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Abstract
The continuation of solutions for the two-component Camassa-Holm system after
wave breaking is studied in this paper. The global conservative solution is derived
first, from which a semigroup and a multipeakon conservative solution are
established. In developing the solution, a system transformation based on a skillfully
defined characteristic and a set of newly introduced variables is used. It is the
transformation, together with the associated properties, that allows for the
establishment of the results for continuity of the solution beyond collision time.
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1 Introduction
Because of its capabilities of describing the dynamic behavior of water wave, the following
Camassa-Holm (CH) equation

ut – uxxt + uux = uxuxx + uuxxx, (.)

modeling the unidirectional propagation of shallow water waves in irrotational flow over
a flat bottom, with u(t,x) representing the fluid velocity at time t in the horizontal direc-
tion, has attracted considerable attention [–]. The CH equation is a quadratic order
water wave equation in an asymptotic expansion for unidirectional shallow water waves
described by the incompressible Euler equations, which was found earlier by Fuchssteiner
and Fokas [] as a bi-Hamiltonian generalization of the KdV equation. It is completely in-
tegrable [, ] and possesses an infinite number of conservation laws. A remarkable prop-
erty of the CH equation is the existence of the non-smooth solitary wave solutions called
peakons [, ]. The peakon u(t,x) = ce–|x–ct|, c �= , is smooth except at its crest and the
tallest among all waves of fixed energy. Another remarkable fact for the CH equation is
that it can model wave breaking [, ], which means that the solution remains bounded
while its slope becomes unbounded in finite time [, ], setting it apart from the classi-
cal soliton equations such as KdV. After wave breaking, the solutions of the CH equation
can be continued uniquely as either global conservative [–] or global dissipative solu-
tions [].
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Considered herein is the two-component Camassa-Holm (CH) shallow water system
[–]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mt + umx + uxm + σρρx = , t > ,x ∈ R,

ρt + (uρ)x = , t > ,x ∈ R,

u(,x) = u(x), x ∈ R,

ρ(,x) = ρ(x), x ∈ R,

(.)

with σ =  and m = σu – uxx, σ =  (or in the ‘short wave’ limit, σ = ), which is an ex-
tension of the CH equation by combining its integrability property with compressibility
or free-surface elevation dynamics in its shallow water interpretation [, ]. This system
appeared originally in [] as could be identified with the first negative flow of AKNS hi-
erarchy, and then it was derived by Constantin and Ivanov [] in the context of shallow
water theory, with u(x, t) representing the horizontal velocity of the fluid and ρ(x, t) in
connection with the free-surface elevation from equilibrium with the boundary assump-
tions u →  and ρ →  as |x| → ∞. It is formally integrable [–] in the sense that it
can be written as a compatibility condition of two linear systems (Lax pair) with a spectral
parameter ζ :

�xx =
(
–σζ ρ + ζm +

σ



)
� , �t =

(

ζ

– u
)

�x +


ux� .

It also has a bi-Hamiltonian structure corresponding to the Hamiltonian

H =



∫ (
um + (ρ – )

)
dx

and the Hamiltonian

H =



∫ (
u(ρ – ) + u(ρ – ) + u + uux

)
dx.

The Cauchy problem for the two-component Camassa-Holm system has been studied
extensively [–]. It was shown that theCH system is locallywell posedwith initial data
(u,ρ) ∈ Hs ×Hs–, s > 

 []. The system also has global strong solutions which blow-up
in finite time [, , ] and a global weak solution []. However, the problem about
continuation of the solutions beyond wave breaking, although interesting and important,
has not been explicitly addressed yet. In our recent work [], we studied the continua-
tion beyond wave breaking by applying an approach that reformulated system (.) as a
semilinear system of O.D.E. taking values in a Banach space. Such treatment makes it pos-
sible to investigate the continuity of the solution beyond collision time, leading to a global
conservative solution where the energy is conserved for almost all times.
It should be stressed that both global conservation and multipeakon conservation are

two important aspects worthy of investigation. To our best knowledge, however, little ef-
fort has been made in studying the multipeakon conservation associated with the CH
system in the literature. As a compliment and extension to the previous work [], we de-
velop a novel approach in this work to construct the multipeakon conservative solution
for the CH system. Different from the work [], we reformulate the problem by utilizing
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a skillfully defined characteristic and a new set of variables, of which the associated energy
serves as an additional variable to be introduced such that a well-posed initial-value prob-
lem can be obtained, making it convenient to study the dynamic behavior of wave break-
ing. Because of the introduction of the new variables, we are able to establish the multi-
peakon conservative solution from the global conservative solution for the CH system.
Some related earlier works [, ] studied the global existence of solutions to the CH

equation. However, the system considered in this work is a heavily coupled one, in which
the mutual effect between the two components makes the analysis quite complicated and
involved as compared with the system with a single component as studied in [, ]. The
key and novel effort made in this work to circumvent the difficulty is the utilization of the
skillfully defined characteristic and the new set of variables, as well as careful estimates for
each iterative approximate component of the solutions, which allows us to establish the
global conservative solutions of system (.). It is shown that the multipeakon structure is
preserved by the semigroup of a global conservative solution and the multipeakon solu-
tion is obtained by carefully computing the convolution equations Pi and Pxi (i = , . . . ,n),
where, in contrast to the existing works, the inherent mutual effect between the two com-
ponents is well reflected.
The remainder of this paper is organized as follows. Section  presents the transforma-

tion from the original system to a Lagrangian semilinear system. The global solutions of
the equivalent semilinear system are obtained in Section , which are transformed into
the global conservative solutions of the original system in Section . Finally, we establish
the multipeakon conservative solutions for the original system in Section .

2 The original system and the equivalent Lagrangian system
We first present the original system. For simplicity, we consider here the associated evo-
lution for positive times (of course, one would get similar results for negative times just
by changing the initial condition u into –u). Let us introduce an operator � = (– ∂

x )–,
which can be expressed by its associated Green’s function G = 

e
–|x| such as �f (x) =

G ∗ f (x) = 

∫
R e

–|x–x′|f (x′)dx′ for all f ∈ L(R). Thus, we can rewrite Eq. (.) as a form
of a quasi-linear evolution equation:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut + uux + ∂xG ∗ (u + 
u


x +


v

 + v) = , t > ,x ∈ R,

vt + (uv)x + ux = , t > ,x ∈ R,

u(,x) = u(x), x ∈ R,

v(,x) = v(x), x ∈ R,

where v = ρ – . If we define P as

P(t,x) =G ∗
(
u +



ux +



v + v

)
=



∫
R
e–|x–x′|

(
u +



ux +



v + v

)(
t,x′)dx′,

then Eq. (.) can be rewritten as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut + uux + Px = , t > ,x ∈ R,

vt + uvx + vux + ux = , t > ,x ∈ R,

u(,x) = u(x), x ∈ R,

v(,x) = v(x), x ∈ R.

(.)
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Moreover, for regular solutions, we have that the total energy

E(t) =
∫
R
u + ux + v dx (.)

is constant in time. Thus, Eq. (.) possesses the H-norm conservation law defined as

‖z‖H = ‖u‖H + ‖v‖L =
(∫

R

[
u + ux + v

]
dx

)/

,

where z = (u, v). Since z = (u, v) ∈ H × [L ∩ L∞], Young’s inequality ensures P ∈H.
We reformulate system (.) into a Lagrangian equivalent semilinear system as follows.
Let z(t,x) = (u, v)(t,x) denote the solution of system (.). For given initial data y(, ξ ),

we define the corresponding characteristic y(t, ξ ) as the solution of

yt(t, ξ ) = u
(
t, y(t, ξ )

)
, (.)

and define the Lagrangian cumulative energy distribution H as

H(t, ξ ) =
∫ y(t,ξ )

–∞

(
u + ux + v

)
(t,x)dx. (.)

It is not hard to check that

(
u + ux + v

)
t +

(
u
(
u + ux + v

))
x =

(
u – uP

)
x. (.)

Then it follows from (.) and (.) that

dH
dt

=
[(
u – uP

)(
t, y(t, ξ )

)]ξ

–∞. (.)

Throughout the following, we use the notation

U(t, ξ ) = u
(
t, y(t, ξ )

)
, V (t, ξ ) = v

(
t, y(t, ξ )

)
, N(t, ξ ) = ux

(
t, y(t, ξ )

)
.

After the change of variables x = y(t, ξ ) and x′ = y(t, ξ ′), we obtain the following expressions
for Px and P, namely

P(ξ ) = P
(
y(ξ )

)
=



∫
R
e–|y(ξ )–y(ξ ′)|

[(
U +



U

x +


V  +V

)
yξ

](
ξ ′)dξ ′,

Px(ξ ) = Px
(
y(ξ )

)
= –




∫
R
sgn

(
ξ – ξ ′)e–|y(ξ )–y(ξ ′)|,

[(
U +



U

x +


V  +V

)
yξ

](
ξ ′)dξ ′,

(.)

where we have dropped the variable t for simplicity and taken that y is an increas-
ing function for any fixed time t for granted (the validity will be proved later). Using
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Hξ = (u + ux + v) ◦ yyξ , we can rewrite Px and P in (.) as

Px(ξ ) = –



∫
R
sgn

(
ξ – ξ ′)e–|y(ξ )–y(ξ ′)|[Hξ +

(
U + V

)
yξ

](
ξ ′)dξ ′,

P(ξ ) =



∫
R
e–|y(ξ )–y(ξ ′)|[Hξ +

(
U + V

)
yξ

](
ξ ′)dξ ′.

(.)

From the definition of the characteristic, it follows that

Ut(t, ξ ) = ut(t, y) + ux(t, y)yt(t, ξ ) = –Px ◦ y(t, ξ ),
Vt(t, ξ ) = vt(t, y) + vx(t, y)yt(t, ξ ) = –

[
(v + )ux

] ◦ y(t, ξ ),

Nt(t, ξ ) = uxt(t, y) + uxx(t, y)yt(t, ξ ) =
(
u –



ux +



v + v – P

)
◦ y(t, ξ ).

(.)

Let us introduce another variable ς (t, ξ ) such that ς (t, ξ ) = y(t, ξ ) – ξ (it will turn out
that ς ∈ L∞(R)). With these new variables, we now derive an equivalent system of equa-
tions (.),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ςt =U ,

Ut = –Px,

Vt = –(V + )N ,

Nt =U – 
N

 + 
V

 +V – P,

Ht =U – UP,

(.)

where P and Px are given by (.). Differentiating (.) w.r.t. ξ yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ςξ t =Uξ ,

Uξ t = 
Hξ + ( U

 +V – P)yξ ,

Vξ t = –VξN – (V + )Nξ ,

Nξ t = UUξ + (V + )Vξ –NNξ – Pxyξ ,

Hξ t = (U – P)Uξ – UPxyξ ,

(.)

which is semilinear w.r.t. the variables yξ , Uξ , Vξ , Nξ and Hξ .
System (.) can be regarded as an O.D.E. in the Banach space E given by

E =W ×H × [
L ∩ L∞] × [

L ∩ L∞] ×W ,

endowed with the norm

‖X‖E = ‖ς‖W + ‖U‖H + ‖V‖L + ‖V‖L∞ + ‖N‖L + ‖N‖L∞ + ‖H‖W

for any X = (ς ,U ,V ,N ,H) ∈ E. HereW is a Banach space defined as

W =
{
f ∈ C(R)∩ L∞(R)|fξ ∈ L(R)

}
,

with the norm ‖f ‖W = ‖f ‖L∞(R) + ‖fξ‖L(R). Note that H(R)⊂W .

http://www.boundaryvalueproblems.com/content/2013/1/165
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3 Global solutions of the equivalent system
In this section, we prove that the equivalent system admits a unique global solution. We
first obtain the Lipschitz bounds we need on P and Px.

Lemma . (See []) Let � : E → W and � : E → H, or � : E → W be two locally
Lipschitz maps. Then the product X → �(X)�(X) is also a locally Lipschitz map from E
to H, or from E to W .

Lemma . For any given X = (ς ,U ,V ,N ,H) ∈ E, P and Px defined by (.) are locally
Lipschitz continuous from E to H(R).Moreover, we have

Pxξ = –


Hξ +

(
P –



U –V

)
( + ςξ ), Pξ = Px( + ςξ ). (.)

Proof We write

Px(ξ ) = P
x(X)(ξ ) + P

x(X)(ξ )

= –
e–ς (ξ )



∫
R
χ{ξ ′<ξ }e–|ξ–ξ ′|eς (ξ ′)[Hξ +

(
U + V

)
( + ςξ )

](
ξ ′)dξ ′

+
eς (ξ )



∫
R
χ{ξ ′>ξ }e–|ξ–ξ ′|e–ς (ξ ′)[Hξ +

(
U + V

)
( + ςξ )

](
ξ ′)dξ ′, (.)

where χ� denotes the indicator function of a given set �, and P
x, P

x are the operators
which correspond to the two terms of the last identity in (.). We rewrite P

x as

P
x(X)(ξ ) = –

e–ς (ξ )


� ◦ R(X)(ξ ), (.)

where R is the operator from E to L(R) given by

R(X)(ξ ) = χ{ξ ′<ξ }eς
[
Hξ +

(
U + V

)
( + ςξ )

]
.

Since the operator � (defined as in Section ) is linear and continuous from H–(R) to
H(R), and L(R) is continuously embedded in H–(R), we have � ◦ R(X) ∈ H. It is not
hard to know that R is locally Lipschitz from E into L(R) and therefore from E intoH–(R).
Thus, � ◦ R is locally Lipschitz from E to H(R). Since the mapping X → e–ς is locally
Lipschitz from E toW , it then follows from Lemma . that P

x is locally Lipschitz from E
to H(R). Similarly, P

x is also locally Lipschitz and therefore Px is locally Lipschitz from E
to H(R). We can obtain that P defined by (.) is locally Lipschitz continuous from E to
H(R) in the same way. By using the chain rule, the formulas in (.) are obtained by direct
computation, see [, p.]. �

Theorem. Let any X̄ = (ς̄ , Ū , V̄ , N̄ , H̄) ∈ E be given. System (.) admits a unique local
solution defined on some time interval [,T], where T depends only on ‖X̄‖E .

Proof To establish the local existence of solutions, one proceeds as in Lemma ., then
obtains that F(X), which is defined by

F(X) =
(
U , –Px, –(V + )N ,U –



N +



V  +V – P,U – UP

)

http://www.boundaryvalueproblems.com/content/2013/1/165
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with X = (ς ,U ,V ,N ,H), is Lipschitz continuous on any bounded set of E. We rewrite the
solutions of system (.) as

X(t) = X̄ +
∫ t


F
(
X(τ )

)
dτ . (.)

Then the theorem follows from the standard contraction argument on Banach spaces. �

Theorem . gives us the existence of local solutions to (.) for initial data in E. It
remains to prove that the local solutions can be extended to global solutions. Note that
the global solutions of (.)may not exist for all initial data in E. However, they exist when
the initial data X̄ = (ς̄ , Ū , V̄ , N̄ , H̄) belongs to the set , which is defined as follows.

Definition . The set  is composed of all (ς ,U ,V ,N ,H) ∈ E such that

(i) (ς ,U ,V ,N ,H) ∈ [
W ,∞(R)

], (.a)

(ii) yξ ≥ ,Hξ ≥ , yξ +Hξ >  almost everywhere, and lim
ξ→–∞H(ξ ) = , (.b)

(iii) yξHξ = yξU
 +U

ξ + yξV
 almost everywhere, (.c)

with ς (ξ ) = y(ξ ) – ξ , whereW ,∞(R) = {f ∈ C(R)∩ L∞(R)|fξ ∈ L∞(R)}.

The global existence of the solution for initial data in  relies essentially on the fact that
the set  is preserved by the flow as the next lemma shows.

Lemma . Given initial data X̄ = (ς̄ , Ū , V̄ , N̄ , H̄) ∈ , for some T > , we consider the
local solution X(t) = (ς ,U ,V ,N ,H)(t) ∈ C([,T],E) of system (.) given by Theorem ..
We have

(i) X(t) ∈  for all t ∈ [,T],
(ii) yξ (t, ξ ) >  for a.e. t ∈ [,T] and a.e. ξ ∈ R,
(iii) limξ→±∞ H(t, ξ ) =H(,±∞) =  for all t ∈ [,T].

Proof (i) For given initial data X̄ = (ς̄ , Ū , V̄ , N̄ , H̄) ∈ E ∩ [W ,∞(R)], to ensure that the
solution X = (ς ,U ,V ,N ,H) of (.) also belongs to E ∩ [W ,∞(R)], we have to specify
the initial conditions for (.). Let � be the following set:

� =
{
ξ ∈ R|∣∣ς̄ξ (ξ )

∣∣ ≤ ‖ς̄ξ‖L∞ ,
∣∣Ūξ (ξ )

∣∣ ≤ ‖Ūξ‖L∞ ,
∣∣V̄ξ (ξ )

∣∣ ≤ ‖V̄ξ‖L∞ ,∣∣N̄ξ (ξ )
∣∣ ≤ ‖N̄ξ‖L∞ ,

∣∣H̄ξ (ξ )
∣∣ ≤ ‖H̄ξ‖L∞

}
.

Note that meas(�c) = . For ξ ∈ �, we take (ςξ ,Uξ ,Vξ ,Nξ ,Hξ )(, ξ ) = (ς̄ξ , Ūξ , V̄ξ , N̄ξ ,
H̄ξ )(ξ ). For ξ ∈ �c, we define (ςξ ,Uξ ,Vξ ,Nξ ,Hξ )(, ξ ) = (, , , , ). We consider U , P
and Px as given functions in C([,T],H(R)), which is guaranteed by Lemma . and V ,
N in C([,T], [L(R)∩ L∞(R)]). Thus system (.) is affine (it consists of a sum of a linear
transformation and a constant) and, therefore, by using a contraction argument, it admits
a unique local solution defined on some time interval [,T]. Thus, for the given initial
condition X̄ ∈ E ∩ [W ,∞(R)], the solution of (.) given by Theorem . also belongs
to E ∩ [W ,∞(R)], which implies that X(t) satisfies (.a) for all t ∈ [,T]. We claim that

http://www.boundaryvalueproblems.com/content/2013/1/165
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(.c) holds for any ξ ∈ � and therefore almost everywhere. Consider a fixed ξ ∈ � and
drop it in the notation. On the one hand, it follows from (.) that

(yξHξ )t = yξ tHξ + yξHξ t

= UξHξ + yξ

[(
U – P – AU

)
Uξ – UPxyξ

]
= UξHξ + UUξyξ – PUξyξ – AUUξyξ – UPxyξ ,

and on the other hand,

(
yξU

 +U
ξ + yξV

)
t

= yξyξ tU + yξUUt + yξyξ tV  + yξVVt + UξUξ t

= UUξyξ – UPxyξ +UξHξ – AUUξyξ – PUξyξ .

Thus, (yξHξ )t = (yξU +U
ξ + yξV )t . Notice that yξHξ () = (yξU +U

ξ + yξV )(), which
implies that yξHξ (t) = (yξU +U

ξ + yξV )(t) for all t ∈ [,T]. Thus, (.c) holds. It remains
to prove that the inequalities in (.b) hold. Set t∗ = sup{t ∈ [,T]|yξ (t′) ≥  for all t′ ∈
[, t]}. Assume that t∗ < T . Since yξ (t) is continuous w.r.t. t, we have yξ (t∗) = . It fol-
lows from (.c) that Uξ (t∗) = . Furthermore, (.) implies yξ t(t∗) = Uξ (t∗) =  and
yξ tt(t∗) = Uξ t(t∗) = 

Hξ (t∗). If Hξ (t∗) = , then (yξ ,Uξ ,Hξ )(t∗) = (, , ), which implies
(yξ ,Uξ ,Hξ )(t) =  for all t ∈ [,T] by the uniqueness of the solution of system (.). This
contradicts the fact that yξ () + Hξ () >  for all ξ ∈ �. If Hξ (t∗) < , then yξ tt(t∗) < .
Since yξ (t∗) = yξ t(t∗) = , there exists a neighborhood � of t∗ such that yξ (t) <  for
all t ∈ � /{t∗}. This contradicts the definition of t∗. Hence, Hξ (t∗) > . We now have
yξ tt(t∗) > , which conversely implies yξ (t) >  for all t ∈ � /{t∗}, which contradicts the fact
that t∗ < T . Thus, we have proved yξ (t) ≥  for all t ∈ [,T]. We now prove that Hξ ≥ 
for all t ∈ [,T]. This follows from (.c) when yξ (t) > . If yξ (t) = , then Uξ (t) =  from
(.c). As we have seen, Hξ <  would imply that yξ (t′) <  for some t′ in a punctured
neighborhood of t, which is impossible. Hence, Hξ ≥  for all t ∈ [,T]. Now we have
yξ (t) + Hξ (t) ≥  for all t ∈ [,T]. If yξ (t′) + Hξ (t′) =  for some t′, it then follows that
(yξ ,Uξ ,Hξ )(t′) = , which implies (yξ ,Uξ ,Hξ )(t) =  for all t ∈ [,T], which contradicts the
fact that yξ () +Hξ () >  for all ξ ∈ �. Hence, yξ (t) +Hξ (t) > .
(ii) Define the set N = {(t, ξ ) ∈ [,T] × R|yξ (t, ξ ) = }. It follows from Fubini’s theorem

that

meas(N) =
∫
R
meas(Nξ )dξ =

∫
[,T]

meas(Nt)dt, (.)

where Nξ = {t ∈ [,T]|yξ (t, ξ ) = } and Nt = {ξ ∈ R|yξ (t, ξ ) = }. From the above proof, we
know that for all ξ ∈ �, Nξ consists of isolated points that are countable. This means that
meas(Nξ ) = . It follows from (.), and since meas(�c) = , that

meas(Nt) =  for almost every t ∈ [,T].

This implies that yξ (t, ξ ) >  for almost all t and therefore y(t, ξ ) is strictly increasing and
invertible w.r.t. ξ .

http://www.boundaryvalueproblems.com/content/2013/1/165
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(iii) For any given t ∈ [,T], sinceHξ (t) ≥  andH(t, ξ ) ∈ L∞(R), we know thatH(t,±∞)
exist. We have

H(t, ξ ) =H(, ξ ) +
∫ t



(
U – PU

)
(τ , ξ )dτ . (.)

Let ξ → ±∞. Since U , P are bounded in L∞([,T] × R) and limξ→±∞ U(t, ξ ) =  as
U(t, ·) ∈H(R), it then follows from (.) thatH(t,±∞) =H(,±∞) for all t ∈ [,T]. Since
X̄ ∈ , it follows that H(,±∞) =  for all t ∈ [,T]. �

Theorem . For any initial data X̄ = (ȳ, Ū , V̄ , N̄ , H̄) ∈ , there exists a unique global
solution X(t) = (y,U ,V ,N ,H)(t) ∈ C(R+,E) for system (.).Moreover, for all t ≥ , if we
equip  with the topology endowed with the E-norm, then the map St :  →  ×R+ defined
as

St(X̄) = X(t)

is a continuous semigroup.

Proof Let (ς ,U ,V ,N ,H) ∈ C([,T],E) be a local solution of (.) with initial data
(ς̄ , Ū , V̄ , N̄ , H̄). To obtain the global existence of solutions, it suffices to show that

sup
t∈[,T)

∥∥ς (t, ·),U(t, ·),V (t, ·),N(t, ·),H(t, ·)∥∥E < ∞. (.)

SinceH(t, ξ ) is an increasing functionw.r.t. ξ for all t and limξ→∞ H(t, ξ ) = limξ→∞ H(, ξ ),
we have supt∈[,T) ‖H(t, ·)‖L∞(R) = ‖H̄‖L∞(R) < ∞. We consider a fixed t ∈ [,T) and drop it
for simplification. Since Uξ (ξ ) =  when yξ (ξ ) = , and yξ (ξ ) >  for a.e. ξ , it follows from
(.c) that

U(ξ ) = 
∫ ξ

–∞
U

(
ξ ′)Uξ

(
ξ ′)dξ ′ = 

∫
{ξ ′<ξ |yξ (ξ ′)>}

U
(
ξ ′)Uξ

(
ξ ′)dξ ′

≤
∫

{ξ ′<ξ |yξ (ξ ′)>}

(
yξU +U

ξ /yξ

)(
ξ ′)dξ ′ ≤

∫
R
Hξ

(
ξ ′)dξ ′ =H(ξ ),

which implies

sup
t∈[,T)

∥∥U(t, ·)∥∥L∞ ≤ sup
t∈[,T)

∥∥H(t, ·)∥∥L∞(R) = ‖H̄‖L∞(R) < ∞,

and therefore

sup
t∈[,T)

∥∥U(t, ·)∥∥L∞ < ∞.

We can obtain from the governing equation (.) that

∣∣ς (t, ξ )∣∣ ≤ ∣∣ς (, ξ )∣∣ + sup
t∈[,T)

∥∥U(t, ·)∥∥L∞T .

http://www.boundaryvalueproblems.com/content/2013/1/165
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Thus, supt∈[,T) ‖ς (t, ·)‖L∞ < ∞. The governing equation (.) also implies that
supt∈[,T) ‖V (t, ·)‖L∞ <∞ and supt∈[,T) ‖N(t, ·)‖L∞ < ∞.
From the identity Hξ = (U +U

x +V )yξ , we can deduce that

∣∣(U + V
)
yξ

∣∣ ≤ (
U +V  + 

)
yξ ≤ Hξ + yξ ,

which implies that

|Px| ≤ 


∣∣∣∣
∫
R
e–|y(ξ )–y(ξ ′)|[Hξ +

(
U + V

)
yξ

](
ξ ′)dξ ′

∣∣∣∣
≤ 



∣∣∣∣
∫
R
e–|y(ξ )–y(ξ ′)|[Hξ + yξ ]

(
ξ ′)dξ ′

∣∣∣∣
≤ C

(
sup

t∈[,T)

∥∥H(t, ·)∥∥L∞(R) + sup
t∈[,T)

∥∥ς (t, ·)∥∥L∞
)
< ∞.

Therefore, ‖Px‖L∞ < ∞. Similarly, we obtain ‖Px‖L < ∞ and the bounds hold for P. Let

Z(t) =
∥∥U(t, ·)∥∥L +

∥∥Uξ (t, ·)
∥∥
L +

∥∥V (t, ·)∥∥L +
∥∥N(t, ·)∥∥L +

∥∥ςξ (t, ·)
∥∥
L +

∥∥Hξ (t, ·)
∥∥
L .

After taking the L-norms on both sides of (.) and (.), we obtain

Z(t) ≤ Z() +C
∫ t


Z(τ )dτ .

It follows from Gronwall’s lemma that supt∈[,T)Z(t) < ∞, which implies that St is a con-
tinuous semigroup by the standard O.D.E. theory. �

4 Global solutions for the original system
We transform the global solution of the equivalent system (.) into the global conserva-
tive solution of the original system (.) in this section. It suffices to establish the corre-
spondence between the Lagrangian equivalent system and the original system.
We first introduce a set G as the set of relabeling functions defined by

G =
{
f is invertible|f – Id and f – – Id both belong toW ,∞(R)

}
,

where Id denotes the identity function. For any α > , we define the subsets Gα of G as

Gα =
{
f ∈G|‖f – Id‖W ,∞(R) +

∥∥f – – Id
∥∥
W ,∞(R) ≤ α

}
,

with a useful property: If f ∈ Gα (α ≥ ), then /( + α) ≤ fξ ≤  + α almost everywhere.
Conversely, if f is absolutely continuous, f – Id ∈ L∞(R) and there exists c ≥  such that
/c ≤ fξ ≤ c almost everywhere, then f ∈ Gα for some α depending only on c and ‖f –
Id‖L∞(R). We now define the subsets F and Fα of  such that

F =
{
X = (y,U ,V ,H) ∈ |y +H ∈G

}
,

Fα =
{
X = (y,U ,V ,H) ∈ |y +H ∈Gα

}
.

http://www.boundaryvalueproblems.com/content/2013/1/165
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With the above useful property of Gα , it is not hard to prove that the space F is preserved
by the governing equation (.).
Notice that the map � :G× F → F given by �(f ,X) = X ◦ f defines a group action of G

on F , we then consider the quotient space F/G of F w.r.t. the group action. The equivalence
relation on F is defined as: for any X,X ′ ∈ F , if there exists f ∈ G such that X ′ = X ◦ f , we
claim that X and X ′ are equivalent. We denote the projection � : F → F/G by �(X) = [X].
For any X = (y,U ,V ,N ,H) ∈ F , we introduce the map K : F → F given by K(X) = X ◦
(y +H)–. It is not hard to prove that K(X) = X when X ∈ F, and K(X ◦ f ) = K(X) for any
X ∈ F and f ∈ G. Hence, we can define the map K̃ : F/G → F as K̃([X]) = K(X) for any
representative [X] ∈ F/G of X ∈ F . For any X ∈ F, we have K̃ ◦ �(X) = K(X) = X. Hence,
K̃ ◦ �|F = Id|F . Note that any topology defined on F is naturally transported into F/G
by this isomorphism, that is, if we equip F with the metric induced by the E-norm, i.e.,
dF (X,X ′) = ‖X – X ′‖E for all X,X ′ ∈ F, which is complete, then for any [X], [X ′] ∈ F/G,
the topology on F/G is defined by a complete metric given by dF/G([X], [X ′]) = ‖K(X) –
K(X ′)‖E .
For any initial data X̄ ∈ F , we denote the continuous semigroup with the solution X(t)

of system (.) by S : F × R+ → F . As we indicated earlier, Eq. (.) is invariant w.r.t.
relabeling. That is, t > , St(X ◦ f ) = St(X) ◦ f for any X ∈ F and f ∈ G. Thus, the map S̃t :
F/G → F/G defined by S̃t([X]) = [StX] is valid, which generates a continuous semigroup.
To derive the correspondence between the Lagrangian equivalent system and the orig-

inal system, we have to consider the space D, which characterizes the solutions in the
original system:

D =
{
(z,μ)|z ∈H(R)× [

L(R)× L∞(R)
]
and μac =

(
u + ux + v

)
dx

}
,

where z = (u, v) andμ is a positive finite Radonmeasurewithμac as its absolute continuous
part.
We now establish a bijection between F/G andD to transport the continuous semigroup

obtained in the Lagrangian equivalent system (functions in F/G) into the original system
(functions in D).
We first introduce the mapping M, which corresponds to the transformation from the

Lagrangian equivalent system into the original system. In the other direction, we obtain
the energy density μ in the original system, by pushing forward by y the energy density
Hξ dξ in the Lagrangian equivalent system, where the push-forward f#ν of a measure ν by
a measurable function f is defined by

f#ν(B) = ν
(
f –(B)

)

for all Borel set B. Let (z,μ) be defined as

z(x) = Z(ξ ) for any ξ such that x = y(ξ ), (.a)

μ = y#(Hξ dξ ), (.b)

where z(x) = (u, v)(x), Z(ξ ) = (U ,V )(ξ ). We have that (z,μ) ∈D, which does not depend on
the representative X = (y,U ,V ,N ,H) ∈ F of [X] we choose. We denote by M : F/G → D

http://www.boundaryvalueproblems.com/content/2013/1/165
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the mapping to any [X] ∈ F/G and (z,μ) ∈ D given by (.a) and (.b), which transforms
the Lagrangian equivalent system into the original system.
We are led to themapping L :D → F/G, which conversely transforms the original system

into the Lagrangian equivalent system defined as follows.

Definition . For any (z,μ) ∈D, let

y(ξ ) = sup
{
y|μ(–∞, y) + y < ξ

}
, (.a)

U(ξ ) = u ◦ y(ξ ), V (ξ ) = v ◦ y(ξ ), N(ξ ) = ux ◦ y(ξ ), (.b)

H(ξ ) = ξ – y(ξ ), (.c)

where z = (u, v). We define L(z,μ) ∈ F/G as the equivalence class of (y,U ,V ,N ,H).

Remark . Note that X = (y,U ,V ,N ,H) ∈ E, which satisfies (.a)-(.c) from the def-
inition of y, U , V , N , H in (.a)-(.c). Moreover, by the definition (.c), we have that
y +H = Id. Thus, X = (y,U ,V ,N ,H) ∈ F.

We claim that the transformation from the original system into the Lagrangian equiva-
lent system is a bijection.

Theorem . The maps M and L are invertible, that is,

L ◦M = IdF/G, M ◦ L = IdD .

Proof Let [X] ∈ F/G be given. We consider X = (y,U ,V ,N ,H) = K̃([X]) for a represen-
tative of [X] and (z,μ) given by (.a) and (.b) for this particular X. From the defini-
tion of K̃ , we have X ∈ F. Let X̄ = (ȳ, Ū , V̄ , N̄ , H̄) be the representative of L(z,μ) in F
given by (.a)-(.c). To derive L ◦ M = IdF/G, it suffices to show that (ȳ, Ū , V̄ , N̄ , H̄) =
(y,U ,V ,N ,H). Let

g(x) = sup
{
ξ ∈ R|y(ξ ) < x

}
. (.)

Using the fact that y is increasing and continuous, it follows that

y
(
g(x)

)
= x (.)

and y–((–∞,x)) = (–∞, g(x)). From (.b) and since H(–∞) = , for any x ∈ R, we get

μ
(
(–∞,x)

)
=

∫
y–((–∞,x))

Hξ dξ =
∫ g(x)

–∞
Hξ dξ =H

(
g(x)

)
.

Since X ∈ F and y +H = Id, we have

μ
(
(–∞,x)

)
+ x = g(x). (.)

From the definition of ȳ, it follows that

ȳ(ξ ) = sup
{
x ∈ R|g(x) < ξ

}
. (.)

http://www.boundaryvalueproblems.com/content/2013/1/165
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For any given ξ ∈ R, using the fact that y is increasing and (.), it follows that ȳ(ξ ) ≤ y(ξ ).
If ȳ(ξ ) < y(ξ ), there then exists x such that ȳ(ξ ) < x < y(ξ ) and (.) implies that g(x) ≥ ξ .
Conversely, since y is increasing, we have x = y(g(x)) < y(ξ ), which implies that g(x) < ξ .
This is a contradiction. Hence, we have that ȳ = y. Since y+H = Id, it follows directly from
the definitions that H̄ =H , Ū =U , V̄ = V and N̄ =N . Hence, L ◦M = IdF/G.
Let (z,μ) ∈ D be given and (y,U ,V ,N ,H) be the representative of L(z,μ) in F given by

(.a)-(.c). Then, let (z̄, μ̄) =M ◦ L(z,μ). Let g be defined as before by (.). The same
computation that leads to (.) now gives

μ̄
(
(–∞,x)

)
+ x = g(x). (.)

Given ξ ∈ R, we consider an increasing sequence xi converging to y(ξ ), which is guaranteed
by (.a), and such that μ((–∞,xi)) + xi < ξ . Let i tend to infinity. Since F(x) = μ((–∞,x))
is lower semi-continuous, we have μ((–∞, y(ξ ))) + y(ξ )≤ ξ . Take ξ = g(x) and then we get

μ
(
(–∞,x)

)
+ x ≤ g(x). (.)

By the definition of g , there exists an increasing sequence ξi converging to g(x) such that
y(ξi) < x. It follows from the definition of y in (.a) that μ((–∞,x)) + x≥ ξi. Passing to the
limit, we obtain μ((–∞,x)) + x≥ g(x) which, together with (.), yields

μ
(
(–∞,x)

)
+ x = g(x). (.)

We obtain that μ̄ = μ by comparing (.) and (.). It is clear from the definitions that
z̄ = z. Hence, (z̄, μ̄) = (z,μ) andM ◦ L = IdD. �

Our next task is to transport the topology defined in F/G into D, which is guaranteed
by the fact that we have established a bijection between the two equivalent systems and
then obtained a continuous semigroup of solutions for the original system.
Let us define the distance dD on D as

dD
(
(z,μ), (z̄, μ̄)

)
= dF/G

(
L(z,μ),L(z̄, μ̄)

)
,

which makes the bijection L between D and F/G into an isometry. Since F/G equipped
with dF/G is a completemetric space, it is not hard to know thatD equippedwith themetric
dD is also a complete metric space. For each t ∈ R, we define the mapping Tt :D →D as

Tt =MS̃tL.

Theorem . Given (z̄, μ̄) ∈D, if we denote t → (z,μ)(t) = Tt(z̄, μ̄) the corresponding tra-
jectory, then z = (u, v) is a weak solution of the two-component Camassa-Holm equations
(.), which constructs a continuous semigroup. Moreover, μ is a weak solution of the fol-
lowing transport equation:

μt + (uμ)x =
(
u – Pu

)
x. (.)

Furthermore, we have

μ(t)(R) = μ()(R) for all t (.)

http://www.boundaryvalueproblems.com/content/2013/1/165
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and

μ(t)(R) = μac(t)(R) =
∥∥z(t)∥∥

H

=
∥∥u(t)∥∥

H +
∥∥v(t)∥∥

L = μ()(R) for almost all t. (.)

Thus, the unique solution described here is a conservative weak solution of system (.).

Proof To prove that z = (u, v) is a weak solution of the original system (.), it suffices to
show that, for all φ ∈ C∞(R+ × R) with compact support,

∫
R+×R

(–uφt + uuxφ)(t,x)dxdt = –
∫
R+×R

(Pxφ)(t,x)dxdt,

∫
R+×R

(–vφt + uvxφ)(t,x)dxdt = –
∫
R+×R

[
(v + )uxφ

]
(t,x)dxdt,

(.)

where Px is given by (.). We denote by the solution (y,U ,V ,N ,H)(t) of (.) a represen-
tative of L(z(t),μ(t)). On the one hand, since y(t, ξ ) is Lipschitz and invertible w.r.t. ξ for
almost all t, we can use the change of variables x = y(t, ξ ), then we get

∫
R+×R

(–uφt + uuxφ)(t,x)dxdt

=
∫
R+×R

[
–(Uyξ )(t, ξ )φt

(
t, y(t, ξ )

)
+ (UUξ )(t, ξ )φ

(
t, y(t, ξ )

)]
dξ dt. (.)

Since yt =U and yξ t =Uξ , it then follows from (.) that

∫
R+×R

[
–Uyξφt(t, y) +UUξφ(t, y)

]
dξ dt

=



∫
R+×R

{
sgn

(
ξ – ξ ′)e–|y(ξ )–y(ξ ′)|[Hξ +

(
U + V

)
yξ

]}(
ξ ′)

· φ(
t, y(ξ )

)
yξ (ξ )dξ ′ dξ dt. (.)

On the other hand, using the change of variables x = y(t, ξ ) and x′ = y(t, ξ ′), and since y is
an increasing function, we have

–
∫
R+×R

(Pxφ)(t,x)dxdt

=



∫
R+×R

[
sgn

(
ξ – ξ ′)e–|y(ξ )–y(ξ ′)|

(
u +



ux +



v + v

)](
t, y

(
ξ ′))

· φ(
t, y(ξ )

)
yξ

(
ξ ′)yξ (ξ )dξ ′ dξ dt.

It follows from the identity (.c) that

–
∫
R+×R

(Pxφ)(t,x)dxdt

=



∫
R+×R

{
sgn

(
ξ – ξ ′)e–|y(ξ )–y(ξ ′)|[Hξ +

(
U + V

)
yξ

]}(
ξ ′)

· φ(
t, y(ξ )

)
yξ (ξ )dξ ′ dξ dt. (.)
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By comparing (.) and (.), we know that

∫
R+×R

[
–Uyξφt(t, y) +UUξφ(t, y)

]
dξ dt = –

∫
R+×R

(Pxφ)(t,x)dxdt.

Thus, the first identity in (.) follows directly from (.) and the second identity in
(.) follows in the same way. It is not hard to check that μ(t) is the solution of (.).
From the definition μ in (.b), we can get that

μ(t)(R) =
∫
R
Hξ dξ =H(t,∞),

which is constant in time from Lemma .(iii). Thus, we have proved (.).
Since yξ (t, ξ ) >  a.e. for almost every ξ ∈ R, it then follows from (.c) that

μ(t)(B) =
∫
y–(B)

Hξ dξ =
∫
y–(B)

(
U +U

ξ /y

ξ +V )yξ dξ (.)

for any Borel set B. Since y is one-to-one and ux ◦ yyξ =Uξ almost everywhere, then (.)
implies that

μ(t)(B) =
∫
B

(
u + ux + v

)
(t,x)dx.

Thus, (.) holds and the proof is completed. �

5 Multipeakon solutions of the original system
We derive a new system of ordinary differential equations for the multipeakon solu-
tions which is well posed even when collisions occur in this section, and the variables
(y,U ,V ,N ,H) are used to characterize multipeakons in a way that avoids the problems
related to blowing up.
Solutions of the two-component Camassa-Holm system may experience wave breaking

in the sense that the solution develops singularities in finite time, while keeping the H

norm finite. Extending the solution beyond wave breaking imposes significant challenge
as can be illustrated in the case of multipeakons given by

u(t,x) =
n∑
i=

pi(t)e–|x–qi(t)|, (.)

where (pi(t),qi(t)) satisfy the explicit system of ordinary differential equations

⎧⎨
⎩ṗi =

∑n
j= pipjsgn(qi – qj)e–|qi–qj|,

q̇i =
∑n

j= pje
–|qi–qj|.

(.)

Peakons interact in a way similar to that of solitons of the CH equation, and wave breaking
may appear when at least two of the qi coincide. Clearly, if the qi remain distinct, system
(.) allows for a global smooth solution. In the case where pi() has the same sign for all
i = , , . . . ,n, the qi(t) remain distinct, and (.) admits a unique global solution. In this

http://www.boundaryvalueproblems.com/content/2013/1/165
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case, the peakons are traveling in the same direction. However, when two peakons have
opposite signs, collisions may occur, and if so, system (.) blows up.
We consider initial data z̄ = (ū, v̄) given by

⎧⎨
⎩ū(x) =

∑n
i= pie–|x–ξi|,

v̄(x) =
∑n

i= rie–|x–ξi|.
(.)

Without loss of generality, we assume that the pi and ri are all nonzero, and that the ξi are
all distinct. FromTheorem.we know that there exists a unique and global weak solution
with initial data (.), and the aim is to characterize this solution explicitly. We consider
the following characterization ofmultipeakons. Themultipeakons are given as continuous
solutions u defined on intervals [xi,xi+] as the solutions of the Dirichlet problem

u – uxx = , u(xi) = ui, u(xi+) = ui+,

where the variables xi denote the position of the peaks, and the variables ui denote the
values of u at the peaks. In the following, we will show that this property persists for con-
servative solutions.
Let us define X̄ = (ȳ, Ū , V̄ , N̄ , H̄) as

ȳ(ξ ) = ξ , (.a)

Ū(ξ ) = ū(ξ ), (.b)

V̄ (ξ ) = v̄(ξ ), (.c)

N̄(ξ ) = ūx(ξ ), (.d)

H̄(ξ ) =
∫ ξ

–∞

(
u + ux + v

)
dx, (.e)

which is a representative of z = (u, v) in the Lagrangian equivalent system, that is, [X̄] =
L(z̄, (ū + ūx + v̄)dx). Let A = R\{ξ, . . . , ξn}. We claim that the functions Ū , V̄ , N̄ and H̄
belong to C(A) and even belong to C∞(A), as the next lemma shows.

Lemma . For given initial data X̄ = (ȳ, Ū , V̄ , N̄ , H̄) ∈ F such that X̄ ∈ [C(A)], the asso-
ciated solution X = (y,U ,V ,W ,H) of (.) belongs to C(R+, [C(A)]).

Proof To prove this lemma, one proceeds as in Theorem . by using the contraction ar-
gument. The Banach space E is replaced by

Ē = E ∩ [
C(A)

],
endowed with the norm

‖X‖Ē = ‖X‖E + ‖y– Id‖W,∞(A) + ‖U‖W,∞(A) + ‖V‖W,∞(A) + ‖N‖W,∞(A) + ‖H‖W,∞(A).

It suffices to show that P and Pi are Lipschitz from bounded sets of Ē into H(R)∩C(A).
Given a bounded set B = {X ∈ Ē|‖X‖Ē ≤ CB}, where CB is a positive constant, it follows
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from Lemma . that

∥∥Px(X) – Px(X̄)
∥∥
L∞(R) ≤ C‖X – X̄‖E ≤ C‖X – X̄‖Ē

for a constant C depending only on CB. From the derivative of Px given by (.) and
Lemma ., we have that Px is locally Lipschitz from Ē into C(A). Similarly, we obtain
the same result for P. We compute the derivative of Pξ and Pxξ on A as follows:

Pxξξ = –Hξξ / + (Pxyξ –UUξ –Vξ )yξ +
(
P –U/ –V

)
yξξ ,

Pξξ = –Hξyξ / +
(
P –U/ –V

)
yξ + Pxyξξ .

(.)

Since Pξξ and Pxξξ are locally Lipschitz maps from Ē into C(A), we have that P and Px are
locally Lipschitz from Ē into C(A). The local solution of (.) in Ē then can be obtained
by the standard contraction argument. As we know, as far as global existence is concerned,
‖X‖W ,∞(R) does not blow upwith initial data inW ,∞(R) (see Lemma .(i)). For any ξ ∈ A,
we have that

yξξ t =Uξξ ,

Uξξ t =


Hξξ – (Pxyξ –UUξ –Vξ )yξ –

(
P –



U –V

)
yξξ ,

Vξξ t = –VξξN – VξNξ –VNξξ –Nξξ ,

Nξξ t = U
ξ + UUξ –N

ξ –NNξξ +V 
ξ +VVξξ +Vξξ +



Hξyξ (.)

–
(
P –



U –V

)
yξ + Pxyξξ ,

Hξξ t =
(
U – P

)
Uξξ – UPxyξξ + UU

ξ – UξPxyξ

+UHξyξ – UPyξ +Uyξ + UVyξ .

System (.) is affine w.r.t. yξξ , Uξξ , Vξξ , Nξξ , Hξξ . Hence, on any interval [,T), we have

∥∥Xξξ (t, ·)
∥∥
L∞(A) ≤

∥∥Xξξ (, ·)
∥∥
L∞(A) +C +C

∫ t



∥∥Xξξ (τ , ·)
∥∥
L∞(A) dτ ,

where C is a constant depending only on supt∈[,T) ‖X‖W ,∞(R), which is bounded. Thus
‖X‖W,∞(A) does not blow up fromGronwall’s lemma, and therefore the solution is globally
defined in Ē. �

Theorem . Let the initial data be given in (.). The solution given by Theorem .
satisfies u – uxx =  between the peaks.

Proof Assuming that yξ (t, ξ ) �= , we have

ux ◦ y = Uξ

yξ

, uxx ◦ y =
(
Uξ

yξ

)
ξ


yξ

=
Uξξyξ – yξξUξ

yξ
.
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Hence,

(u – uxx) ◦ y =
(
Uyξ –Uξξyξ + yξξUξ

)
/yξ . (.)

Let

M =Uyξ –Uξξyξ + yξξUξ . (.)

For a given ξ ∈ A, differentiating (.) w.r.t. t, we obtain, by using (.), (.) and (.),
that

dM/dt = Uyξyξ t +Utyξ –Uξξ tyξ –Uξξyξ t + yξξ tUξ + yξξUξ t

= –Pxyξ + yξUUξ –Hξξyξ / + (Qyξ –UUξ +AUξ –Vξ )yξ

+
(
P –U/ –V

)
yξξyξ –UξξUξ +UξξUξ + yξξ

[
Hξ / +

(
U/ +V – P

)
yξ

]
= UUξyξ –Hξξyξ / +Hξyξξ / –Vξyξ . (.)

We differentiate (.c) w.r.t. ξ and get

yξξHξ + yξHξξ = yξyξξU + yξUUξ + UξUξξ + yξyξξV  + yξVVξ . (.)

After inserting the value of yξHξξ given by (.) into (.) and multiplying the equation
by yξ , we obtain that

yξ · dM/dt =UUξyξ +U
ξ yξξ –UξUξξyξ .

It follows from (.c) and since yξ t =Uξ that

yξ · dM/dt = yξ t ·M. (.)

We claim thatM/yξ is C in time. Indeed, we have

M
yξ

=Uyξ –Uξξ +
yξξUξ

yξ

=Uyξ –Uξξ +
yξξUξ

yξ +Hξ

+
yξξNHξ

yξ +Hξ

=
J(X,Xξ ,Xξξ )

yξ +Hξ

for some polynomial J . Since X ∈ C(R, Ē), we have X, Xξ and Xξξ are C in time. Since
X(t) remains in  for all t, from (.b), we have yξ +Hξ >  and therefore /(yξ +Hξ ) is C

in time, which implies thatM/yξ is C in time. For any time t such that yξ (t) �= , we have

d
dt

(
M
yξ

)
=
Mtyξ – yξ tM

yξ
= .

Hence,

M(t, ξ ) = K(ξ )yξ (t, ξ )
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for some constant K(ξ ) independent of time. This leads to

yξ (u – uxx) ◦ y = K(ξ ),

which corresponds to the conservation of spatial angular momentum. For the multi-
peakons at time t = , we have y(, ξ ) = ξ and (u – uxx)(, ξ ) =  for all ξ ∈ A. Hence,

M/yξ (t, ξ ) =  (.)

for all time t and all ξ ∈ A. Thus, (u – uxx)(t, ξ ) = . �

For solutions with multipeakon initial data, we have the following result: If yξ (t, ξ )
vanishes at some point ξ̄ in the interval (ξi, ξi+), then yξ (t, ξ ) vanishes everywhere
in (ξi, ξi+). Furthermore, for the given initial multipeakon solution z̄(x) = (ū, v̄)(x) =
(
∑n

i= pie–|x–ξi|,
∑n

i= rie–|x–ξi|), let (y,U ,V ,N ,H) be the solution of system (.) with ini-
tial data (ȳ, Ū , V̄ , N̄ , H̄) given by (.a)-(.e), then between adjacent peaks, if xi = y(t, ξi) �=
xi+ = y(t, ξi+), the solution z(t,x) = (u, v)(t,x) is twice differentiable with respect to the
space variable, and for x ∈ (xi,xi+), we have that (u – uxx) = .
We now start the derivation of a system of ordinary differential equations for multi-

peakons.
For each i = , , . . . ,n, we have, from (.), that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dyi/dt = ui,

dui/dt = –Pxi,

dvi/dt = –(vi + )uxi,

duxi/dt = ui – uxi/ + vi / + vi – Pi,

dHi/dt = ui – uiPi,

(.)

where (yi,ui, vi,uxi,Hi) = (y,U ,V ,N ,H)(t, ξi), Pi = P(t, ξi), Pxi = Px(t, ξi), respectively. By us-
ing the change of variables x = y(t, ξ ), Pi and Pxi can be rewritten as

Pi = / ·
∫
R
e–|yi–x|(u + ux/ + v/ + v

)
dx,

Pxi = –/ ·
∫
R
sgn(yi – x)e–|yi–x|(u + ux/ + v/ + v

)
dx.

(.)

For x ∈ [yi, yi+], i = , , . . . ,n – , we write z = (u, v) as

z(x) =

(
u(x)
v(x)

)
=

(
Aiex + Bie–x

Ciex +Die–x

)
. (.)

The constants Ai, Bi, Ci and Di depend on ui, ui+, vi, vi+, yi and yi+ and read

Ai =
e–ȳi


[
ūi

cosh(δyi)
+

δui
sinh(δyi)

]
, Bi =

eȳi


[
ūi

cosh(δyi)
–

δui
sinh(δyi)

]
,

Ci =
e–ȳi


[
v̄i

cosh(δyi)
+

δvi
sinh(δyi)

]
, Di =

eȳi


[
v̄i

cosh(δyi)
–

δvi
sinh(δyi)

]
,

(.)
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where

ȳi =


(yi + yi+), δyi =



(yi – yi+),

ūi =


(ui + ui+), δui =



(ui – ui+),

v̄i =


(vi + vi+), δvi =



(vi – vi+).

(.)

The constantsAi, Bi,Ci andDi uniquely determine z = (u, v) on the interval [yi, yi+]. Thus,
we can compute

δHi = Hi+ –Hi =
∫ yi+

yi

(
u + ux + v

)
dx

= ūi tanh(δyi) + δui coth(δyi) + v̄i tanh(δyi)

+ δvi coth(δyi) + CiDiδyi. (.)

At this point, we can get some more understanding of what is happening at the time of
collision. Let t∗ be the time when the two peaks located at yi and yi+ collide, i.e., such that
limt→t∗ δyi(t) = . The function z = (u, v) remains continuous because the solution z = (u, v)
remains inH × [L ∩L∞] for all time, thus we have limt→t∗ δui(t) = limt→t∗ δvi(t) = . Still,
Ai, Bi, Ci and Di may have a finite limit when t tends to t∗. However, the first derivative
blows up, which implies limt→t∗ Bi = – limt→t∗ Ai = ∞ and limt→t∗ Di = – limt→t∗ Ci = ∞.
Thus δui and δvi tend to zero but slower than δyi. In fact, if we let t tend to t∗ in (.), to
first order in δyi, we obtain

√
δui + δvi =

√
δHi ·

√
δyi + ◦(δyi),

which implies that δui and δvi tend to zero at the same rate as
√

δyi. We now turn to the
computation of Pi given by (.). Let us write z = (u, v) as

z(t,x) =
(
u(t,x), v(t,x)

)
=

( n∑
j=

(
Ajex + Bje–x

)
χ(yj ,yj+)(x),

n∑
j=

(
Cjex +Dje–x

)
χ(yj ,yj+)(x)

)
.

We have set y = –∞, yn+ = ∞, u = un+ = , v = vn+ = , A = ue–y , B = , An = ,
Bn = uneyn and C = ve–y , D = , Cn = , Dn = vneyn . We have

u +


ux +



v + v =

n∑
j=

(


A
j e

x +AjBj +


B
j e

–x

+


C
j e

x +CjDj +


D

j e
–x +Cjex +Dje–x

)
χ(yj ,yj+). (.)

Let

kij =

⎧⎨
⎩ if i > j,

– if i≤ j.
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Inserting (.) into (.), we obtain

Pi =



n∑
j=

∫ yj+

yj
e–kij(yi–x)

(


A
j e

x +AjBj +


B
j e

–x

+


C
j e

x +CjDj +


D

j e
–x +Cjex +Dje–x

)
dx. (.)

From (.) and (.), we get

A
j =

e–ȳj

sinh(δyj)
[
ūj sinh

(δyj) + ūjδuj sinh(δyj) cosh(δyj) + δuj cosh
(δyj)

]

=
e–ȳj

 sinh(δyj)
[
ūj tanh(δyj) + ūjδuj + δuj coth(δyj)

]
, (.)

B
j =

eȳj

 sinh(δyj)
[
ūj tanh(δyj) – ūjδuj + δuj coth(δyj)

]
, (.)

AjBj =


 sinh(δyj)
[
ūj tanh(δyj) – δuj coth(δyj)

]
, (.)

C
j =

e–ȳj

 sinh(δyj)
[
v̄j tanh(δyj) + v̄jδvj + δvj coth(δyj)

]
, (.)

D
j =

eȳj

 sinh(δyj)
[
v̄j tanh(δyj) – v̄jδvj + δvj coth(δyj)

]
, (.)

CjDj =


 sinh(δyj)
[
v̄j tanh(δyj) – δvj coth(δyj)

]
. (.)

It then follows from (.)-(.) that

∫ yj+

yj
e–kij(yi–x)A

j e
x dx =

e–kijyi · ekijȳj
( + kij) sinh(δyj)

sinh
(
( + kij)δyj

)

· [ūj tanh(δyj) + ūjδuj + δuj coth(δyj)
]
, (.)

∫ yj+

yj
e–kij(yi–x)B

j e
–x dx =

e–kijyi · ekijȳj
(kij – ) sinh(δyj)

sinh
(
(kij – )δyj

)

· [ūj tanh(δyj) – ūjδuj + δuj coth(δyj)
]
, (.)

∫ yj+

yj
e–kij(yi–x)C

j e
x dx =

e–kijyi · ekijȳj
( + kij) sinh(δyj)

sinh
(
( + kij)δyj

)

· [v̄j tanh(δyj) + v̄jδvj + δvj coth(δyj)
]
, (.)

∫ yj+

yj
e–kij(yi–x)D

j e
–x dx =

e–kijyi · ekijȳj
(kij – ) sinh(δyj)

sinh
(
(kij – )δyj

)

· [v̄j tanh(δyj) – v̄jδvj + δvj coth(δyj)
]
, (.)
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∫ yj+

yj
e–kij(yi–x)AjBj dx =

e–kijyi · ekij ȳj
 sinh(δyj)

sinh(δyj)

· [ūj tanh(δyj) – δuj coth(δyj)
]
, (.)

∫ yj+

yj
e–kij(yi–x)CjDj dx =

e–kijyi · ekij ȳj
 sinh(δyj)

sinh(δyj)

· [v̄j tanh(δyj) – δvj coth(δyj)
]
. (.)

Therefore, the above formulas (.)-(.) imply that

Pi =
n∑
j=

e–kijyi · ekij ȳj
 cosh(δyj)

{[
ūj tanh(δyj) + δuj coth(δyj)

] ·  cosh(δyj)

+ kijūjδuj sinh(δyj) + ūj tanh(δyj) +


sinh(δyj) ·

[
v̄j tanh(δyj) + δvj coth(δyj)

]
+


kijv̄jδvj sinh(δyj) + v̄j tanh(δyj)

+ 
[
v̄j – kijδvj coth(δyj)

] · δyj +
[
v̄j sinh(δyj) + kijδvj cosh(δyj)

] ·  cosh(δyj)
}
,

which can also be written in the following form

Pi =
n∑
j=

Pij (.)

with

Pij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


u


ey–yi +


v


ey–yi +


ve

y–yi , for j = ,
e–kijyi ·ekij ȳj
 cosh(δyj)

{[ūj tanh(δyj) + δuj coth(δyj)] ·  cosh(δyj) + kijūjδuj sinh(δyj)

+ ūj tanh(δyj) +

 sinh

(δyj) · [v̄j tanh(δyj) + δvj coth(δyj)]

+ 
kijv̄jδvj · sinh(δyj) + v̄j tanh(δyj) + [v̄j – kijδvj coth(δyj)] · δyj

+ [v̄j sinh(δyj) + kijδvj cosh(δyj)] ·  cosh(δyj)}, for j = , . . . ,n – ,

u


neyi–yn +


v


neyi–yn +


vne

yi–yn , for j = n.

We compute Pix in the same way and obtain

Pix = –
n∑
j=

kijPij. (.)

Now we can summarize the result as follows.

Theorem . Let ȳi = ξi, (ūi, v̄i, ūxi) = (ū, v̄, ūx)(ξi) and H̄i =
∫ ξi
–∞(ū + ūx + v̄)dx for i =

, . . . ,n with a multipeakon initial data z̄ = (ū, v̄) given by (.). Then with initial data
(ȳi, ūi, v̄i, ūxi, H̄i) there exists a global solution (yi,ui, vi,uxi,Hi) of (.), (.), (.). For
each time t, u(t,x) is defined as the solution of the Dirichlet problem u–uxx = with bound-
ary conditions u(t, yi(t)) = ui(t), u(t, yi+(t)) = ui+(t) on each interval [yi(t), yi+(t)]. Thus,
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z = (u, v) is a conservative solution of the two-component Camassa-Holm system, which is
the multipeakon conservative solution.
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