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1 Introduction
In this paper, we consider the existence of solutions and nonnegative solutions for the
following weighted p(t)-Laplacian integro-differential system:

–�p(t)u + f
(
t,u,

(
w(t)

) 
p(t)– u′,S(u),T(u)

)
= , t ∈ (, ), t �= ti, ()

where u : [, ] →R
N , f (·, ·, ·, ·, ·) : [, ]×R

N ×R
N ×R

N ×R
N →R

N , ti ∈ (, ), i = , . . . ,k,
with the following impulsive boundary value conditions:

lim
t→t+i

u(t) – lim
t→t–i

u(t) = Ai

(
lim
t→t–i

u(t), lim
t→t–i

(
w(t)

) 
p(t)– u′(t)

)
, i = , . . . ,k, ()

lim
t→t+i

w(t)
∣∣u′∣∣p(t)–u′(t) – lim

t→t–i
w(t)

∣∣u′∣∣p(t)–u′(t)

= Bi

(
lim
t→t–i

u(t), lim
t→t–i

(
w(t)

) 
p(t)– u′(t)

)
, i = , . . . ,k, ()

u() =
∫ 


g(t)u(t)dt, u() =

m–∑
�=

α�u(ξ�) –
∫ 


h(t)u(t)dt, ()

where p ∈ C([, ],R) and p(t) > , –�p(t)u := –(w(t)|u′|p(t)–u′)′ is called the weighted
p(t)-Laplacian;  < t < t < · · · < tk < ,  < ξ < · · · < ξm– < ; α� ≥  (� = , . . . ,m – );
g ∈ L[, ] is nonnegative,

∫ 
 g(t)dt = σ ∈ [, ]; h ∈ L[, ],

∫ 
 h(t)dt = δ;Ai,Bi ∈ C(RN ×
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R
N ,RN ); T and S are linear operators defined by (Su)(t) =

∫ 
 h∗(t, s)u(s)ds, (Tu)(t) =∫ t

 k∗(t, s)u(s)ds, t ∈ [, ], where k∗,h∗ ∈ C([, ]× [, ],R).
If σ <  and

∑m–
�= α�–δ �= , we say the problem is nonresonant, but if σ =  or

∑m–
�= α�–

δ = , we say the problem is resonant.
Throughout the paper, o() means functions which are uniformly convergent to  (as

n → +∞); for any v ∈ R
N , vj will denote the jth component of v; the inner product in R

N

will be denoted by 〈·, ·〉, | · | will denote the absolute value and the Euclidean norm on
R

N . Denote J = [, ], J ′ = (, )\{t, . . . , tk}, J = [t, t], Ji = (ti, ti+], i = , . . . ,k, where t = ,
tk+ = . Denote by Joi the interior of Ji, i = , , . . . ,k. Let

PC
(
J ,RN) = {x : J →R

N

∣∣∣∣∣x ∈ C(Ji,RN ), i = , , . . . ,k
and limt→t+i x(t) exists for i = , . . . ,k

}
,

w ∈ PC(J ,R) satisfy  < w(t), ∀t ∈ (, )\{t, . . . , tk}, and (w(t))
–

p(t)– ∈ L(, ),

PC(J ,RN) =
⎧⎨⎩x ∈ PC

(
J ,RN) ∣∣∣∣∣∣x

′ ∈ C(Joi ,RN ), limt→t+i (w(t))


p(t)– x′(t)

and limt→t–i+ (w(t))


p(t)– x′(t) exists for i = , , . . . ,k

⎫⎬⎭ .

For any x = (x, . . . ,xN ) ∈ PC(J ,RN ), denote |xi| = sup{|xi(t)| | t ∈ J ′}.
Obviously, PC(J ,RN ) is a Banach space with the norm ‖x‖ = (

∑N
i= |xi|)


 , and PC(J ,

R
N ) is a Banach space with the norm ‖x‖ = ‖x‖ + ‖(w(t)) 

p(t)– x′‖. Denote L = L(J ,RN )
with the norm

‖x‖L =
( N∑

i=

∣∣xi∣∣L
) 



, ∀x ∈ L, where
∣∣xi∣∣L = ∫ 



∣∣xi(t)∣∣dt.
In the following, PC(J ,RN ) and PC(J ,RN ) will be simply denoted by PC and PC, re-

spectively. We denote

u
(
t+i
)
= lim

t→t+i
u(t), u

(
t–i
)
= lim

t→t–i
u(t),

w()
∣∣u′∣∣p()–u′() = lim

t→+
w(t)

∣∣u′∣∣p(t)–u′(t),

w()
∣∣u′∣∣p()–u′() = lim

t→–
w(t)

∣∣u′∣∣p(t)–u′(t),

Ai = Ai

(
lim
t→t–i

u(t), lim
t→t–i

(
w(t)

) 
p(t)– u′(t)

)
, i = , . . . ,k,

Bi = Bi

(
lim
t→t–i

u(t), lim
t→t–i

(
w(t)

) 
p(t)– u′(t)

)
, i = , . . . ,k.

The study of differential equations and variational problems with nonstandard p(t)-
growth conditions has attracted more and more interest in recent years (see [–]). The
applied background of these kinds of problems includes nonlinear elasticity theory [],
electro-rheological fluids [, ], and image processing []. Many results have been ob-
tained on these kinds of problems; see, for example, [–]. Recently, the applications of
variable exponent analysis in image restoration have attracted more and more attention
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[–]. If p(t) ≡ p (a constant), ()-() becomes the well-known p-Laplacian problem.
If p(t) is a general function, one can see easily –�p(t)cu �= cp(t)–(–�p(t)u) in general, but
–�pcu = cp–(–�pu), so –�p(t) represents a non-homogeneity and possesses more non-
linearity, thus –�p(t) is more complicated than –�p. For example:
(a) If � ⊂R

N is a bounded domain, the Rayleigh quotient

λp(x) = inf
u∈W ,p(x)

 (�)\{}

∫
�


p(x) |∇u|p(x) dx∫

�


p(x) |u|p(x) dx

is zero in general, and only under some special conditions λp(x) >  (see []), when � ⊂ R

(N = ) is an interval, the results show that λp(x) >  if and only if p(x) is monotone. But the
property of λp >  is very important in the study of p-Laplacian problems, for example, in
[], the authors use this property to deal with the existence of solutions.
(b) If w(t) ≡  and p(t) ≡ p (a constant) and –�pu > , then u is concave, this property

is used extensively in the study of one-dimensional p-Laplacian problems (see []), but it
is invalid for –�p(t). It is another difference between –�p and –�p(t).
In recent years, many results have been devoted to the existence of solutions for the

Laplacian impulsive differential equation boundary value problems; see, for example, [–
]. There are somemethods to deal with these problems, for example, sub-super-solution
method, fixed point theorem,monotone iterative method, coincidence degree. Because of
the nonlinear property of –�p, results on the existence of solutions for p-Laplacian impul-
sive differential equation boundary value problems are rare (see [–]). In [], using
the coincidence degree method, the present author investigates the existence of solutions
for p(r)-Laplacian impulsive differential equation withmulti-point boundary value condi-
tions, when the problem is nonresonant. Integral boundary conditions for evolution prob-
lems have various applications in chemical engineering, thermo-elasticity, underground
water flow and population dynamics. There are many papers on the differential equations
with integral boundary value problems; see, for example, [–].
In this paper, when p(t) is a general function, we investigate the existence of solutions

and nonnegative solutions for the weighted p(t)-Laplacian impulsive integro-differential
systemwith integral andmulti-point boundary value conditions. Results on these kinds of
problems are rare. Our results contain both of the cases of resonance and nonresonance.
Our method is based upon Leray-Schauder’s degree. The homotopy transformation used
in [] is unsuitable for this paper. Moreover, this paper will consider the existence of ()
with (), () and the following impulsive condition:

lim
t→t+i

(
w(t)

) 
p(t)– u′(t) – lim

t→t–i

(
w(t)

) 
p(t)– u′(t)

=Di

(
lim
t→t–i

u(t), lim
t→t–i

(
w(t)

) 
p(t)– u′(t)

)
, i = , . . . ,k, ()

where Di ∈ C(RN ×R
N ,RN ), the impulsive condition () is called a linear impulsive con-

dition (LI for short), and () is called a nonlinear impulsive condition (NLI for short). In
general, p-Laplacian impulsive problems have two kinds of impulsive conditions, includ-
ing LI and NLI; but Laplacian impulsive problems only have LI in general. It is another
difference between p-Laplacian impulsive problems and Laplacian impulsive problems.
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Moreover, since the Rayleigh quotient λp(x) =  in general and the p(t)-Laplacian is non-
homogeneity, when we deal with the existence of solutions of variable exponent impulsive
problems like ()-(), we usually need the nonlinear term that satisfies the sub-(p– – )
growth condition, but for the p-Laplacian impulsive problems, the nonlinear term only
needs to satisfy the sub-(p – ) growth condition.
LetN ≥ , the function f : J×R

N ×R
N ×R

N ×R
N →R

N is assumed to beCaratheodory,
by which we mean:

(i) For almost every t ∈ J , the function f (t, ·, ·, ·, ·) is continuous;
(ii) For each (x, y, s, z) ∈ R

N ×R
N ×R

N ×R
N , the function f (·,x, y, s, z) is measurable

on J ;
(iii) For each R > , there is a αR ∈ L(J ,R) such that, for almost every t ∈ J and every

(x, y, s, z) ∈ R
N ×R

N ×R
N ×R

N with |x| ≤ R, |y| ≤ R, |s| ≤ R, |z| ≤ R, one has

∣∣f (t,x, y, s, z)∣∣≤ αR(t).

We say a function u : J →R
N is a solution of () if u ∈ PC with w(t)|u′|p(t)–u′ absolutely

continuous on Joi , i = , , . . . ,k, which satisfies () a.e. on J .
In this paper, we always useCi to denote positive constants, if it cannot lead to confusion.

Denote

z– = inf
t∈J z(t), z+ = sup

t∈J
z(t) for any z ∈ PC(J ,R).

We say f satisfies the sub-(p– – ) growth condition if f satisfies

lim|u|+|v|+|s|+|z|→+∞
f (t,u, v, s, z)

(|u| + |v| + |s| + |z|)q(t)– =  for t ∈ J uniformly,

where q(t) ∈ PC(J ,R) and  < q– ≤ q+ < p–.
We will discuss the existence of solutions for system ()-() or () with (), () and () in

the following three cases:
Case (i): σ < ,

∑m–
�= α� – δ = ;

Case (ii): σ = ,
∑m–

�= α� – δ �= ;
Case (iii): σ < ,

∑m–
�= α� – δ < .

This paper is organized as five sections. In Section , we present some preliminaries and
give the operator equation which has the same solutions of ()-() in the three cases, re-
spectively. In Section , we give the existence of solutions for system ()-() or () with (),
() and () when σ < ,

∑m–
�= α� – δ = . In Section , we give the existence of solutions for

system ()-() or () with (), () and () when σ = ,
∑m–

�= α� – δ �= . Finally, in Section ,
we give the existence of solutions and nonnegative solutions for system ()-() or () with
(), () and () when σ < ,

∑m–
�= α� – δ < .

2 Preliminary
For any (t,x) ∈ J×R

N , denote ϕ(t,x) = |x|p(t)–x. Obviously, ϕ has the following properties.

Lemma . (see []) ϕ is a continuous function and satisfies:

http://www.boundaryvalueproblems.com/content/2013/1/161
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(i) For any t ∈ [, ], ϕ(t, ·) is strictly monotone, i.e.,

〈
ϕ(t,x) – ϕ(t,x),x – x

〉
>  for any x,x ∈R

N ,x �= x.

(ii) There exists a function α : [, +∞)→ [, +∞), α(s)→ +∞ as s→ +∞ such that

〈
ϕ(t,x),x

〉≥ α
(|x|)|x| for all x ∈R

N .

It is well known that ϕ(t, ·) is a homeomorphism from R
N to R

N for any fixed t ∈ J .
Denote

ϕ–(t,x) = |x| –p(t)p(t)– x for x ∈ R
N\{},ϕ–(t, ) = ,∀t ∈ J .

It is clear that ϕ–(t, ·) is continuous and sends bounded sets to bounded sets.
In this section, we will do some preparation and give the operator equation which has

the same solutions of ()-() in three cases, respectively. At first, let us now consider the
following simple impulsive problem with boundary value condition ():

(w(t)ϕ(t,u′(t)))′ = f (t), t ∈ (, ), t �= ti,
limt→t+i u(t) – limt→t–i u(t) = ai, i = , . . . ,k,
limt→t+i w(t)|u′|p(t)–u′(t) – limt→t–i w(t)|u′|p(t)–u′(t) = bi, i = , . . . ,k,

⎫⎪⎬⎪⎭ ()

where ai,bi ∈R
N ; f ∈ L.

Denote a = (a, . . . ,ak), b = (b, . . . ,bk). Obviously, a,b ∈R
kN .

We will discuss it in three cases, respectively.

2.1 Case (i)
Suppose that σ <  and

∑m–
�= α� – δ = . If u is a solution of () with (), we have

w(t)ϕ
(
t,u′(t)

)
= w()ϕ

(
,u′()

)
+
∑
ti<t

bi +
∫ t


f (s)ds, ∀t ∈ J ′. ()

Denote ρ = w()ϕ(,u′()). It is easy to see that ρ is dependent on a, b and f (·). Define
the operator F : L → PC as

F(f )(t) =
∫ t


f (s)ds, ∀t ∈ J ,∀f ∈ L.

By solving for u′ in () and integrating, we find

u(t) = u() +
∑
ti<t

ai + F
{
ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(f )(t)
)]}

(t), ∀t ∈ J ,

which together with boundary value condition () implies

u() =


( – σ )

∫ 


g(t)

(
F
{
ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(f )(t)
)]}

(t) +
∑
ti<t

ai
)
dt,

http://www.boundaryvalueproblems.com/content/2013/1/161
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and

m–∑
�=

α�

{∑
ti<ξ�

ai +
∫ ξ�


ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(f )(t)
)]

dt
}

–
k∑
i=

ai –
∫ 


ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(f )(t)
)]

dt

–
∫ 


h(t)

(
F
{
ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(f )(t)
)]}

(t) +
∑
ti<t

ai
)
dt = .

DenoteW =R
kN × L with the norm

‖ω‖ =
k∑
i=

|ai| +
k∑
i=

|bi| + ‖ϑ‖L , ∀ω = (a,b,ϑ) ∈W ,

thenW is a Banach space.
For any ω ∈ W , we denote

ω(ρ) =
m–∑
�=

α�

{∑
ti<ξ�

ai +
∫ ξ�


ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(ϑ)(t)
)]

dt
}

–
k∑
i=

ai –
∫ 


ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(ϑ)(t)
)]

dt

–
∫ 


h(t)

(
F
{
ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(ϑ)(t)
)]}

(t) +
∑
ti<t

ai
)
dt.

Denote ξm– = . Then

ω(ρ) = –
m–∑
�=

α�

{∑
ξ�≤ti

ai +
∫ 

ξ�

ϕ–
[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(ϑ)(t)
)]

dt
}

+
∫ 


h(t)

(∫ 

t
ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(ϑ)(t)
)]

dt +
∑
ti≥t

ai
)
dt

= –
m–∑
�=

(
α� –

∫ ξ�+

ξ�

h(t)dt
)∫ 

ξ�

ϕ–
[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(ϑ)(t)
)]

dt

–
m–∑
�=

∫ ξ�+

ξ�

h(t)
∫ t

ξ�

ϕ–
[
s,
(
w(s)

)–(
ρ +

∑
si<s

bi + F(ϑ)(s)
)]

dsdt

+
∫ ξ


h(t)

∫ 

t
ϕ–

[
s,
(
w(s)

)–(
ρ +

∑
si<s

bi + F(ϑ)(s)
)]

dsdt

–
m–∑
�=

α�

∑
ξ�≤ti

ai +
∫ 


h(t)

∑
ti≥t

ai dt.

http://www.boundaryvalueproblems.com/content/2013/1/161
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Throughout the paper, we denote

E =
∫ ξ



∣∣h(t)∣∣ ∫ 

t

(
w(s)

) –
p(s)– dsdt +

m–∑
�=

∫ ξ�+

ξ�

h(t)
∫ t

ξ�

(
w(s)

) –
p(s)– dsdt

+
m–∑
�=

(
α� –

∫ ξ�+

ξ�

h(t)dt
)∫ 

ξ�

(
w(s)

) –
p(s)– ds,

δ∗ =
m–∑
�=

α� +
∫ 



∣∣h(t)∣∣dt.
Lemma. Suppose that h(t)≥  on [ξ, ], α� ≥ ∫ ξ�+

ξ�
h(t)dt (� = , . . . ,m–) and h(t) ≤ 

on [, ξ]. Then the function ω(·) has the following properties:
(i) For any fixed ω ∈W , the equation

ω(ρ) =  ()

has a unique solution ρ̃(ω) ∈R
N .

(ii) The function ρ̃ :W →R
N , defined in (i), is continuous and sends bounded sets to

bounded sets.Moreover, for any ω = (a,b,ϑ) ∈ W , we have

∣∣ρ̃(ω)
∣∣≤ N

[
(N)p

+

(
δ∗ E + 

E

k∑
i=

|ai|
)p#–

+
k∑
i=

|bi| + ‖ϑ‖L
]
,

where the notationMp#– means

Mp#– =

{
Mp+–, M > ,
Mp––, M ≤ .

Proof (i) From Lemma ., it is immediate that

〈
ω(x) –ω(x),x – x

〉
<  for x �= x,∀x,x ∈ R

N ,

and hence, if () has a solution, then it is unique.
Set R = N[(N)p+(δ∗ E+

E
∑k

i= |ai|)p#– +
∑k

i= |bi| + ‖ϑ‖L ].
Suppose that |ρ| > R, it is easy to see that there exists some j ∈ {, . . . ,N} such that the

absolute value of the jth component ρ
j
 of ρ satisfies

∣∣ρ j

∣∣≥ |ρ|

N
> 

[
(N)p

+

(
δ∗ E + 

E

k∑
i=

|ai|
)p#–

+
k∑
i=

|bi| + ‖ϑ‖L
]
.

Thus the jth component of ρ +
∑

ti<t bi + F(ϑ)(t) keeps sign on J , namely, for any t ∈ J ,
we have

∣∣∣∣(ρ
j
 +

∑
ti<t

b
j
i +F(ϑ)j (t)

)∣∣∣∣≥ |ρ|
N

> (N)p
+

(
δ∗ E + 

E

k∑
i=

|ai|
)p#–

+
k∑
i=

|bi|+‖ϑ‖L .

http://www.boundaryvalueproblems.com/content/2013/1/161
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Obviously, we have∣∣∣∣(ρ +
∑
ti<t

bi + F(ϑ)(t)
)∣∣∣∣≤ |ρ|


≤ N

∣∣∣∣(ρ
j
 +

∑
ti<t

b
j
i + F(ϑ)j (t)

)∣∣∣∣,
then it is easy to see that the jth component of ω(ρ) keeps the same sign of ρ

j
 . Thus,

ω(ρ) �= .

Let us consider the equation

λω(ρ) + ( – λ)ρ = , λ ∈ [, ]. ()

According to the preceding discussion, all the solutions of () belong to b(R + ) = {x ∈
R

N | |x| < R + }. Therefore

dB
[
ω(ρ),b(R + ), 

]
= dB

[
I,b(R + ), 

] �= ,

it means the existence of solutions of ω(ρ) = .
In this way, we define a function ρ̃(ω) :W →R

N , which satisfies ω(ρ̃(ω)) = .
(ii) By the proof of (i), we also obtain ρ̃ sends bounded sets to bounded sets, and

∣∣ρ̃(ω)
∣∣≤ N

[
(N)p

+

(
δ∗ E + 

E

k∑
i=

|ai|
)p#–

+
k∑
i=

|bi| + ‖ϑ‖L
]
.

It only remains to prove the continuity of ρ̃. Let {ωn} be a convergent sequence in W
and ωn → ω, as n → +∞. Since {ρ̃(ωn)} is a bounded sequence, it contains a convergent
subsequence {ρ̃(ωnj )}. Suppose that ρ̃(ωnj ) → ρ as j → +∞. Since ωnj

(ρ̃(ωnj )) = ,
letting j → +∞, we have ω(ρ) = , which together with (i) implies ρ = ρ̃(ω), it means
ρ̃ is continuous. This completes the proof. �

Now we denote by Nf (u) : [, ] × PC → L the Nemytskii operator associated to f
defined by

Nf (u)(t) = f
(
t,u(t),

(
w(t)

) 
p(t)– u′(t),S(u),T(u)

)
on J . ()

We define ρ : PC →R
N as

ρ(u) = ρ̃(A,B,Nf )(u), ()

where A = (A, . . . ,Ak), B = (B, . . . ,Bk).
It is clear that ρ(·) is continuous and sends bounded sets of PC to bounded sets of RN ,

and hence it is compact continuous.
If u is a solution of () with (), we have

u(t) = u() +
∑
ti<t

ai + F
{
ϕ–

[
t,
(
w(t)

)–(
ρ̃(ω) +

∑
ti<t

bi + F(f )(t)
)]}

(t), ∀t ∈ [, ].

http://www.boundaryvalueproblems.com/content/2013/1/161
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For fixed a,b ∈R
kN , we denote K(a,b) : L → PC as

K(a,b)(ϑ)(t) = F
{
ϕ–

[
t,
(
w(t)

)–(
ρ̃(a,b,ϑ) +

∑
ti<t

bi + F(ϑ)(t)
)]}

(t), ∀t ∈ J .

Define K : PC → PC as

K(u)(t) = F
{
ϕ–

[
t,
(
w(t)

)–(
ρ(u) +

∑
ti<t

Bi + F
(
Nf (u)

)
(t)
)]}

(t), ∀t ∈ J .

Lemma . (i) The operator K(a,b) is continuous and sends equi-integrable sets in L to
relatively compact sets in PC.
(ii) The operator K is continuous and sends bounded sets in PC to relatively compact

sets in PC.

Proof (i) It is easy to check that K(a,b)(ϑ)(·) ∈ PC, ∀ϑ ∈ L, ∀a,b ∈R
kN . Since (w(t))

–
p(t)– ∈

L and

K(a,b)(ϑ)′(t) = ϕ–
[
t,
(
w(t)

)–(
ρ̃(a,b,ϑ) +

∑
ti<t

bi + F(ϑ)
)]

, ∀t ∈ [, ],

it is easy to check that K(a,b)(·) is a continuous operator from L to PC.
Let now U be an equi-integrable set in L, then there exists α ∈ L such that

∣∣u(t)∣∣≤ α(t) a.e. in J for any u ∈ L.

We want to show that K(a,b)(U)⊂ PC is a compact set.
Let {un} be a sequence in K(a,b)(U), then there exists a sequence {ϑn} ∈ U such that

un = K(a,b)(ϑn). For any t, t ∈ J , we have

∣∣F(ϑn)(t) – F(ϑn)(t)
∣∣ = ∣∣∣∣∫ t


ϑn(t)dt –

∫ t


ϑn(t)dt

∣∣∣∣ = ∣∣∣∣∫ t

t
ϑn(t)dt

∣∣∣∣≤ ∣∣∣∣∫ t

t
α(t)dt

∣∣∣∣.
Hence the sequence {F(ϑn)} is uniformly bounded and equi-continuous. By the Ascoli-

Arzela theorem, there exists a subsequence of {F(ϑn)} (which we rename the same) which
is convergent in PC. According to the bounded continuity of the operator ρ̃, we can
choose a subsequence of {ρ̃(a,b,ϑn) + F(ϑn)} (which we still denote {ρ̃(a,b,ϑn) + F(ϑn)})
which is convergent in PC, thenw(t)


p(t)– K(a,b)(ϑn)′(t) = ϕ–(t, ρ̃(a,b,ϑn)+

∑
ti<t bi+F(ϑn))

is convergent in PC.
Since

K(a,b)(ϑn)(t) = F
{
ϕ–

[
t,
(
w(t)

)–(
ρ̃(a,b,ϑn) +

∑
ti<t

bi + F(ϑn)
)]}

(t), ∀t ∈ [, ],

it follows from the continuity of ϕ– and the integrability of w(t)
–

p(t)– in L that K(a,b)(ϑn)
is convergent in PC. Thus {un} is convergent in PC.
(ii) It is easy to see from (i) and Lemma ..
This completes the proof. �
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Let us define P : PC → PC as

P(u) =
∫ 
 g(t)[K(u)(t) +

∑
ti<t Ai]dt

 – σ
.

It is easy to see that P is compact continuous.

Lemma . Suppose that σ < ,
∑m–

�= α� – δ = ; h(t) ≥  on [ξ, ], α� ≥ ∫ ξ�+
ξ�

h(t)dt (� =
, . . . ,m–) and h(t) ≤  on [, ξ].Then u is a solution of ()-() if and only if u is a solution
of the following abstract operator equation:

u = P(u) +
∑
ti<t

Ai +K(u). ()

Proof Suppose that u is a solution of ()-(). By integrating () from  to t, we find that

w(t)ϕ
(
t,u′(t)

)
= ρ(u) +

∑
ti<t

Bi + F
(
Nf (u)

)
(t), ∀t ∈ (, ), t �= t, . . . , tk . ()

It follows from () and () that

u(t) = u() +
∑
ti<t

Ai

+ F
{
ϕ–

[
t,
(
w(t)

)–(
ρ(u) +

∑
ti<t

Bi + F
(
Nf (u)

))]}
(t), ∀t ∈ [, ],

u() =


( – σ )

×
∫ 


g(t)

(
F
{
ϕ–

[
t,
(
w(t)

)–(
ρ(u) +

∑
ti<t

Bi + F
(
Nf (u)

))]}
(t) +

∑
ti<t

Ai

)
dt

=
∫ 
 g(t)[K(u)(t) +

∑
ti<t Ai]dt

 – σ
= P(u). ()

Combining the definition of ρ, we can see

u = P(u) +
∑
ti<t

Ai +K(u).

Conversely, if u is a solution of (), then () is satisfied. It is easy to check that

u() = P(u) =
∫ 
 g(t)[K(u)(t) +

∑
ti<t Ai]dt

 – σ
,

u() = σu() +
∫ 


g(t)

[
K(u)(t) +

∑
ti<t

Ai

]
dt =

∫ 


g(t)u(t)dt, ()

and

u() = P(u) +
k∑
i=

Ai +K(u)().

http://www.boundaryvalueproblems.com/content/2013/1/161
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By the condition of the mapping ρ, we have

m–∑
�=

α�

{∑
ti<ξ�

Ai +
∫ ξ�


ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

Bi + F
(
Nf (u)

)
(t)
)]

dt
}

–
k∑
i=

Ai –
∫ 


ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

Bi + F
(
Nf (u)

)
(t)
)]

dt

–
∫ 


h(t)

(
F
{
ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

Bi + F
(
Nf (u)

)
(t)
)]}

(t) +
∑
ti<t

Ai

)
dt = .

Thus

u() =
m–∑
�=

α�u(ξ�) –
∫ 


h(t)u(t)dt. ()

It follows from () and () that () is satisfied.
From (), we have

w(t)ϕ
(
t,u′(t)

)
= ρ(u) +

∑
ti<t

Bi + F
(
Nf (u)

)
(t), t ∈ (, ), t �= ti, ()

(
w(t)ϕ

(
t,u′))′ =Nf (u)(t), t ∈ (, ), t �= ti.

It follows from () that () is satisfied.
Hence u is a solution of ()-(). This completes the proof. �

2.2 Case (ii)
Suppose that σ =  and

∑m–
�= α� – δ �= . If u is a solution of () with (), we have

w(t)ϕ
(
t,u′(t)

)
= w()ϕ

(
,u′()

)
+
∑
ti<t

bi +
∫ t


f (s)ds, ∀t ∈ J ′.

Denote ρ = w()ϕ(,u′()). It is easy to see that ρ is dependent on a, b and f (·). Bound-
ary value condition () implies that∫ 


g(t)

(
F
{
ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(f )(t)
)]}

(t) +
∑
ti<t

ai
)
dt = ,

u() =
∑m–

�= α�{∑ti<ξ�
ai +

∫ ξ�
 ϕ–[t, (w(t))–(ρ +

∑
ti<t bi + F(f )(t))]dt}

 –
∑m–

i= α� + δ

–
∑k

i= ai +
∫ 
 ϕ–[t, (w(t))–(ρ +

∑
ti<t bi + F(f )(t))]dt

 –
∑m–

�= α� + δ

–
∫ 
 h(t)(F{ϕ–[t, (w(t))–(ρ +

∑
ti<t bi + F(f )(t))]}(t) +∑ti<t ai)dt

 –
∑m–

�= α� + δ
.

For any ω ∈ W , we denote

�ω(ρ) =
∫ 


g(t)

(
F
{
ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(ϑ)(t)
)]}

(t) +
∑
ti<t

ai
)
dt.

http://www.boundaryvalueproblems.com/content/2013/1/161


Dong and Zhang Boundary Value Problems 2013, 2013:161 Page 12 of 28
http://www.boundaryvalueproblems.com/content/2013/1/161

Throughout the paper, we denote E =
∫ 
 (w(t))

–
p(t)– dt.

Lemma . The function �ω(·) has the following properties:
(i) For any fixed ω ∈W , the equation �ω(ρ) =  has a unique solution ρ̃(ω) ∈R

N .
(ii) The function ρ̃ :W →R

N , defined in (i), is continuous and sends bounded sets to
bounded sets.Moreover, for any ω = (a,b,ϑ) ∈ W , we have

∣∣ρ̃(ω)
∣∣≤ N

[
(N)p

+

(
E + 
E

k∑
i=

|ai|
)p#–

+
k∑
i=

|bi| + ‖ϑ‖L
]
,

where the notationMp#– means

Mp#– =

{
Mp+–, M > ,
Mp––, M ≤ .

Proof Similar to the proof of Lemma ., we omit it here. �

We define ρ : PC → R
N as ρ(u) = ρ̃(A,B,Nf )(u), where A = (A, . . . ,Ak), B =

(B, . . . ,Bk).
It is clear that ρ(·) is continuous and sends bounded sets of PC to bounded sets of RN ,

and hence it is compact continuous.
For fixed a,b ∈R

kN , we denote K∗
(a,b) : L

 → PC as

K∗
(a,b)(ϑ)(t) = F

{
ϕ–

[
t,
(
w(t)

)–(
ρ̃(a,b,ϑ) +

∑
ti<t

bi + F(ϑ)(t)
)]}

(t), ∀t ∈ J .

Define K : PC → PC as

K(u)(t) = F
{
ϕ–

[
t,
(
w(t)

)–(
ρ(u) +

∑
ti<t

Bi + F
(
Nf (u)

)
(t)
)]}

(t), ∀t ∈ J .

Similar to the proof of Lemma ., we have the following.

Lemma . (i) The operator K∗
(a,b) is continuous and sends equi-integrable sets in L to

relatively compact sets in PC.
(ii) The operator K is continuous and sends bounded sets in PC to relatively compact

sets in PC.
Let us define P : PC → PC as

P(u) =
∑m–

�= α�[
∑

ti<ξ�
Ai +K(u)(ξ�)] –

∑k
i=Ai

 –
∑m–

�= α� + δ

–
K(u)() +

∫ 
 h(t)[K(u)(t) +

∑
ti<t Ai]dt

 –
∑m–

�= α� + δ
.

It is easy to see that P is compact continuous.

http://www.boundaryvalueproblems.com/content/2013/1/161
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Lemma . Suppose that σ = ,
∑m–

�= α� – δ �= , then u is a solution of ()-() if and only
if u is a solution of the following abstract operator equation:

u = P(u) +
∑
ti<t

Ai +K(u).

Proof Similar to the proof of Lemma ., we omit it here. �

2.3 Case (iii)
Suppose that σ <  and

∑m–
�= α� – δ < . If u is a solution of () with (), we have

w(t)ϕ
(
t,u′(t)

)
= w()ϕ

(
,u′()

)
+
∑
ti<t

bi +
∫ t


f (s)ds, ∀t ∈ J ′.

Denote ρ = w()ϕ(,u′()). It is easy to see that ρ is dependent on a, b and f (·).
From u() =

∫ 
 g(t)u(t)dt, we have

u() =


( – σ )

×
∫ 


g(t)

(
F
{
ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(f )(t)
)]}

(t) +
∑
ti<t

ai
)
dt. ()

From u() =
∑m–

�= α�u(ξ�) –
∫ 
 h(t)u(t)dt, we obtain

u() =
∑m–

�= α�{∑ti<ξ�
ai +

∫ ξ�
 ϕ–[t, (w(t))–(ρ +

∑
ti<t bi + F(f )(t))]dt}

 –
∑m–

�= α� + δ

–
∑k

i= ai +
∫ 
 ϕ–[t, (w(t))–(ρ +

∑
ti<t bi + F(f )(t))]dt

 –
∑m–

�= α� + δ

–
∫ 
 h(t)(F{ϕ–[t, (w(t))–(ρ +

∑
ti<t bi + F(f )(t))]}(t) +∑ti<t ai)dt

 –
∑m–

�= α� + δ
. ()

For fixed ω ∈W , we denote

ϒω(ρ) =


( – σ )

∫ 


g(t)

(
F
{
ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(ϑ)(t)
)]}

(t) +
∑
ti<t

ai
)
dt

–
∑m–

�= α�{∑ti<ξ�
ai +

∫ ξ�
 ϕ–[t, (w(t))–(ρ +

∑
ti<t bi + F(ϑ)(t))]dt}

 –
∑m–

�= α� + δ

+
∑k

i= ai +
∫ 
 ϕ–[t, (w(t))–(ρ +

∑
ti<t bi + F(ϑ)(t))]dt

 –
∑m–

�= α� + δ

+
∫ 
 h(t)(F{ϕ–[t, (w(t))–(ρ +

∑
ti<t bi + F(ϑ)(t))]}(t) +∑ti<t ai)dt

 –
∑m–

�= α� + δ
,

∀ρ ∈R
N .

From () and (), we have ϒω(ρ) = .

http://www.boundaryvalueproblems.com/content/2013/1/161
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Obviously, ϒω(ρ) can be rewritten as

ϒω(ρ) =


( – σ )

∫ 


g(t)

(
F
{
ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(ϑ)(t)
)]}

(t) +
∑
ti<t

ai
)
dt

+
∑m–

�= α�{∑ξ�≤ti ai +
∫ 
ξ�

ϕ–[t, (w(t))–(ρ +
∑

ti<t bi + F(ϑ)(t))]dt}
 –

∑m–
�= α� + δ

+
( –

∑m–
�= α�)

∫ 
 ϕ–[t, (w(t))–(ρ +

∑
ti<t bi + F(ϑ)(t))]dt

 –
∑m–

�= α� + δ

+
∑k

i= ai( –
∑m–

�= α�)
 –

∑m–
�= α� + δ

+
∫ 
 h(t)(F{ϕ–[t, (w(t))–(ρ +

∑
ti<t bi + F(ϑ)(t))]}(t) +∑ti<t ai)dt

 –
∑m–

�= α� + δ
.

Denote ξm– = . Moreover, we also have

ϒω(ρ)

=


( – σ )

∫ 


g(t)

(
F
{
ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(ϑ)(t)
)]}

(t) +
∑
ti<t

ai
)
dt

+
∑m–

�= α�

∑
ξ�≤ti ai

 –
∑m–

�= α� + δ

+
∑m–

�= (α� –
∫ ξ�+
ξ�

h(t)dt)
∫ 
ξ�

ϕ–[t, (w(t))–(ρ +
∑

ti<t bi + F(ϑ)(t))]dt

 –
∑m–

�= α� + δ

+
∑m–

�=
∫ ξ�+
ξ�

h(t)
∫ t
ξ�

ϕ–[s, (w(s))–(ρ +
∑

si<s bi + F(ϑ)(s))]dsdt

 –
∑m–

�= α� + δ

–
∫ ξ
 h(t)

∫ 
t ϕ–[s, (w(s))–(ρ +

∑
si<s bi + F(ϑ)(s))]dsdt +

∫ 
 h(t)

∑
ti≥t ai dt

 –
∑m–

�= α� + δ

+
∫ 


ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

bi + F(ϑ)(t)
)]

dt +
k∑
i=

ai.

Lemma . Suppose that α�, g , h satisfy one of the following:

()
∑m–

�= α� ≤ , g(t)( –
∑m–

�= α� + δ) + h(t)( – σ )≥ ;
() h(t) ≥  on [ξ, ], α� ≥ ∫ ξ�+

ξ�
h(t)dt (� = , . . . ,m – ) and h(t)≤  on [, ξ].

Then the function ϒω(·) has the following properties:
(i) For any fixed ω ∈W , the equation ϒω(ρ) =  has a unique solution ρ̃(ω) ∈ R

N .
(ii) The function ρ̃ :W →R

N , defined in (i), is continuous and sends bounded sets to
bounded sets.Moreover, for any ω = (a,b,ϑ) ∈ W , we have

∣∣ρ̃(ω)
∣∣ ≤ N

{
(N)p+

[(
E + 

( – σ )E
+
(
δ∗ + 

) E + 
( –

∑m–
�= α� + δ)E

) k∑
i=

|ai|
]p#–

+
k∑
i=

|bi| + ‖ϑ‖L
}
,

http://www.boundaryvalueproblems.com/content/2013/1/161


Dong and Zhang Boundary Value Problems 2013, 2013:161 Page 15 of 28
http://www.boundaryvalueproblems.com/content/2013/1/161

where the notationMp#– means

Mp#– =

{
Mp+–, M > ,
Mp––, M ≤ .

Proof Similar to the proof of Lemma ., we omit it here. �

We define ρ : PC → R
N as ρ(u) = ρ̃(A,B,Nf )(u), where A = (A, . . . ,Ak), B =

(B, . . . ,Bk).
It is clear that ρ(·) is continuous and sends bounded sets of PC to bounded sets of RN ,

and hence it is compact continuous.
For fixed a,b ∈R

kN , we denote K∗∗
(a,b) : L

 → PC as

K∗∗
(a,b)(ϑ)(t) = F

{
ϕ–

[
t,
(
w(t)

)–(
ρ̃(a,b,ϑ) +

∑
ti<t

bi + F(ϑ)(t)
)]}

(t), ∀t ∈ J .

Define K : PC → PC as

K(u)(t) = F
{
ϕ–

[
t,
(
w(t)

)–(
ρ(u) +

∑
ti<t

Bi + F
(
Nf (u)

)
(t)
)]}

(t), ∀t ∈ J .

Similar to the proof of Lemma ., we have

Lemma . (i) The operator K∗∗
(a,b) is continuous and sends equi-integrable sets in L to

relatively compact sets in PC.
(ii) The operator K is continuous and sends bounded sets in PC to relatively compact

sets in PC.
Let us define P : PC → PC as

P(u) =
∫ 
 g(t)[K(u)(t) +

∑
ti<t Ai]dt

 – σ
.

It is easy to see that P is compact continuous.

Lemma . Suppose that σ < ,
∑m–

�= α� – δ <  and α�, g , h satisfy one of the following:

()
∑m–

�= α� ≤ , g(t)( –
∑m–

�= α� + δ) + h(t)( – σ )≥ ;
() h(t) ≥  on [ξ, ], α� ≥ ∫ ξ�+

ξ�
h(t)dt (� = , . . . ,m – ) and h(t)≤  on [, ξ].

Then u is a solution of ()-() if and only if u is a solution of the following abstract operator
equation:

u = P(u) +
∑
ti<t

Ai +K(u).

Proof Similar to the proof of Lemma ., we omit it here. �
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3 Existence of solutions in Case (i)
In this section, we apply Leray-Schauder’s degree to deal with the existence of solutions
for system ()-() or () with (), () and () when σ < ,

∑m–
�= α� – δ = .

When f satisfies the sub-(p– – ) growth condition, we have the following theorem.

Theorem . Suppose that σ < ,
∑m–

�= α� – δ = ; h(t) ≥  on [ξ, ], α� ≥ ∫ ξ�+
ξ�

h(t)dt
(� = , . . . ,m – ) and h(t) ≤  on [, ξ]; f satisfies the sub-(p– – ) growth condition; and
operators A and B satisfy the following conditions:

k∑
i=

∣∣Ai(u, v)
∣∣≤ C

(
 + |u| + |v|) q+–

p+– ,

k∑
i=

∣∣Bi(u, v)
∣∣≤ C

(
 + |u| + |v|)q+–, ∀(u, v) ∈R

N ×R
N ,

()

then problem ()-() has at least a solution.

Proof First we consider the following problem:

(S)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–�p(t)u = λNf (u)(t), t ∈ (, ), t �= ti,
limt→t+i u(t) – limt→t–i u(t)
= λAi(limt→t–i u(t), limt→t–i (w(t))


p(t)– u′(t)), i = , . . . ,k,

limt→t+i w(t)|u′|p(t)–u′(t) – limt→t–i w(t)|u′|p(t)–u′(t)
= λBi(limt→t–i u(t), limt→t–i (w(t))


p(t)– u′(t)), i = , . . . ,k,

u() =
∫ 
 g(t)u(t)dt, u() =

∑m–
�= α�u(ξ�) –

∫ 
 h(t)u(t)dt.

Denote

ρ,λ (u) = ρ̃(λA,λB,λNf )(u),

K,λ(u) = F
{
ϕ–

[
t,
(
w(t)

)–(
ρ,λ (u) + λ

∑
ti<t

Bi + F
(
λNf (u)

)
(t)
)]}

,

P,λ(u) =
∫ 
 g(t)[K,λ(u)(t) +

∑
ti<t λAi]dt

 – σ
,

�f (u,λ) = P,λ(u) + λ
∑
ti<t

Ai +K,λ(u),

where Nf (u) is defined in ().
Obviously, (S) has the same solution as the following operator equation when λ = :

u = �f (u,λ). ()

It is easy to see that the operator ρ,λ is compact continuous for any λ ∈ [, ]. It follows
from Lemma . and Lemma . that �f (·,λ) is compact continuous from PC to PC for
any λ ∈ [, ].
We claim that all the solutions of () are uniformly bounded for λ ∈ [, ]. In fact, if it

is false, we can find a sequence of solutions {(un,λn)} for () such that ‖un‖ → +∞ as
n→ +∞ and ‖un‖ >  for any n = , , . . . .
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From Lemma ., we have

∣∣ρ,λ (u)
∣∣≤ C

[( k∑
i=

|Ai|
)p#–

+
k∑
i=

|Bi| +
∥∥Nf (u)

∥∥
L

]
≤ C

(
 + ‖u‖q+–

)
.

Thus∣∣∣∣ρ,λ (u) +
∑
ti<t

λBi + F(λNf )
∣∣∣∣≤ ∣∣ρ,λ (u)

∣∣ + ∣∣∣∣∑
ti<t

Bi

∣∣∣∣ + ∣∣F(Nf )
∣∣≤ C

(
 + ‖u‖q+–

)
. ()

From (S), we have

w(t)
∣∣u′

n(t)
∣∣p(t)–u′

n(t) = ρ,λ (un) +
∑
ti<t

λBi +
∫ t


λNf (un)(s)ds, ∀t ∈ J ′.

It follows from () and Lemma . that

w(t)
∣∣u′

n(t)
∣∣p(t)– ≤ ∣∣ρ,λ (un)

∣∣ + k∑
i=

|Bi| +
∫ 



∣∣Nf (un)(s)
∣∣ds≤ C +C‖un‖q

+–
 , ∀t ∈ J ′.

Denote α = q+–
p–– . If the above inequality holds then

∥∥(w(t)) 
p(t)– u′

n(t)
∥∥
 ≤ C‖un‖α

 , n = , , . . . . ()

It follows from (), () and () that

∣∣un()∣∣≤ C‖un‖α
 , where α =

q+ – 
p– – 

.

For any j = , . . . ,N , we have

∣∣ujn(t)∣∣ = ∣∣∣∣ujn() +∑
ti<t

Ai +
∫ t



(
ujn
)′(s)ds∣∣∣∣

≤ ∣∣ujn()∣∣ + ∣∣∣∣∑
ti<t

Ai

∣∣∣∣ + ∣∣∣∣∫ t



(
w(s)

) –
p(s)– sup

t∈(,)

∣∣(w(t)) 
p(t)–

(
ujn
)′(t)∣∣ds∣∣∣∣

≤ ‖un‖α
 [C +CE] +

∣∣∣∣∑
ti<t

Ai

∣∣∣∣≤ C‖un‖α
 , ∀t ∈ J ,n = , , . . . ,

which implies that

∣∣ujn∣∣ ≤ C‖un‖α
 , j = , . . . ,N ;n = , , . . . .

Thus

‖un‖ ≤ NC‖un‖α
 , n = , , . . . . ()

It follows from () and () that {‖un‖} is uniformly bounded.
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Thus, we can choose a large enough R >  such that all the solutions of () be-
long to B(R) = {u ∈ PC | ‖u‖ < R}. Therefore the Leray-Schauder degree dLS[I –
�f (·,λ),B(R), ] is well defined for λ ∈ [, ], and

dLS
[
I –�f (·, ),B(R), 

]
= dLS

[
I –�f (·, ),B(R), 

]
.

It is easy to see that u is a solution of u = �f (u, ) if and only if u is a solution of the
following usual differential equation:

(S)

{
–�p(t)u = , t ∈ (, ),
u() =

∫ 
 g(t)u(t)dt, u() =

∑m–
�= α�u(ξ�) –

∫ 
 h(t)u(t)dt.

Obviously, system (S) possesses a unique solution u. Since u ∈ B(R), we have

dLS
[
I –�f (·, ),B(R), 

]
= dLS

[
I –�f (·, ),B(R), 

] �= ,

which implies that ()-() has at least one solution. This completes the proof. �

Theorem . Suppose that σ < ,
∑m–

�= α� – δ = ; h(t) ≥  on [ξ, ], α� ≥ ∫ ξ�+
ξ�

h(t)dt
(� = , . . . ,m – ) and h(t) ≤  on [, ξ]; f satisfies the sub-(p– – ) growth condition; and
operators A and D = (D, . . . ,Dk) satisfy the following conditions:

k∑
i=

∣∣Ai(u, v)
∣∣≤ C

(
 + |u| + |v|) q+–

p+– ,

k∑
i=

∣∣Di(u, v)
∣∣≤ C

(
 + |u| + |v|)α+i , ∀(u, v) ∈R

N ×R
N ,

where αi ≤ q+–
p(ti)–

, and p(ti) –  ≤ q+ – αi, i = , . . . ,k.
Then problem () with (), () and () has at least a solution.

Proof Obviously, Bi(u, v) = ϕ(ti, v +Di(u, v)) – ϕ(ti, v).
From Theorem ., it suffices to show that

k∑
i=

∣∣Bi(u, v)
∣∣≤ C

(
 + |u| + |v|)q+–, ∀(u, v) ∈R

N ×R
N . ()

(a) Suppose that |v| ≤ M∗|Di(u, v)|, whereM∗ is a large enough positive constant. From
the definition of D, we have

∣∣Bi(u, v)
∣∣≤ C

∣∣Di(u, v)
∣∣p(ti)– ≤ C

(
 + |u| + |v|)αi(p(ti)–).

Since αi < q+–
p(ti)–

, we have αi(p(ti) – ) ≤ q+ – . Thus () is valid.
(b) Suppose that |v| >M∗|Di(u, v)|, we can see that

∣∣Bi(u, v)
∣∣≤ C|v|p(ti)– |Di(u, v)|

|v| = C|v|p(ti)–
∣∣Di(u, v)

∣∣.
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There are two cases: Case (i): p(ti) –  ≥ ; Case (ii): p(ti) –  < .
Case (i): Since p(ti) –  ≤ q+ – αi, we have p(ti) –  + αi ≤ q+ – , and

∣∣Bi(u, v)
∣∣≤ C|v|p(ti)–

∣∣Di(u, v)
∣∣≤ C

(
 + |u| + |v|)p(ti)–+αi ≤ C

(
 + |u| + |v|)q+–.

Thus () is valid.
Case (ii): Since αi < q+–

p(ti)–
, we have αi(p(ti) – )≤ q+ – , and

∣∣Bi(u, v)
∣∣≤ C|v|p(ti)–

∣∣Di(u, v)
∣∣≤ C

∣∣Di(u, v)
∣∣p(ti)– ≤ C

(
 + |u| + |v|)αi(p(ti)–).

Thus () is valid.
Thus problem () with (), () and () has at least a solution. This completes the proof.

�

Let us consider

–
(
w(t)

∣∣u′∣∣p(t)–u′)′ + φ
(
t,u,

(
w(t)

) 
p(t)– u′,S(u),T(u), ε

)
= , t ∈ (, ), t �= ti, ()

where ε is a parameter, and

φ
(
t,u,

(
w(t)

) 
p(t)– u′,S(u),T(u), ε

)
= f

(
t,u,

(
w(t)

) 
p(t)– u′,S(u),T(u)

)
+ εh

(
t,u,

(
w(t)

) 
p(t)– u′,S(u),T(u)

)
,

where h, f : J × R
N × R

N × R
N × R

N → R
N are Caratheodory. We have the following

theorem.

Theorem . Suppose that σ < ,
∑m–

�= α� – δ = ; h(t) ≥  on [ξ, ], α� ≥ ∫ ξ�+
ξ�

h(t)dt
(� = , . . . ,m – ) and h(t) ≤  on [, ξ]; f satisfies the sub-(p– – ) growth condition; and
we assume that

k∑
i=

∣∣Ai(u, v)
∣∣≤ C

(
 + |u| + |v|) q+–

p+– ,

k∑
i=

∣∣Bi(u, v)
∣∣≤ C

(
 + |u| + |v|)q+–, ∀(u, v) ∈R

N ×R
N ,

then problem () with ()-() has at least one solution when parameter ε is small enough.

Proof Denote

φλ

(
t,u,

(
w(t)

) 
p(t)– u′,S(u),T(u), ε

)
= f

(
t,u,

(
w(t)

) 
p(t)– u′,S(u),T(u)

)
+ λεh

(
t,u,

(
w(t)

) 
p(t)– u′,S(u),T(u)

)
.

We consider the existence of solutions of the following equation with ()-()

–
(
w(t)

∣∣u′∣∣p(t)–u′)′ + φλ

(
t,u,

(
w(t)

) 
p(t)– u′,S(u),T(u), ε

)
= , t ∈ (, ), t �= ti. ()
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Denote

ρ#
,λ
(u, ε) = ρ̃(A,B,Nφλ

)(u),

K#
,λ(u, ε) = F

{
ϕ–

[
t,
(
w(t)

)–(
ρ#
,λ
(u, ε) +

∑
ti<t

Bi + F
(
Nφλ

(u)
)
(t)
)]}

,

P#
,λ(u, ε) =

∫ 
 g(t)[K

#
,λ(u, ε)(t) +

∑
ti<t Ai]dt

( – σ )
,

�ε(u,λ) = P#
,λ(u, ε) +

∑
ti<t

Ai +K#
,λ(u, ε),

where Nφλ
(u) is defined in ().

We know that () with ()-() has the same solution of u = �ε(u,λ).
Obviously, φ = f . So �ε(u, ) = �f (u, ). As in the proof of Theorem ., we know that

all the solutions of u = �ε(u, ) are uniformly bounded, then there exists a large enough
R >  such that all the solutions of u = �ε(u, ) belong to B(R) = {u ∈ PC | ‖u‖ < R}.
Since �ε(·, ) is compact continuous from PC to PC, we have

inf
u∈∂B(R)

∥∥u –�ε(u, )
∥∥
 > . ()

Since f and h are Caratheodory, we have

∥∥F(Nφλ
(u)
)
– F

(
Nφ (u)

)∥∥
 →  for (u,λ) ∈ B(R)× [, ] uniformly, as ε → ,∣∣ρ#

,λ
(u, ε) – ρ#

, (u, ε)
∣∣→  for (u,λ) ∈ B(R)× [, ] uniformly, as ε → ,∥∥K#

,λ(u, ε) –K#
,(u, ε)

∥∥
 →  for (u,λ) ∈ B(R)× [, ] uniformly, as ε → ,∣∣P#

,λ
(u, ε) – P#

, (u, ε)
∣∣→  for (u,λ) ∈ B(R)× [, ] uniformly, as ε → .

Thus

∥∥�ε(u,λ) –�(u,λ)
∥∥
 →  for (u,λ) ∈ B(R)× [, ] uniformly, as ε → .

Obviously, �(u,λ) = �ε(u, ) = �(u, ). We obtain

∥∥�ε(u,λ) –�ε(u, )
∥∥
 →  for (u,λ) ∈ B(R)× [, ] uniformly, as ε → .

Thus, when ε is small enough, from (), we can conclude that

inf
(u,λ)∈∂B(R)×[,]

∥∥u –�ε(u,λ)
∥∥


≥ inf
u∈∂B(R)

∥∥u –�ε(u, )
∥∥
 – sup

(u,λ)∈B(R)×[,]

∥∥�ε(u, ) –�ε(u,λ)
∥∥
 > .

Thus u = �ε(u,λ) has no solution on ∂B(R) for any λ ∈ [, ], when ε is small enough.
It means that the Leray-Schauder degree dLS[I – �ε(·,λ),B(R), ] is well defined for any
λ ∈ [, ], and

dLS
[
I –�ε(u,λ),B(R), 

]
= dLS

[
I –�ε(u, ),B(R), 

]
.
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Since �ε(u, ) = �f (u, ), from the proof of Theorem ., we can see that the right-hand
side is nonzero. Thus () with ()-() has at least one solution when ε is small enough.
This completes the proof. �

Theorem . Suppose that σ < ,
∑m–

�= α� – δ = ; h(t) ≥  on [ξ, ], α� ≥ ∫ ξ�+
ξ�

h(t)dt
(� = , . . . ,m – ) and h(t) ≤  on [, ξ]; f satisfies the sub-(p– – ) growth condition; and
we assume that

k∑
i=

∣∣Ai(u, v)
∣∣≤ C

(
 + |u| + |v|) q+–

p+– ,

k∑
i=

∣∣Di(u, v)
∣∣≤ C

(
 + |u| + |v|)α+i , ∀(u, v) ∈R

N ×R
N ,

where αi ≤ q+–
p(ti)–

, and p(ti) –  ≤ q+ –αi, i = , . . . ,k, then problem () with (), () and ()
has at least one solution when parameter ε is small enough.

Proof Similar to the proof of Theorem . and Theorem ., we omit it here. �

4 Existence of solutions in Case (ii)
In this section, we apply Leray-Schauder’s degree to deal with the existence of solutions
for system ()-() or () with (), () and () when σ = ,

∑m–
�= α� – δ �= .

When f satisfies the sub-(p– – ) growth condition, we have the following.

Theorem . Suppose that σ = ,
∑m–

�= α� – δ �= ; f satisfies the sub-(p– – ) growth con-
dition; and operators A and B satisfy the following conditions:

k∑
i=

∣∣Ai(u, v)
∣∣≤ C

(
 + |u| + |v|) q+–

p+– ,

k∑
i=

∣∣Bi(u, v)
∣∣≤ C

(
 + |u| + |v|)q+–, ∀(u, v) ∈R

N ×R
N ,

then problem ()-() has at least a solution.

Proof Similar to the proof of Theorem ., we omit it here. �

Theorem . Suppose that σ = ,
∑m–

�= α� – δ �= ; f satisfies the sub-(p– – ) growth con-
dition; and operators A and D = (D, . . . ,Dk) satisfy the following conditions:

k∑
i=

∣∣Ai(u, v)
∣∣≤ C

(
 + |u| + |v|) q+–

p+– ,

k∑
i=

∣∣Di(u, v)
∣∣≤ C

(
 + |u| + |v|)α+i , ∀(u, v) ∈R

N ×R
N ,

where

αi ≤ q+ – 
p(ti) – 

and p(ti) –  ≤ q+ – αi, i = , . . . ,k,

then problem () with (), () and () has at least a solution.
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Proof Similar to the proof of Theorem ., we omit it here. �

Theorem . Suppose that σ = ,
∑m–

�= α� – δ �= ; f satisfies the sub-(p– – ) growth con-
dition; and we assume that

k∑
i=

∣∣Ai(u, v)
∣∣≤ C

(
 + |u| + |v|) q+–

p+– ,

k∑
i=

∣∣Bi(u, v)
∣∣≤ C

(
 + |u| + |v|)q+–, ∀(u, v) ∈R

N ×R
N ,

then problem () with ()-() has at least one solution when parameter ε is small enough.

Proof Similar to the proof of Theorem ., we omit it here. �

Theorem . Suppose that σ = ,
∑m–

�= α� – δ �= ; f satisfies the sub-(p– – ) growth con-
dition; and we assume that

k∑
i=

∣∣Ai(u, v)
∣∣≤ C

(
 + |u| + |v|) q+–

p+– ,

k∑
i=

∣∣Di(u, v)
∣∣≤ C

(
 + |u| + |v|)α+i , ∀(u, v) ∈R

N ×R
N ,

where αi ≤ q+–
p(ti)–

, and p(ti) –  ≤ q+ –αi, i = , . . . ,k, then problem () with (), () and ()
has at least one solution when parameter ε is small enough.

Proof Similar to the proof of Theorem . and Theorem ., we omit it here. �

5 Existence of solutions in Case (iii)
In this section, we apply Leray-Schauder’s degree to deal with the existence of solutions
and nonnegative solutions for system ()-() or () with (), () and () when σ < ,∑m–

�= α� – δ < .
When f satisfies the sub-(p– – ) growth condition, we have the following theorem.

Theorem . Suppose that σ < ,
∑m–

�= α� – δ <  and α�, g , h satisfy one of the following:

()
∑m–

�= α� ≤ , g(t)( –
∑m–

�= α� + δ) + h(t)( – σ )≥ ;
() h(t) ≥  on [ξ, ], α� ≥ ∫ ξ�+

ξ�
h(t)dt (� = , . . . ,m – ) and h(t)≤  on [, ξ];

when f satisfies the sub-(p– – ) growth condition; and operators A and B satisfy the follow-
ing conditions:

k∑
i=

∣∣Ai(u, v)
∣∣≤ C

(
 + |u| + |v|) q+–

p+– ,

k∑
i=

∣∣Bi(u, v)
∣∣≤ C

(
 + |u| + |v|)q+–, ∀(u, v) ∈R

N ×R
N ,

then problem ()-() has at least a solution.
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Proof Similar to the proof of Theorem ., we omit it here. �

Theorem . Suppose that σ < ,
∑m–

�= α� – δ <  and α�, g , h satisfy one of the following:

()
∑m–

�= α� ≤ , g(t)( –
∑m–

�= α� + δ) + h(t)( – σ )≥ ;
() h(t) ≥  on [ξ, ], α� ≥ ∫ ξ�+

ξ�
h(t)dt (� = , . . . ,m – ) and h(t)≤  on [, ξ];

when f satisfies the sub-(p– – ) growth condition; and operators A and D = (D, . . . ,Dk)
satisfy the following conditions:

k∑
i=

∣∣Ai(u, v)
∣∣≤ C

(
 + |u| + |v|) q+–

p+– ,

k∑
i=

∣∣Di(u, v)
∣∣≤ C

(
 + |u| + |v|)α+i , ∀(u, v) ∈R

N ×R
N ,

where

αi ≤ q+ – 
p(ti) – 

and p(ti) –  ≤ q+ – αi, i = , . . . ,k,

then problem () with (), () and () has at least a solution.

Proof Similar to the proof of Theorem ., we omit it here. �

Theorem . Suppose that σ < ,
∑m–

�= α� – δ <  and α�, g , h satisfy one of the following:

()
∑m–

�= α� ≤ , g(t)( –
∑m–

�= α� + δ) + h(t)( – σ )≥ ;
() h(t) ≥  on [ξ, ], α� ≥ ∫ ξ�+

ξ�
h(t)dt (� = , . . . ,m – ) and h(t)≤  on [, ξ];

when f satisfies the sub-(p– – ) growth condition; and we assume that

k∑
i=

∣∣Ai(u, v)
∣∣≤ C

(
 + |u| + |v|) q+–

p+– ,

k∑
i=

∣∣Bi(u, v)
∣∣≤ C

(
 + |u| + |v|)q+–, ∀(u, v) ∈R

N ×R
N ,

then problem () with ()-() has at least one solution when parameter ε is small enough.

Proof Similar to the proof of Theorem ., we omit it here. �

Theorem . Suppose that σ < ,
∑m–

�= α� – δ <  and α�, g , h satisfy one of the following:

()
∑m–

�= α� ≤ , g(t)( –
∑m–

�= α� + δ) + h(t)( – σ )≥ ;
() h(t) ≥  on [ξ, ], α� ≥ ∫ ξ�+

ξ�
h(t)dt (� = , . . . ,m – ) and h(t)≤  on [, ξ];

when f satisfies the sub-(p– – ) growth condition; and we assume that

k∑
i=

∣∣Ai(u, v)
∣∣≤ C

(
 + |u| + |v|) q+–

p+– ,

k∑
i=

∣∣Di(u, v)
∣∣≤ C

(
 + |u| + |v|)α+i , ∀(u, v) ∈R

N ×R
N ,
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where αi ≤ q+–
p(ti)–

, and p(ti) –  ≤ q+ –αi, i = , . . . ,k, then problem () with (), () and ()
has at least one solution when parameter ε is small enough.

Proof Similar to the proof of Theorem . and Theorem ., we omit it here. �

In the following, we will consider the existence of nonnegative solutions. For any x =
(x, . . . ,xN ) ∈R

N , the notation x≥  means xj ≥  for any j = , . . . ,N .

Theorem . Suppose that σ < ,
∑m–

�= α� – δ < ,
∑m–

�= α� ≤ , g(t)( –
∑m–

�= α� + δ) +
h(t)( – σ )≥ .We also assume:

() f (t,x, y, s, z) ≤ , ∀(t,x, y, s, z) ∈ J ×R
N ×R

N ×R
N ×R

N ;
() For any i = , . . . ,k, Bi(u, v) ≤ , ∀(u, v) ∈ R

N ×R
N ;

() For any i = , . . . ,k, j = , . . . ,N , Aj
i(u, v)vj ≥ , ∀(u, v) ∈R

N ×R
N ;

() h(t) ≤ .

Then every solution of ()-() is nonnegative.

Proof Let u be a solution of ()-(). From Lemma ., we have

u(t) = u() +
∑
ti<t

Ai + F
{
ϕ–

[
t,
(
w(t)

)–(
ρ(u) +

∑
ti<t

Bi + F
(
Nf (u)

))]}
(t), ∀t ∈ J .

We claim that ρ(u) ≥ . If it is false, then there exists some j ∈ {, . . . ,N} such that
ρ
j
(u) < .
It follows from () and () that

[
ρ(u) +

∑
ti<t

Bi + F
(
Nf (u)

)
(t)
]j
< , ∀t ∈ J . ()

Thus () and condition () hold

Aj
i ≤ , i = , . . . ,k. ()

Similar to the proof before Lemma ., from the boundary value conditions, we have

 =


( – σ )

∫ 


g(t)

(
F
{
ϕ–

[
t,
(
w(t)

)–(
ρ +

∑
ti<t

Bi + F
(
Nf (u)

))]}
(t) +

∑
ti<t

Ai

)
dt

+
∑m–

�= α�{∑ξ�≤ti Ai +
∫ 
ξ�

ϕ–[t, (w(t))–(ρ +
∑

ti<t Bi + F(Nf (u)))]dt}
 –

∑m–
i= α� + δ

+
∑k

i=Ai( –
∑m–

�= α�)
 –

∑m–
i= α� + δ

+
( –

∑m–
�= α�)

∫ 
 ϕ–[t, (w(t))–(ρ +

∑
ti<t Bi + F(Nf (u)))]dt

 –
∑m–

�= α� + δ

+
∫ 
 h(t)(F{ϕ–[t, (w(t))–(ρ +

∑
ti<t Bi + F(Nf (u)))]}(t) +∑ti<t Ai)dt

 –
∑m–

�= α� + δ
. ()
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From () and (), we get a contradiction to (). Thus ρ(u)≥ .
We claim that

ρ(u) +
k∑
i=

Bi + F(Nf )() ≤ . ()

If it is false, then there exists some j ∈ {, . . . ,N} such that

[
ρ(u) +

k∑
i=

Bi + F(Nf )()

]j

> .

It follows from () and () that

[
ρ(u) +

∑
ti<t

Bi + F
(
Nf (u)

)
(t)

]j

> , ∀t ∈ J . ()

Thus () and condition () hold

Aj
i ≥ , i = , . . . ,k. ()

From (), (), we get a contradiction to (). Thus () is valid.
Denote �(t) = ρ(u) +

∑
ti<t Bi + F(Nf (u))(t), ∀t ∈ J ′.

Obviously, �() = ρ ≥ , �() ≤ , and �(t) is decreasing, i.e., �(t′) ≤ �(t′′) for any
t′, t′′ ∈ J with t′ ≥ t′′. For any j = , . . . ,N , there exist ζj ∈ J such that

�j(t) ≥ , ∀t ∈ (, ζj), and �j(t)≤ , ∀t ∈ (ζj,T).

It follows from condition () that uj(t) is increasing on [, ζj] and uj(t) is decreasing on
(ζj,T]. Thus min{uj(),uj()} = inft∈J uj(t), j = , . . . ,N .
For any fixed j ∈ {, . . . ,N}, if

uj() = inf
t∈J u

j(t), ()

from () and (), we have ( – σ )uj()≥ . Then uj() ≥ .
If

uj() = inf
t∈J u

j(t), ()

from (), () and condition (), we have ( –
∑m–

i= α� + δ)uj() ≥ . Then uj() ≥ .
Thus u(t) ≥ , ∀t ∈ [,T]. The proof is completed. �

Corollary . Under the conditions of Theorem ., we also assume:

() f (t,x, y, s, z) ≤ , ∀(t,x, y, s, z) ∈ J ×R
N ×R

N ×R
N ×R

N with x, s, z ≥ ;
() For any i = , . . . ,k, Bi(u, v) ≤ , ∀(u, v) ∈ R

N ×R
N with u≥ ;

() For any i = , . . . ,k, j = , . . . ,N , Aj
i(u, v)vj ≥ , ∀(u, v) ∈R

N ×R
N with u ≥ ;
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() h(t) ≤ ;
() For any t ∈ [, ] and s ∈ [, ], k∗(t, s)≥ , h∗(t, s)≥ .

Then ()-() has a nonnegative solution.

Proof DefineM(u) = (M#(u), . . . ,M#(uN )), where

M#(u) =

{
u, u≥ ,
, u < .

Denote

f̃
(
t,u, v,S(u),T(u)

)
= f

(
t,M(u), v,S

(
M(u)

)
,T
(
M(u)

))
, ∀(t,u, v) ∈ J ×R

N ×R
N ,

then f̃ (t,u, v,S(u),T(u)) satisfies the Caratheodory condition, and f̃ (t,u, v,S(u),T(u)) ≤ 
for any (t,u, v) ∈ J ×R

N ×R
N .

For any i = , . . . ,k, we denote

Ãi(u, v) = Ai
(
M(u), v

)
, B̃i(u, v) = Bi

(
M(u), v

)
, ∀(u, v) ∈R

N ×R
N ,

then Ãi and B̃i are continuous and satisfy

B̃i(u, v)≤ , ∀(u, v) ∈R
N ×R

N for any i = , . . . ,k,

Ãj
i(u, v)v

j ≥ , ∀(u, v) ∈R
N ×R

N for any i = , . . . ,k, j = , . . . ,N .

It is not hard to check that

()′ lim|u|+|v|→+∞(̃f (t,u, v,S(u),T(u))/(|u| + |v|)q(t)–) =  for t ∈ J uniformly, where q(t) ∈
C(J ,R), and  < q– ≤ q+ < p–;

()′
∑k

i= |Ãi(u, v)| ≤ C( + |u| + |v|) q
+–

p+– , ∀(u, v) ∈R
N ×R

N ;
()′

∑k
i= |̃Bi(u, v)| ≤ C( + |u| + |v|)q+–, ∀(u, v) ∈ R

N ×R
N .

Let us consider

(w(t)ϕp(t)(u′(t)))′ = f̃ (t,u, (w(t))


p(t)– u′,S(u),T(u)), t ∈ J ′,
limt→t+i u(t) – limt→t–i u(ti)
= Ãi(limt→t–i u(t), limt→t–i (w(t))


p(t)– u′(t)), i = , . . . ,k,

limt→t+i w(t)ϕp(t)(u′(t)) – limt→t–i w(t)ϕp(t)(u′(t))
= B̃i(limt→t–i u(t), limt→t–i (w(t))


p(t)– u′(t)), i = , . . . ,k,

u() =
∫ 
 g(t)u(t)dt, u() =

∑m–
�= α�u(ξ�) –

∫ 
 h(t)u(t)dt.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
()

It follows from Theorem . and Theorem . that () has a nonnegative solution u.
Since u≥ , we haveM(u) = u, and then

f̃
(
t,u,

(
w(t)

) 
p(t)– u′,S(u),T(u)

)
= f

(
t,u,

(
w(t)

) 
p(t)– u′,S(u),T(u)

)
,

Ãi

(
lim
t→t–i

u(t), lim
t→t–i

(
w(t)

) 
p(t)– u′(t)

)
= Ai

(
lim
t→t–i

u(t), lim
t→t–i

(
w(t)

) 
p(t)– u′(t)

)
,

B̃i

(
lim
t→t–i

u(t), lim
t→t–i

(
w(t)

) 
p(t)– u′(t)

)
= Bi

(
lim
t→t–i

u(t), lim
t→t–i

(
w(t)

) 
p(t)– u′(t)

)
.
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Thus u is a nonnegative solution of ()-(). This completes the proof. �

Note (i) Similarly, we can get the existence of nonnegative solutions of () with ()-().
(ii) Similarly, under the conditions of Case (ii), we can discuss the existence of nonneg-

ative solutions.

6 Examples
Example . Consider the existence of solutions of ()-() under the following assump-
tions:

f
(
t,u,

(
w(t)

) 
p(t)– u′,S(u),T(u)

)
= |u|q(t)–u +

(
w(t)

) q(t)–
p(t)–

∣∣u′∣∣q(t)–u′

+
(
S(u)

)q(t)– + (T(u))q(t)–, t ∈ (, ), t �= ti =
i

k + π
,

Ai(u, v) = |u|–/u + |v|–/v, i = , . . . ,k,

Bi(u, v) = |u|u + |v|v, i = , . . . ,k,

g(t) =


 + t
, α� =

� + 
�

, ξ� =
�

m
, h(t) =

{
,  ≤ t ≤ 

m ,

+t ,


m ≤ t ≤ ,

where (Su)(t) =
∫ 
 e

t+su(s)ds, (T(u))(t) =
∫ t
 (t

 + s)u(s)ds, p(t) =  + –t cost, q(t) =  +
–t cos t.
Obviously, q(t) ≤  <  ≤ p(t); h(t) =  when  ≤ t ≤ 

m = ξ; α� ≥ ∫ ξ�+
ξ�

h(t)dt (� =
, . . . ,m – ); then the conditions of Theorem . are satisfied, then ()-() has a solution.
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