\rho_{3} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t))] \}(t) + \sum_{t_{i} < t} a_{i}) dt}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta}. \end{split}$$

Denote $\xi_{m-1} = 1$. Moreover, we also have

$$\begin{split} &\Upsilon_{\omega}(\rho_{3}) \\ &= \frac{1}{(1-\sigma)} \int_{0}^{1} g(t) \left(F \left\{ \varphi^{-1} \left[t, \left(w(t) \right)^{-1} \left(\rho_{3} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t) \right) \right] \right\}(t) + \sum_{t_{i} < t} a_{i} \right) dt \\ &+ \frac{\sum_{\ell=1}^{m-2} \alpha_{\ell} \sum_{\xi_{\ell} \leq t_{i}} a_{i}}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta} \\ &+ \frac{\sum_{\ell=1}^{m-2} (\alpha_{\ell} - \int_{\xi_{\ell}}^{\xi_{\ell+1}} h(t) dt) \int_{\xi_{\ell}}^{1} \varphi^{-1} [t, (w(t))^{-1} (\rho_{3} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t))] dt}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta} \\ &+ \frac{\sum_{\ell=1}^{m-2} \int_{\xi_{\ell}}^{\xi_{\ell+1}} h(t) \int_{\xi_{\ell}}^{t} \varphi^{-1} [s, (w(s))^{-1} (\rho_{3} + \sum_{s_{i} < s} b_{i} + F(\vartheta)(s))] ds dt}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta} \\ &- \frac{\int_{0}^{\xi_{1}} h(t) \int_{t}^{1} \varphi^{-1} [s, (w(s))^{-1} (\rho_{3} + \sum_{s_{i} < s} b_{i} + F(\vartheta)(s))] ds dt + \int_{0}^{1} h(t) \sum_{t_{i} \geq t} a_{i} dt}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta} \\ &+ \int_{0}^{1} \varphi^{-1} \Big[t, (w(t))^{-1} \Big(\rho_{3} + \sum_{t_{i} < t} b_{i} + F(\vartheta)(t) \Big) \Big] dt + \sum_{i=1}^{k} a_{i}. \end{split}$$

Lemma 2.8 Suppose that α_{ℓ} , g, h satisfy one of the following:

(1⁰) $\sum_{\ell=1}^{m-2} \alpha_{\ell} \leq 1, g(t)(1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta) + h(t)(1 - \sigma) \geq 0;$ (2⁰) $h(t) \geq 0$ on $[\xi_1, 1], \alpha_{\ell} \geq \int_{\xi_{\ell}}^{\xi_{\ell+1}} h(t) dt$ ($\ell = 1, ..., m - 2$) and $h(t) \leq 0$ on $[0, \xi_1].$

Then the function $\Upsilon_{\omega}(\cdot)$ *has the following properties:*

(i) For any fixed $\omega \in W$, the equation $\Upsilon_{\omega}(\rho_3) = 0$ has a unique solution $\widetilde{\rho_3}(\omega) \in \mathbb{R}^N$.

(ii) The function ρ₃: W → ℝ^N, defined in (i), is continuous and sends bounded sets to bounded sets. Moreover, for any ω = (a, b, ϑ) ∈ W, we have

$$\begin{split} \left| \widetilde{\rho_3}(\omega) \right| &\leq 3N \Biggl\{ (2N)^{p^+} \Biggl[\Biggl(\frac{E_1 + 1}{(1 - \sigma)E_1} + \left(\delta^* + 1 \right) \frac{E + 1}{(1 - \sum_{\ell=1}^{m-2} \alpha_\ell + \delta)E} \Biggr) \sum_{i=1}^k |a_i| \Biggr]^{p^\# - 1} \\ &+ \sum_{i=1}^k |b_i| + \|\vartheta\|_{L^1} \Biggr\}, \end{split}$$

where the notation $M^{p^{\#}-1}$ means

$$M^{p^{\#}-1} = \begin{cases} M^{p^{+}-1}, & M > 1, \\ M^{p^{-}-1}, & M \le 1. \end{cases}$$

Proof Similar to the proof of Lemma 2.2, we omit it here.

We define $\rho_3 : PC^1 \to \mathbb{R}^N$ as $\rho_3(u) = \widetilde{\rho_3}(A, B, N_f)(u)$, where $A = (A_1, \dots, A_k)$, $B = (B_1, \dots, B_k)$.

It is clear that $\rho_3(\cdot)$ is continuous and sends bounded sets of PC^1 to bounded sets of \mathbb{R}^N , and hence it is compact continuous.

For fixed $a, b \in \mathbb{R}^{kN}$, we denote $K_{(a,b)}^{**}: L^1 \to PC^1$ as

$$K_{(a,b)}^{**}(\vartheta)(t) = F\left\{\varphi^{-1}\left[t, \left(w(t)\right)^{-1}\left(\widetilde{\rho_3}(a,b,\vartheta) + \sum_{t_i < t} b_i + F(\vartheta)(t)\right)\right]\right\}(t), \quad \forall t \in J.$$

Define $K_3: PC^1 \to PC^1$ as

$$K_{3}(u)(t) = F\left\{\varphi^{-1}\left[t, (w(t))^{-1}\left(\rho_{3}(u) + \sum_{t_{i} < t} B_{i} + F(N_{f}(u))(t)\right)\right]\right\}(t), \quad \forall t \in J.$$

Similar to the proof of Lemma 2.3, we have

Lemma 2.9 (i) The operator $K_{(a,b)}^{**}$ is continuous and sends equi-integrable sets in L^1 to relatively compact sets in PC^1 .

(ii) The operator K_3 is continuous and sends bounded sets in PC^1 to relatively compact sets in PC^1 .

Let us define $P_3 : PC^1 \to PC^1$ *as*

$$P_3(u) = \frac{\int_0^1 g(t) [K_3(u)(t) + \sum_{t_i < t} A_i] dt}{1 - \sigma}.$$

It is easy to see that P_3 is compact continuous.

Lemma 2.10 Suppose that $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta < 1$ and α_{ℓ} , g, h satisfy one of the following: (1⁰) $\sum_{\ell=1}^{m-2} \alpha_{\ell} \le 1$, $g(t)(1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta) + h(t)(1 - \sigma) \ge 0$; (2⁰) $h(t) \ge 0$ on $[\xi_1, 1]$, $\alpha_{\ell} \ge \int_{\xi_{\ell}}^{\xi_{\ell}+1} h(t) dt$ ($\ell = 1, ..., m - 2$) and $h(t) \le 0$ on $[0, \xi_1]$.

Then u is a solution of (1)-(4) if and only if u is a solution of the following abstract operator equation:

$$u = P_3(u) + \sum_{t_i < t} A_i + K_3(u).$$

Proof Similar to the proof of Lemma 2.4, we omit it here.

3 Existence of solutions in Case (i)

In this section, we apply Leray-Schauder's degree to deal with the existence of solutions for system (1)-(4) or (1) with (2), (4) and (5) when $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta = 1$.

When *f* satisfies the sub- $(p^{-} - 1)$ growth condition, we have the following theorem.

Theorem 3.1 Suppose that $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta = 1$; $h(t) \ge 0$ on $[\xi_1, 1]$, $\alpha_{\ell} \ge \int_{\xi_{\ell}}^{\xi_{\ell+1}} h(t) dt$ $(\ell = 1, ..., m-2)$ and $h(t) \le 0$ on $[0, \xi_1]$; f satisfies the sub- $(p^- - 1)$ growth condition; and operators A and B satisfy the following conditions:

$$\sum_{i=1}^{k} |A_{i}(u,v)| \leq C_{1} (1 + |u| + |v|)^{\frac{q^{*}-1}{p^{*}-1}},$$

$$\sum_{i=1}^{k} |B_{i}(u,v)| \leq C_{2} (1 + |u| + |v|)^{q^{*}-1}, \quad \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N},$$
(20)

then problem (1)-(4) has at least a solution.

Proof First we consider the following problem:

$$(S_{1}) \begin{cases} -\Delta_{p(t)}u = \lambda N_{f}(u)(t), & t \in (0,1), t \neq t_{i}, \\ \lim_{t \to t_{i}^{+}}u(t) - \lim_{t \to t_{i}^{-}}u(t) \\ = \lambda A_{i}(\lim_{t \to t_{i}^{-}}u(t), \lim_{t \to t_{i}^{-}}(w(t))^{\frac{1}{p(t)-1}}u'(t)), & i = 1, \dots, k, \\ \lim_{t \to t_{i}^{+}}w(t)|u'|^{p(t)-2}u'(t) - \lim_{t \to t_{i}^{-}}w(t)|u'|^{p(t)-2}u'(t) \\ = \lambda B_{i}(\lim_{t \to t_{i}^{-}}u(t), \lim_{t \to t_{i}^{-}}(w(t))^{\frac{1}{p(t)-1}}u'(t)), & i = 1, \dots, k, \\ u(0) = \int_{0}^{1}g(t)u(t) dt, & u(1) = \sum_{\ell=1}^{m-2}\alpha_{\ell}u(\xi_{\ell}) - \int_{0}^{1}h(t)u(t) dt. \end{cases}$$

Denote

$$\begin{split} \rho_{1,\lambda}(u) &= \widetilde{\rho_1}(\lambda A, \lambda B, \lambda N_f)(u), \\ K_{1,\lambda}(u) &= F\left\{\varphi^{-1}\left[t, \left(w(t)\right)^{-1}\left(\rho_{1,\lambda}(u) + \lambda \sum_{t_i < t} B_i + F\left(\lambda N_f(u)\right)(t)\right)\right]\right\}, \\ P_{1,\lambda}(u) &= \frac{\int_0^1 g(t)[K_{1,\lambda}(u)(t) + \sum_{t_i < t} \lambda A_i] dt}{1 - \sigma}, \\ \Psi_f(u, \lambda) &= P_{1,\lambda}(u) + \lambda \sum_{t_i < t} A_i + K_{1,\lambda}(u), \end{split}$$

where $N_f(u)$ is defined in (10).

Obviously, (S_1) has the same solution as the following operator equation when $\lambda = 1$:

$$u = \Psi_f(u, \lambda). \tag{21}$$

It is easy to see that the operator $\rho_{1,\lambda}$ is compact continuous for any $\lambda \in [0,1]$. It follows from Lemma 2.2 and Lemma 2.3 that $\Psi_f(\cdot, \lambda)$ is compact continuous from PC^1 to PC^1 for any $\lambda \in [0,1]$.

We claim that all the solutions of (21) are uniformly bounded for $\lambda \in [0,1]$. In fact, if it is false, we can find a sequence of solutions $\{(u_n, \lambda_n)\}$ for (21) such that $||u_n||_1 \to +\infty$ as $n \to +\infty$ and $||u_n||_1 > 1$ for any n = 1, 2, ...

From Lemma 2.2, we have

$$\left|\rho_{1,\lambda}(u)\right| \le C_3 \left[\left(\sum_{i=1}^k |A_i|\right)^{p^{\#}-1} + \sum_{i=1}^k |B_i| + \left\|N_f(u)\right\|_{L^1}\right] \le C_4 \left(1 + \left\|u\right\|_1^{q^+-1}\right)$$

Thus

$$\left|\rho_{1,\lambda}(u) + \sum_{t_i < t} \lambda B_i + F(\lambda N_f)\right| \le \left|\rho_{1,\lambda}(u)\right| + \left|\sum_{t_i < t} B_i\right| + \left|F(N_f)\right| \le C_5 \left(1 + \|u\|_1^{q^* - 1}\right).$$
(22)

From (S_1) , we have

$$w(t) |u'_n(t)|^{p(t)-2} u'_n(t) = \rho_{1,\lambda}(u_n) + \sum_{t_i < t} \lambda B_i + \int_0^t \lambda N_f(u_n)(s) \, ds, \quad \forall t \in J'.$$

It follows from (11) and Lemma 2.2 that

$$w(t) |u'_n(t)|^{p(t)-1} \le |\rho_{1,\lambda}(u_n)| + \sum_{i=1}^k |B_i| + \int_0^1 |N_f(u_n)(s)| \, ds \le C_6 + C_7 ||u_n||_1^{q^*-1}, \quad \forall t \in J'.$$

Denote $\alpha = \frac{q^+ - 1}{p^- - 1}$. If the above inequality holds then

$$\left\| \left(w(t) \right)^{\frac{1}{p(t)-1}} u'_n(t) \right\|_0 \le C_8 \|u_n\|_1^{\alpha}, \quad n = 1, 2, \dots$$
(23)

It follows from (14), (20) and (22) that

$$|u_n(0)| \le C_9 ||u_n||_1^{\alpha}$$
, where $\alpha = \frac{q^+ - 1}{p^- - 1}$

For any $j = 1, \ldots, N$, we have

$$\begin{aligned} \left| u_{n}^{j}(t) \right| &= \left| u_{n}^{j}(0) + \sum_{t_{i} < t} A_{i} + \int_{0}^{t} \left(u_{n}^{j} \right)'(s) \, ds \right| \\ &\leq \left| u_{n}^{j}(0) \right| + \left| \sum_{t_{i} < t} A_{i} \right| + \left| \int_{0}^{t} \left(w(s) \right)^{\frac{-1}{p(s)-1}} \sup_{t \in (0,1)} \left| \left(w(t) \right)^{\frac{1}{p(t)-1}} \left(u_{n}^{j} \right)'(t) \right| \, ds \right| \\ &\leq \left\| u_{n} \right\|_{1}^{\alpha} [C_{10} + C_{8}E] + \left| \sum_{t_{i} < t} A_{i} \right| \leq C_{11} \left\| u_{n} \right\|_{1}^{\alpha}, \quad \forall t \in J, n = 1, 2, \dots, \end{aligned}$$

which implies that

$$|u_n^j|_0 \le C_{12} ||u_n||_1^{\alpha}, \quad j = 1, \dots, N; n = 1, 2, \dots$$

Thus

$$\|u_n\|_0 \le NC_{12} \|u_n\|_1^{\alpha}, \quad n = 1, 2, \dots$$
(24)

It follows from (23) and (24) that $\{||u_n||_1\}$ is uniformly bounded.

Thus, we can choose a large enough $R_0 > 0$ such that all the solutions of (21) belong to $B(R_0) = \{u \in PC^1 \mid ||u||_1 < R_0\}$. Therefore the Leray-Schauder degree $d_{LS}[I - \Psi_f(\cdot, \lambda), B(R_0), 0]$ is well defined for $\lambda \in [0, 1]$, and

$$d_{LS}[I - \Psi_f(\cdot, 1), B(R_0), 0] = d_{LS}[I - \Psi_f(\cdot, 0), B(R_0), 0].$$

It is easy to see that *u* is a solution of $u = \Psi_f(u, 0)$ if and only if *u* is a solution of the following usual differential equation:

$$(S_2) \quad \begin{cases} -\Delta_{p(t)}u = 0, \quad t \in (0,1), \\ u(0) = \int_0^1 g(t)u(t) \, dt, \qquad u(1) = \sum_{\ell=1}^{m-2} \alpha_\ell u(\xi_\ell) - \int_0^1 h(t)u(t) \, dt. \end{cases}$$

Obviously, system (S_2) possesses a unique solution u_0 . Since $u_0 \in B(R_0)$, we have

$$d_{LS}\big[I-\Psi_f(\cdot,1),B(R_0),0\big]=d_{LS}\big[I-\Psi_f(\cdot,0),B(R_0),0\big]\neq 0,$$

which implies that (1)-(4) has at least one solution. This completes the proof.

Theorem 3.2 Suppose that $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta = 1$; $h(t) \ge 0$ on $[\xi_1, 1]$, $\alpha_{\ell} \ge \int_{\xi_{\ell}}^{\xi_{\ell+1}} h(t) dt$ $(\ell = 1, ..., m - 2)$ and $h(t) \le 0$ on $[0, \xi_1]$; f satisfies the sub- $(p^- - 1)$ growth condition; and operators A and $D = (D_1, ..., D_k)$ satisfy the following conditions:

$$\sum_{i=1}^{k} |A_{i}(u,v)| \leq C_{1} (1+|u|+|v|)^{\frac{q^{*}-1}{p^{*}-1}},$$
$$\sum_{i=1}^{k} |D_{i}(u,v)| \leq C_{2} (1+|u|+|v|)^{\alpha_{i}^{*}}, \quad \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N},$$

where $\alpha_i \leq \frac{q^i-1}{p(t_i)-1}$, and $p(t_i) - 1 \leq q^i - \alpha_i$, i = 1, ..., k. Then problem (1) with (2), (4) and (5) has at least a solution.

Proof Obviously, $B_i(u, v) = \varphi(t_i, v + D_i(u, v)) - \varphi(t_i, v)$. From Theorem 3.1, it suffices to show that

$$\sum_{i=1}^{k} |B_{i}(u,v)| \le C_{2} (1+|u|+|v|)^{q^{*}-1}, \quad \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N}.$$
(25)

(a) Suppose that $|v| \le M^* |D_i(u, v)|$, where M^* is a large enough positive constant. From the definition of D, we have

$$|B_i(u,v)| \le C_1 |D_i(u,v)|^{p(t_i)-1} \le C_2 (1+|u|+|v|)^{\alpha_i(p(t_i)-1)}.$$

Since $\alpha_i < \frac{q^{+}-1}{p(t_i)-1}$, we have $\alpha_i(p(t_i)-1) \le q^{+}-1$. Thus (25) is valid. (b) Suppose that $|\nu| > M^* |D_i(u, \nu)|$, we can see that

$$|B_i(u,v)| \le C_3 |v|^{p(t_i)-1} \frac{|D_i(u,v)|}{|v|} = C_4 |v|^{p(t_i)-2} |D_i(u,v)|.$$

There are two cases: Case (i): $p(t_i) - 1 \ge 1$; Case (ii): $p(t_i) - 1 < 1$. Case (i): Since $p(t_i) - 1 \le q^+ - \alpha_i$, we have $p(t_i) - 2 + \alpha_i \le q^+ - 1$, and

$$\left|B_{i}(u,v)\right| \leq C_{5}|v|^{p(t_{i})-2}\left|D_{i}(u,v)\right| \leq C_{6}\left(1+|u|+|v|\right)^{p(t_{i})-2+\alpha_{i}} \leq C_{6}\left(1+|u|+|v|\right)^{q^{*}-1}.$$

Thus (25) is valid.

Case (ii): Since $\alpha_i < \frac{q^*-1}{p(t_i)-1}$, we have $\alpha_i(p(t_i)-1) \le q^*-1$, and

$$|B_i(u,v)| \le C_7 |v|^{p(t_i)-2} |D_i(u,v)| \le C_8 |D_i(u,v)|^{p(t_i)-1} \le C_9 (1+|u|+|v|)^{\alpha_i(p(t_i)-1)}.$$

Thus (25) is valid.

Thus problem (1) with (2), (4) and (5) has at least a solution. This completes the proof.

Let us consider

$$-(w(t)|u'|^{p(t)-2}u')' + \phi(t, u, (w(t))^{\frac{1}{p(t)-1}}u', S(u), T(u), \varepsilon) = 0, \quad t \in (0,1), t \neq t_i,$$
(26)

where ε is a parameter, and

$$\begin{split} \phi\big(t, u, \big(w(t)\big)^{\frac{1}{p(t)-1}} u', S(u), T(u), \varepsilon\big) \\ &= f\big(t, u, \big(w(t)\big)^{\frac{1}{p(t)-1}} u', S(u), T(u)\big) + \varepsilon h\big(t, u, \big(w(t)\big)^{\frac{1}{p(t)-1}} u', S(u), T(u)\big), \end{split}$$

where $h, f: J \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$ are Caratheodory. We have the following theorem.

Theorem 3.3 Suppose that $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta = 1$; $h(t) \ge 0$ on $[\xi_1, 1]$, $\alpha_{\ell} \ge \int_{\xi_{\ell}}^{\xi_{\ell+1}} h(t) dt$ $(\ell = 1, ..., m-2)$ and $h(t) \le 0$ on $[0, \xi_1]$; f satisfies the sub- $(p^- - 1)$ growth condition; and we assume that

$$\begin{split} & \sum_{i=1}^{k} \left| A_{i}(u,v) \right| \leq C_{1} \left(1 + |u| + |v| \right)^{\frac{q^{+}-1}{p^{+}-1}}, \\ & \sum_{i=1}^{k} \left| B_{i}(u,v) \right| \leq C_{2} \left(1 + |u| + |v| \right)^{q^{+}-1}, \quad \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N}, \end{split}$$

then problem (26) with (2)-(4) has at least one solution when parameter ε is small enough.

Proof Denote

$$\begin{split} \phi_{\lambda}\big(t, u, \big(w(t)\big)^{\frac{1}{p(t)-1}}u', S(u), T(u), \varepsilon\big) \\ &= f\big(t, u, \big(w(t)\big)^{\frac{1}{p(t)-1}}u', S(u), T(u)\big) + \lambda\varepsilon h\big(t, u, \big(w(t)\big)^{\frac{1}{p(t)-1}}u', S(u), T(u)\big). \end{split}$$

We consider the existence of solutions of the following equation with (2)-(4)

$$-(w(t)|u'|^{p(t)-2}u')' + \phi_{\lambda}(t, u, (w(t))^{\frac{1}{p(t)-1}}u', S(u), T(u), \varepsilon) = 0, \quad t \in (0, 1), t \neq t_{i}.$$
 (27)

Denote

$$\begin{split} \rho_{1,\lambda}^{\#}(u,\varepsilon) &= \widetilde{\rho_1}(A,B,N_{\phi_{\lambda}})(u), \\ K_{1,\lambda}^{\#}(u,\varepsilon) &= F\left\{\varphi^{-1}\left[t,\left(w(t)\right)^{-1}\left(\rho_{1,\lambda}^{\#}(u,\varepsilon) + \sum_{t_i < t} B_i + F\left(N_{\phi_{\lambda}}(u)\right)(t)\right)\right]\right\}, \\ P_{1,\lambda}^{\#}(u,\varepsilon) &= \frac{\int_0^1 g(t)[K_{1,\lambda}^{\#}(u,\varepsilon)(t) + \sum_{t_i < t} A_i] dt}{(1-\sigma)}, \\ \Phi_{\varepsilon}(u,\lambda) &= P_{1,\lambda}^{\#}(u,\varepsilon) + \sum_{t_i < t} A_i + K_{1,\lambda}^{\#}(u,\varepsilon), \end{split}$$

where $N_{\phi_{\lambda}}(u)$ is defined in (10).

We know that (27) with (2)-(4) has the same solution of $u = \Phi_{\varepsilon}(u, \lambda)$.

Obviously, $\phi_0 = f$. So $\Phi_{\varepsilon}(u, 0) = \Psi_f(u, 1)$. As in the proof of Theorem 3.1, we know that all the solutions of $u = \Phi_{\varepsilon}(u, 0)$ are uniformly bounded, then there exists a large enough $R_0 > 0$ such that all the solutions of $u = \Phi_{\varepsilon}(u, 0)$ belong to $B(R_0) = \{u \in PC^1 \mid ||u||_1 < R_0\}$. Since $\Phi_{\varepsilon}(\cdot, 0)$ is compact continuous from PC^1 to PC^1 , we have

$$\inf_{u \in \partial B(R_0)} \left\| u - \Phi_{\varepsilon}(u, 0) \right\|_1 > 0.$$
(28)

Since f and h are Caratheodory, we have

$$\begin{split} \left\|F\left(N_{\phi_{\lambda}}(u)\right) - F\left(N_{\phi_{0}}(u)\right)\right\|_{0} &\to 0 \quad \text{for } (u,\lambda) \in \overline{B(R_{0})} \times [0,1] \text{ uniformly, as } \varepsilon \to 0, \\ \left|\rho_{1,\lambda}^{\#}(u,\varepsilon) - \rho_{1,0}^{\#}(u,\varepsilon)\right| &\to 0 \quad \text{for } (u,\lambda) \in \overline{B(R_{0})} \times [0,1] \text{ uniformly, as } \varepsilon \to 0, \\ \left\|K_{1,\lambda}^{\#}(u,\varepsilon) - K_{1,0}^{\#}(u,\varepsilon)\right\|_{1} &\to 0 \quad \text{for } (u,\lambda) \in \overline{B(R_{0})} \times [0,1] \text{ uniformly, as } \varepsilon \to 0, \\ \left|P_{1,\lambda}^{\#}(u,\varepsilon) - P_{1,0}^{\#}(u,\varepsilon)\right| \to 0 \quad \text{for } (u,\lambda) \in \overline{B(R_{0})} \times [0,1] \text{ uniformly, as } \varepsilon \to 0. \end{split}$$

Thus

$$\|\Phi_{\varepsilon}(u,\lambda) - \Phi_0(u,\lambda)\|_1 \to 0$$
 for $(u,\lambda) \in \overline{B(R_0)} \times [0,1]$ uniformly, as $\varepsilon \to 0$.

Obviously, $\Phi_0(u, \lambda) = \Phi_{\varepsilon}(u, 0) = \Phi_0(u, 0)$. We obtain

$$\|\Phi_{\varepsilon}(u,\lambda) - \Phi_{\varepsilon}(u,0)\|_{1} \to 0 \text{ for } (u,\lambda) \in \overline{B(R_{0})} \times [0,1] \text{ uniformly, as } \varepsilon \to 0.$$

Thus, when ε is small enough, from (28), we can conclude that

$$\begin{split} &\inf_{(u,\lambda)\in\partial B(R_0)\times[0,1]} \left\| u - \Phi_{\varepsilon}(u,\lambda) \right\|_{1} \\ &\geq \inf_{u\in\partial B(R_0)} \left\| u - \Phi_{\varepsilon}(u,0) \right\|_{1} - \sup_{(u,\lambda)\in\overline{B(R_0)}\times[0,1]} \left\| \Phi_{\varepsilon}(u,0) - \Phi_{\varepsilon}(u,\lambda) \right\|_{1} > 0. \end{split}$$

Thus $u = \Phi_{\varepsilon}(u, \lambda)$ has no solution on $\partial B(R_0)$ for any $\lambda \in [0, 1]$, when ε is small enough. It means that the Leray-Schauder degree $d_{LS}[I - \Phi_{\varepsilon}(\cdot, \lambda), B(R_0), 0]$ is well defined for any $\lambda \in [0, 1]$, and

$$d_{LS}\left[I-\Phi_{\varepsilon}(u,\lambda),B(R_0),0\right]=d_{LS}\left[I-\Phi_{\varepsilon}(u,0),B(R_0),0\right].$$

Since $\Phi_{\varepsilon}(u, 0) = \Psi_f(u, 1)$, from the proof of Theorem 3.1, we can see that the right-hand side is nonzero. Thus (26) with (2)-(4) has at least one solution when ε is small enough. This completes the proof.

Theorem 3.4 Suppose that $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta = 1$; $h(t) \ge 0$ on $[\xi_1, 1]$, $\alpha_{\ell} \ge \int_{\xi_{\ell}}^{\xi_{\ell+1}} h(t) dt$ $(\ell = 1, ..., m-2)$ and $h(t) \le 0$ on $[0, \xi_1]$; f satisfies the sub- $(p^- - 1)$ growth condition; and we assume that

$$\begin{split} &\sum_{i=1}^{k} \left| A_{i}(u,v) \right| \leq C_{1} \left(1 + |u| + |v| \right)^{\frac{q^{*}-1}{p^{*}-1}}, \\ &\sum_{i=1}^{k} \left| D_{i}(u,v) \right| \leq C_{2} \left(1 + |u| + |v| \right)^{\alpha_{i}^{*}}, \quad \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N}, \end{split}$$

where $\alpha_i \leq \frac{q^+-1}{p(t_i)-1}$, and $p(t_i) - 1 \leq q^+ - \alpha_i$, i = 1, ..., k, then problem (26) with (2), (4) and (5) has at least one solution when parameter ε is small enough.

Proof Similar to the proof of Theorem 3.2 and Theorem 3.3, we omit it here. \Box

4 Existence of solutions in Case (ii)

In this section, we apply Leray-Schauder's degree to deal with the existence of solutions for system (1)-(4) or (1) with (2), (4) and (5) when $\sigma = 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta \neq 1$.

When *f* satisfies the sub- $(p^- - 1)$ growth condition, we have the following.

Theorem 4.1 Suppose that $\sigma = 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta \neq 1$; f satisfies the sub- $(p^- - 1)$ growth condition; and operators A and B satisfy the following conditions:

$$\begin{split} & \sum_{i=1}^{k} \left| A_{i}(u,v) \right| \leq C_{1} \left(1 + |u| + |v| \right)^{\frac{q^{*}-1}{p^{*}-1}}, \\ & \sum_{i=1}^{k} \left| B_{i}(u,v) \right| \leq C_{2} \left(1 + |u| + |v| \right)^{q^{*}-1}, \quad \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N}, \end{split}$$

then problem (1)-(4) has at least a solution.

Proof Similar to the proof of Theorem 3.1, we omit it here.

Theorem 4.2 Suppose that $\sigma = 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta \neq 1$; f satisfies the sub- $(p^- - 1)$ growth condition; and operators A and $D = (D_1, \ldots, D_k)$ satisfy the following conditions:

$$\begin{split} & \sum_{i=1}^{k} \left| A_{i}(u,v) \right| \leq C_{1} \left(1 + |u| + |v| \right)^{\frac{q^{+}-1}{p^{+}-1}}, \\ & \sum_{i=1}^{k} \left| D_{i}(u,v) \right| \leq C_{2} \left(1 + |u| + |v| \right)^{\alpha_{i}^{+}}, \quad \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N}, \end{split}$$

where

$$lpha_i \leq rac{q^+-1}{p(t_i)-1} \quad and \quad p(t_i)-1 \leq q^+-lpha_i, \quad i=1,\ldots,k,$$

then problem (1) with (2), (4) and (5) has at least a solution.

Proof Similar to the proof of Theorem 3.2, we omit it here.

Theorem 4.3 Suppose that $\sigma = 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta \neq 1$; f satisfies the sub- $(p^- - 1)$ growth condition; and we assume that

$$\begin{split} &\sum_{i=1}^{k} \left| A_{i}(u,v) \right| \leq C_{1} \left(1 + |u| + |v| \right)^{\frac{q^{+}-1}{p^{+}-1}}, \\ &\sum_{i=1}^{k} \left| B_{i}(u,v) \right| \leq C_{2} \left(1 + |u| + |v| \right)^{q^{+}-1}, \quad \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N}, \end{split}$$

then problem (26) with (2)-(4) has at least one solution when parameter ε is small enough.

Proof Similar to the proof of Theorem 3.3, we omit it here.

Theorem 4.4 Suppose that $\sigma = 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta \neq 1$; f satisfies the sub- $(p^- - 1)$ growth condition; and we assume that

$$\begin{split} &\sum_{i=1}^{k} \left| A_{i}(u,v) \right| \leq C_{1} \left(1 + |u| + |v| \right)^{\frac{q^{+}-1}{p^{+}-1}}, \\ &\sum_{i=1}^{k} \left| D_{i}(u,v) \right| \leq C_{2} \left(1 + |u| + |v| \right)^{\alpha_{i}^{+}}, \quad \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N}, \end{split}$$

where $\alpha_i \leq \frac{q^{+}-1}{p(t_i)-1}$, and $p(t_i) - 1 \leq q^{+} - \alpha_i$, i = 1, ..., k, then problem (26) with (2), (4) and (5) has at least one solution when parameter ε is small enough.

Proof Similar to the proof of Theorem 3.2 and Theorem 3.3, we omit it here. \Box

5 Existence of solutions in Case (iii)

In this section, we apply Leray-Schauder's degree to deal with the existence of solutions and nonnegative solutions for system (1)-(4) or (1) with (2), (4) and (5) when $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta < 1$.

When *f* satisfies the sub- $(p^{-} - 1)$ growth condition, we have the following theorem.

Theorem 5.1 Suppose that $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta < 1$ and α_{ℓ} , g, h satisfy one of the following:

 $\begin{array}{ll} (1^0) & \sum_{\ell=1}^{m-2} \alpha_{\ell} \leq 1, g(t)(1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta) + h(t)(1 - \sigma) \geq 0; \\ (2^0) & h(t) \geq 0 \text{ on } [\xi_1, 1], \alpha_{\ell} \geq \int_{\xi_{\ell}}^{\xi_{\ell+1}} h(t) \, dt \ (\ell = 1, \dots, m-2) \text{ and } h(t) \leq 0 \text{ on } [0, \xi_1]; \end{array}$

when f satisfies the sub- $(p^- - 1)$ growth condition; and operators A and B satisfy the following conditions:

$$\begin{split} &\sum_{i=1}^{k} \left| A_{i}(u,v) \right| \leq C_{1} \left(1 + |u| + |v| \right)^{\frac{q^{+}-1}{p^{+}-1}}, \\ &\sum_{i=1}^{k} \left| B_{i}(u,v) \right| \leq C_{2} \left(1 + |u| + |v| \right)^{q^{+}-1}, \quad \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N}, \end{split}$$

then problem (1)-(4) has at least a solution.

Proof Similar to the proof of Theorem 3.1, we omit it here.

Theorem 5.2 Suppose that $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta < 1$ and α_{ℓ} , g, h satisfy one of the following:

(1⁰) $\sum_{\ell=1}^{m-2} \alpha_{\ell} \leq 1, g(t)(1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta) + h(t)(1 - \sigma) \geq 0;$ (2⁰) $h(t) \geq 0$ on $[\xi_1, 1], \alpha_{\ell} \geq \int_{\xi_{\ell}}^{\xi_{\ell+1}} h(t) dt$ ($\ell = 1, ..., m - 2$) and $h(t) \leq 0$ on $[0, \xi_1];$

when f satisfies the sub- $(p^- - 1)$ growth condition; and operators A and $D = (D_1, ..., D_k)$ satisfy the following conditions:

$$\begin{split} & \sum_{i=1}^{k} \left| A_{i}(u,v) \right| \leq C_{1} \left(1 + |u| + |v| \right)^{\frac{q^{+}-1}{p^{+}-1}}, \\ & \sum_{i=1}^{k} \left| D_{i}(u,v) \right| \leq C_{2} \left(1 + |u| + |v| \right)^{\alpha_{i}^{+}}, \quad \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N}, \end{split}$$

where

$$\alpha_i \leq \frac{q^+ - 1}{p(t_i) - 1}$$
 and $p(t_i) - 1 \leq q^+ - \alpha_i$, $i = 1, ..., k$,

then problem (1) with (2), (4) and (5) has at least a solution.

Proof Similar to the proof of Theorem 3.2, we omit it here.

Theorem 5.3 Suppose that $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta < 1$ and α_{ℓ} , g, h satisfy one of the following:

 $\begin{array}{ll} (1^0) & \sum_{\ell=1}^{m-2} \alpha_\ell \leq 1, \, g(t)(1 - \sum_{\ell=1}^{m-2} \alpha_\ell + \delta) + h(t)(1 - \sigma) \geq 0; \\ (2^0) & h(t) \geq 0 \ on \ [\xi_1, 1], \, \alpha_\ell \geq \int_{\xi_\ell}^{\xi_{\ell+1}} h(t) \, dt \ (\ell = 1, \dots, m-2) \ and \ h(t) \leq 0 \ on \ [0, \xi_1]; \end{array}$

when f satisfies the sub- $(p^- - 1)$ growth condition; and we assume that

$$\begin{split} & \sum_{i=1}^{k} \left| A_{i}(u,v) \right| \leq C_{1} \left(1 + |u| + |v| \right)^{\frac{q^{+}-1}{p^{+}-1}}, \\ & \sum_{i=1}^{k} \left| B_{i}(u,v) \right| \leq C_{2} \left(1 + |u| + |v| \right)^{q^{+}-1}, \quad \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N}, \end{split}$$

then problem (26) with (2)-(4) has at least one solution when parameter ε is small enough.

Proof Similar to the proof of Theorem 3.3, we omit it here.

Theorem 5.4 Suppose that $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta < 1$ and α_{ℓ} , g, h satisfy one of the following: (1⁰) $\sum_{\ell=1}^{m-2} \alpha_{\ell} \le 1$, $g(t)(1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta) + h(t)(1 - \sigma) \ge 0$; (2⁰) $h(t) \ge 0$ on $[\xi_1, 1]$, $\alpha_{\ell} \ge \int_{\xi_{\ell}}^{\xi_{\ell+1}} h(t) dt$ ($\ell = 1, ..., m - 2$) and $h(t) \le 0$ on $[0, \xi_1]$;

when f satisfies the sub- $(p^- - 1)$ growth condition; and we assume that

$$\sum_{i=1}^{k} |A_{i}(u,v)| \leq C_{1} (1+|u|+|v|)^{\frac{q^{+}-1}{p^{+}-1}},$$
$$\sum_{i=1}^{k} |D_{i}(u,v)| \leq C_{2} (1+|u|+|v|)^{\alpha_{i}^{+}}, \quad \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N},$$

where $\alpha_i \leq \frac{q^{+}-1}{p(t_i)-1}$, and $p(t_i) - 1 \leq q^{+} - \alpha_i$, i = 1, ..., k, then problem (26) with (2), (4) and (5) has at least one solution when parameter ε is small enough.

Proof Similar to the proof of Theorem 3.2 and Theorem 3.3, we omit it here.

In the following, we will consider the existence of nonnegative solutions. For any $x = (x^1, ..., x^N) \in \mathbb{R}^N$, the notation $x \ge 0$ means $x^j \ge 0$ for any j = 1, ..., N.

Theorem 5.5 Suppose that $\sigma < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} - \delta < 1$, $\sum_{\ell=1}^{m-2} \alpha_{\ell} \leq 1$, $g(t)(1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta) + h(t)(1 - \sigma) \geq 0$. We also assume:

- (1⁰) $f(t, x, y, s, z) \leq 0, \forall (t, x, y, s, z) \in J \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N;$
- (2⁰) For any i = 1, ..., k, $B_i(u, v) \leq 0$, $\forall (u, v) \in \mathbb{R}^N \times \mathbb{R}^N$;
- (3⁰) *For any* $i = 1, ..., k, j = 1, ..., N, A_i^j(u, v)v^j \ge 0, \forall (u, v) \in \mathbb{R}^N \times \mathbb{R}^N;$

$$(4^0) h(t) \le 0.$$

Then every solution of (1)-(4) is nonnegative.

Proof Let u be a solution of (1)-(4). From Lemma 2.10, we have

$$u(t) = u(0) + \sum_{t_i < t} A_i + F\left\{\varphi^{-1}\left[t, (w(t))^{-1}\left(\rho_3(u) + \sum_{t_i < t} B_i + F(N_f(u))\right)\right]\right\}(t), \quad \forall t \in J.$$

We claim that $\rho_3(u) \ge 0$. If it is false, then there exists some $j \in \{1, ..., N\}$ such that $\rho_3^j(u) < 0$.

It follows from (1^0) and (2^0) that

$$\left[\rho_3(u) + \sum_{t_i < t} B_i + F(N_f(u))(t)\right]^j < 0, \quad \forall t \in J.$$

$$(29)$$

Thus (29) and condition (3^0) hold

$$A_i^j \le 0, \quad i = 1, \dots, k.$$
 (30)

Similar to the proof before Lemma 2.8, from the boundary value conditions, we have

$$0 = \frac{1}{(1-\sigma)} \int_{0}^{1} g(t) \left(F \left\{ \varphi^{-1} \left[t, \left(w(t) \right)^{-1} \left(\rho_{3} + \sum_{t_{i} < t} B_{i} + F(N_{f}(u)) \right) \right] \right\}(t) + \sum_{t_{i} < t} A_{i} \right) dt$$

$$+ \frac{\sum_{\ell=1}^{m-2} \alpha_{\ell} \left\{ \sum_{\xi_{\ell} \le t_{i}} A_{i} + \int_{\xi_{\ell}}^{1} \varphi^{-1} [t, (w(t))^{-1} (\rho_{3} + \sum_{t_{i} < t} B_{i} + F(N_{f}(u)))] dt \right\}}{1 - \sum_{i=1}^{m-2} \alpha_{\ell} + \delta}$$

$$+ \frac{\sum_{i=1}^{k} A_{i} (1 - \sum_{\ell=1}^{m-2} \alpha_{\ell})}{1 - \sum_{i=1}^{m-2} \alpha_{\ell} + \delta}$$

$$+ \frac{(1 - \sum_{\ell=1}^{m-2} \alpha_{\ell}) \int_{0}^{1} \varphi^{-1} [t, (w(t))^{-1} (\rho_{3} + \sum_{t_{i} < t} B_{i} + F(N_{f}(u)))] dt}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta}$$

$$+ \frac{\int_{0}^{1} h(t) (F \{ \varphi^{-1} [t, (w(t))^{-1} (\rho_{3} + \sum_{t_{i} < t} B_{i} + F(N_{f}(u)))] \}(t) + \sum_{t_{i} < t} A_{i}) dt}{1 - \sum_{\ell=1}^{m-2} \alpha_{\ell} + \delta}.$$
(31)

From (29) and (30), we get a contradiction to (31). Thus $\rho_3(u) \ge 0$. We claim that

$$\rho_3(u) + \sum_{i=1}^k B_i + F(N_f)(1) \le 0.$$
(32)

If it is false, then there exists some $j \in \{1, ..., N\}$ such that

$$\left[\rho_{3}(u) + \sum_{i=1}^{k} B_{i} + F(N_{f})(1)\right]^{j} > 0.$$

It follows from (1^0) and (2^0) that

$$\left[\rho_3(u) + \sum_{t_i < t} B_i + F(N_f(u))(t)\right]^j > 0, \quad \forall t \in J.$$
(33)

Thus (33) and condition (3⁰) hold

$$A_i^j \ge 0, \quad i = 1, \dots, k. \tag{34}$$

From (33), (34), we get a contradiction to (31). Thus (32) is valid.

Denote $\Theta(t) = \rho_3(u) + \sum_{t_i < t} B_i + F(N_f(u))(t), \forall t \in J'.$

Obviously, $\Theta(0) = \rho_3 \ge 0$, $\Theta(1) \le 0$, and $\Theta(t)$ is decreasing, *i.e.*, $\Theta(t') \le \Theta(t'')$ for any $t', t'' \in J$ with $t' \ge t''$. For any j = 1, ..., N, there exist $\zeta_j \in J$ such that

$$\Theta^{j}(t) \geq 0, \quad \forall t \in (0, \zeta_{j}), \text{ and } \Theta^{j}(t) \leq 0, \quad \forall t \in (\zeta_{j}, T).$$

It follows from condition (3⁰) that $u^{j}(t)$ is increasing on $[0, \zeta_{j}]$ and $u^{j}(t)$ is decreasing on $(\zeta_{j}, T]$. Thus min $\{u^{j}(0), u^{j}(1)\} = \inf_{t \in J} u^{j}(t), j = 1, ..., N$.

For any fixed $j \in \{1, \ldots, N\}$, if

$$u^{j}(0) = \inf_{t \in J} u^{j}(t), \tag{35}$$

from (4) and (35), we have $(1 - \sigma)u^{j}(0) \ge 0$. Then $u^{j}(0) \ge 0$. If

$$u^{j}(1) = \inf_{t \in J} u^{j}(t), \tag{36}$$

from (4), (36) and condition (4⁰), we have $(1 - \sum_{i=1}^{m-2} \alpha_{\ell} + \delta) u^{j}(1) \ge 0$. Then $u^{j}(1) \ge 0$. Thus $u(t) \ge 0$, $\forall t \in [0, T]$. The proof is completed.

Corollary 5.6 Under the conditions of Theorem 5.1, we also assume:

- $(1^0) \ f(t,x,y,s,z) \leq 0, \, \forall (t,x,y,s,z) \in J \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \text{ with } x,s,z \geq 0;$
- (2⁰) For any i = 1, ..., k, $B_i(u, v) \leq 0$, $\forall (u, v) \in \mathbb{R}^N \times \mathbb{R}^N$ with $u \geq 0$;
- (3⁰) For any $i = 1, ..., k, j = 1, ..., N, A_i^j(u, v)v^j \ge 0, \forall (u, v) \in \mathbb{R}^N \times \mathbb{R}^N$ with $u \ge 0$;

(4⁰) $h(t) \le 0$; (5⁰) For any $t \in [0,1]$ and $s \in [0,1]$, $k_*(t,s) \ge 0$, $h_*(t,s) \ge 0$.

Then (1)-(4) *has a nonnegative solution.*

Proof Define $M(u) = (M_{\#}(u^1), \ldots, M_{\#}(u^N))$, where

$$M_{\#}(u) = \begin{cases} u, & u \ge 0, \\ 0, & u < 0. \end{cases}$$

Denote

$$\widetilde{f}(t, u, v, S(u), T(u)) = f(t, M(u), v, S(M(u)), T(M(u))), \quad \forall (t, u, v) \in J \times \mathbb{R}^N \times \mathbb{R}^N$$

then $\widetilde{f}(t, u, v, S(u), T(u))$ satisfies the Caratheodory condition, and $\widetilde{f}(t, u, v, S(u), T(u)) \le 0$ for any $(t, u, v) \in J \times \mathbb{R}^N \times \mathbb{R}^N$.

For any $i = 1, \ldots, k$, we denote

$$\widetilde{A}_i(u,v) = A_i\big(M(u),v\big), \qquad \widetilde{B}_i(u,v) = B_i\big(M(u),v\big), \quad \forall (u,v) \in \mathbb{R}^N \times \mathbb{R}^N,$$

then \widetilde{A}_i and \widetilde{B}_i are continuous and satisfy

$$\widetilde{B}_{i}(u,v) \leq 0, \quad \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N} \text{ for any } i = 1, \dots, k,$$

$$\widetilde{A}_{i}^{j}(u,v)v^{j} \geq 0, \quad \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N} \text{ for any } i = 1, \dots, k, j = 1, \dots, N.$$

It is not hard to check that

- $(2^{0})' \lim_{|u|+|v| \to +\infty} \widetilde{f}(t, u, v, S(u), T(u)) / (|u| + |v|)^{q(t)-1}) = 0 \text{ for } t \in J \text{ uniformly, where } q(t) \in C(J, \mathbb{R}), \text{ and } 1 < q^{-} \le q^{+} < p^{-};$
- $C(J,\mathbb{R}), \text{ and } 1 < q^{-} \le q^{+} < p^{-};$ $(3^{0})' \sum_{i=1}^{k} |\widetilde{A}_{i}(u,v)| \le C_{1}(1+|u|+|v|)^{\frac{q^{+}-1}{p^{+}-1}}, \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N};$ $(4^{0})' \sum_{i=1}^{k} |\widetilde{B}_{i}(u,v)| \le C_{2}(1+|u|+|v|)^{q^{+}-1}, \forall (u,v) \in \mathbb{R}^{N} \times \mathbb{R}^{N}.$

Let us consider

$$\begin{aligned} & (w(t)\varphi_{p(t)}(u'(t)))' = \widetilde{f}(t, u, (w(t))^{\frac{1}{p(t)-1}}u', S(u), T(u)), \quad t \in J', \\ & \lim_{t \to t_{i}^{+}} u(t) - \lim_{t \to t_{i}^{-}} u(t_{i}) \\ & = \widetilde{A}_{i}(\lim_{t \to t_{i}^{-}} u(t), \lim_{t \to t_{i}^{-}} (w(t))^{\frac{1}{p(t)-1}}u'(t)), \quad i = 1, \dots, k, \\ & \lim_{t \to t_{i}^{+}} w(t)\varphi_{p(t)}(u'(t)) - \lim_{t \to t_{i}^{-}} w(t)\varphi_{p(t)}(u'(t)) \\ & = \widetilde{B}_{i}(\lim_{t \to t_{i}^{-}} u(t), \lim_{t \to t_{i}^{-}} (w(t))^{\frac{1}{p(t)-1}}u'(t)), \quad i = 1, \dots, k, \\ & u(0) = \int_{0}^{1} g(t)u(t) dt, \qquad u(1) = \sum_{\ell=1}^{m-2} \alpha_{\ell}u(\xi_{\ell}) - \int_{0}^{1} h(t)u(t) dt. \end{aligned}$$

It follows from Theorem 5.1 and Theorem 5.5 that (37) has a nonnegative solution u. Since $u \ge 0$, we have M(u) = u, and then

$$\begin{split} \widetilde{f}(t, u, (w(t))^{\frac{1}{p(t)-1}}u', S(u), T(u)) &= f(t, u, (w(t))^{\frac{1}{p(t)-1}}u', S(u), T(u)), \\ \widetilde{A}_i \Big(\lim_{t \to t_i^-} u(t), \lim_{t \to t_i^-} (w(t))^{\frac{1}{p(t)-1}}u'(t)\Big) &= A_i \Big(\lim_{t \to t_i^-} u(t), \lim_{t \to t_i^-} (w(t))^{\frac{1}{p(t)-1}}u'(t)\Big), \\ \widetilde{B}_i \Big(\lim_{t \to t_i^-} u(t), \lim_{t \to t_i^-} (w(t))^{\frac{1}{p(t)-1}}u'(t)\Big) &= B_i \Big(\lim_{t \to t_i^-} u(t), \lim_{t \to t_i^-} (w(t))^{\frac{1}{p(t)-1}}u'(t)\Big). \end{split}$$

 \square

Thus u is a nonnegative solution of (1)-(4). This completes the proof.

Note (i) Similarly, we can get the existence of nonnegative solutions of (26) with (2)-(4). (ii) Similarly, under the conditions of Case (ii), we can discuss the existence of nonnegative solutions.

6 Examples

Example 6.1 Consider the existence of solutions of (1)-(4) under the following assumptions:

$$\begin{split} f\left(t, u, \left(w(t)\right)^{\frac{1}{p(t)-1}} u', S(u), T(u)\right) \\ &= |u|^{q(t)-2} u + \left(w(t)\right)^{\frac{q(t)-1}{p(t)-1}} |u'|^{q(t)-2} u' \\ &+ \left(S(u)\right)^{q(t)-1} + \left(T(u)\right)^{q(t)-1}, \quad t \in (0,1), t \neq t_i = \frac{i}{k+\pi}, \\ A_i(u, v) &= |u|^{-1/2} u + |v|^{-1/2} v, \quad i = 1, \dots, k, \\ B_i(u, v) &= |u|^2 u + |v|^2 v, \quad i = 1, \dots, k, \\ g(t) &= \frac{1}{1+t^2}, \qquad \alpha_\ell = \frac{\ell+1}{\ell}, \qquad \xi_\ell = \frac{\ell}{m}, \qquad h(t) = \begin{cases} 0, & 0 \le t \le \frac{1}{m}, \\ \frac{1}{1+t}, & \frac{1}{m} \le t \le 1, \end{cases} \end{split}$$

where $(Su)(t) = \int_0^1 e^{t+s} u(s) ds$, $(T(u))(t) = \int_0^t (t^2 + s^2) u(s) ds$, $p(t) = 6 + 3^{-t} \cos 3t$, $q(t) = 3 + 2^{-t} \cos t$.

Obviously, $q(t) \le 4 < 5 \le p(t)$; h(t) = 0 when $0 \le t \le \frac{1}{m} = \xi_1$; $\alpha_\ell \ge \int_{\xi_\ell}^{\xi_{\ell+1}} h(t) dt$ ($\ell = 1, \ldots, m-2$); then the conditions of Theorem 3.1 are satisfied, then (1)-(4) has a solution.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors typed, read and approved the final manuscript.

Acknowledgements

Partly supported by the National Science Foundation of China (10701066 & 10971087).

Received: 19 March 2013 Accepted: 18 June 2013 Published: 5 July 2013

References

- 1. Acerbi, E, Mingione, G: Regularity results for a class of functionals with nonstandard growth. Arch. Ration. Mech. Anal. **156**, 121-140 (2001)
- Chen, Y, Levine, S, Rao, M: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383-1406 (2006)
- Růžička, M: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)
- 4. Zhikov, VV: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR, Izv. 29, 33-36 (1987)
- Deng, SG: A local mountain pass theorem and applications to a double perturbed p(x)-Laplacian equations. Appl. Math. Comput. 211, 234-241 (2009)
- Diening, L, Harjulehto, P, Hästö, P, Růžička, M: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Berlin (2011)
- Fan, XL: Global C^{1,α} regularity for variable exponent elliptic equations in divergence form. J. Differ. Equ. 235, 397-417 (2007)
- Fan, XL: Boundary trace embedding theorems for variable exponent Sobolev spaces. J. Math. Anal. Appl. 339, 1395-1412 (2008)
- 9. Fan, XL, Zhang, QH, Zhao, D: Eigenvalues of p(x)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302, 306-317 (2005)

- Harjulehto, P, Hästö, P, Latvala, V: Harnack's inequality for p(·)-harmonic functions with unbounded exponent p. J. Math. Anal. Appl. 352, 345-359 (2009)
- 11. Harjulehto, P, Hästö, P, Lê, ÚV, Nuortio, M: Overview of differential equations with non-standard growth. Nonlinear Anal. TMA **72**, 4551-4574 (2010)
- 12. Mihăilescu, M, Rădulescu, V: Continuous spectrum for a class of nonhomogeneous differential operators. Manuscr. Math. **125**, 157-167 (2008)
- 13. Musielak, J: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)
- Samko, SG: Density of C₀[∞] (ℝ^N) in the generalized Sobolev spaces W^{mp(x)}(ℝ^N). Dokl. Akad. Nauk **369**, 451-454 (1999)
 Zhang, QH: Existence of positive solutions to a class of p(x)-Laplacian equations with singular nonlinearities. Appl. Math. Lett. **25**, 2381-2384 (2012)
- Guo, ZC, Liu, Q, Sun, JB, Wu, BY: Reaction-diffusion systems with p(x)-growth for image denoising. Nonlinear Anal., Real World Appl. 12, 2904-2918 (2011)
- Guo, ZC, Sun, JB, Zhang, DZ, Wu, BY: Adaptive Perona-Malik model based on the variable exponent for image denoising. IEEE Trans. Image Process. 21, 958-967 (2012)
- Harjulehto, P, Hästö, P, Latvala, V, Toivanen, O: Critical variable exponent functionals in image restoration. Appl. Math. Lett. 26, 56-60 (2013)
- 19. Li, F, Li, ZB, Pi, L: Variable exponent functionals in image restoration. Appl. Math. Comput. 216, 870-882 (2010)
- 20. Kim, IS, Kim, YH: Global bifurcation of the *p*-Laplacian in \mathbb{R}^N . Nonlinear Anal. **70**, 2685-2690 (2009)
- 21. Ahmad, B, Nieto, JJ: The monotone iterative technique for three-point second-order integrodifferential boundary value problems with *p*-Laplacian. Bound. Value Probl. **2007**, Article ID 57481 (2007)
- Chen, P, Tang, XH: New existence and multiplicity of solutions for some Dirichlet problems with impulsive effects. Math. Comput. Model. 55, 723-739 (2012)
- Li, J, Nieto, JJ, Shen, J: Impulsive periodic boundary value problems of first-order differential equations. J. Math. Anal. Appl. 325, 226-236 (2007)
- 24. Luo, ZG, Xiao, J, Xu, YL: Subharmonic solutions with prescribed minimal period for some second-order impulsive differential equations. Nonlinear Anal. **75**, 2249-2255 (2012)
- Ma, RY, Sun, JY, Elsanosi, M: Sign-changing solutions of second order Dirichlet problem with impulsive effects. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 20, 241-251 (2013)
- Nieto, JJ, O'Regan, D: Variational approach to impulsive differential equations. Nonlinear Anal., Real World Appl. 10, 680-690 (2009)
- Di Piazza, L, Satco, B: A new result on impulsive differential equations involving non-absolutely convergent integrals. J. Math. Anal. Appl. 352, 954-963 (2009)
- Xiao, JZ, Zhu, XH, Cheng, R: The solution sets for second order semilinear impulsive multivalued boundary value problems. Comput. Math. Appl. 64, 147-160 (2012)
- Yao, MP, Zhao, AM, Yan, JR: Periodic boundary value problems of second-order impulsive differential equations. Nonlinear Anal. 70, 262-273 (2009)
- Bai, L, Dai, BX: Three solutions for a *p*-Laplacian boundary value problem with impulsive effects. Appl. Math. Comput. 217, 9895-9904 (2011)
- Bogun, I: Existence of weak solutions for impulsive *p*-Laplacian problem with superlinear impulses. Nonlinear Anal., Real World Appl. 13, 2701-2707 (2012)
- Cabada, A, Tomeček, J: Extremal solutions for nonlinear functional *φ*-Laplacian impulsive equations. Nonlinear Anal. 67, 827-841 (2007)
- Feng, MQ, Du, B, Ge, WG: Impulsive boundary value problems with integral boundary conditions and one-dimensional *p*-Laplacian. Nonlinear Anal. **70**, 3119-3126 (2009)
- Zhang, QH, Qiu, ZM, Liu, XP: Existence of solutions and nonnegative solutions for weighted p(r)-Laplacian impulsive system multi-point boundary value problems. Nonlinear Anal. 71, 3814-3825 (2009)
- Ding, W, Wang, Y: New result for a class of impulsive differential equation with integral boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 18, 1095-1105 (2013)
- Hao, XN, Liu, LS, Wu, YH: Positive solutions for second order impulsive differential equations with integral boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 16, 101-111 (2011)
- 37. Liu, ZH, Han, JF, Fang, LJ: Integral boundary value problems for first order integro-differential equations with impulsive integral conditions. Comput. Math. Appl. **61**, 3035-3043 (2011)
- Zhang, XM, Yang, XZ, Ge, WG: Positive solutions of *n*th-order impulsive boundary value problems with integral boundary conditions in Banach spaces. Nonlinear Anal. **71**, 5930-5945 (2009)

doi:10.1186/1687-2770-2013-161

Cite this article as: Dong and Zhang: Solutions and nonnegative solutions for a weighted variable exponent impulsive integro-differential system with multi-point and integral mixed boundary value problems. *Boundary Value Problems* 2013 2013:161.