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Abstract
We prove some multiplicity results for a class of one-dimensional nonlinear
Schrödinger-type equations of the form

x′′ + 2kx – 2g(t)x3 = 0,

where k > 0 and the weight g(t) is a positive stepwise function. Instead of the cubic
term, more general nonlinearities can be considered as well.
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1 Introduction
This paper deals with the study of homoclinic and heteroclinic solutions for a class of
nonlinear second-order differential equations of the form

x′′ + σx – a(t)h(x) = , (.)

where σ >  is a fixed (positive) coefficient and a(·) : R → R
+
 := ],+∞) is a bounded

weight function. For the nonlinear term, which we split as

h(x) = xf (x),

we suppose that

(∗) f :R →R
+ := [,+∞) is a locally Lipschitz function which is even, strictly increasing on

[, +∞) such that f () =  and f (+∞) = +∞.

Examples of functions f which are suitable for our considerations are, for instance, f (s) = s

as in [], or f (s) = s + bs (b > ) as in []. In both these cases, the function f is even. In
Section  we briefly describe how this restriction could be avoided.
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Equations of the form (.) naturally arise in the search of particular solutions for some
classes of nonlinear Schrödinger equations (NLSE) with inhomogeneous nonlinearities.
Typical examples are related to the NLSE

i�
∂�

∂t
= –

�


m
�� +V(x)� +V(x)|�|p–� , x ∈R

N , (.)

where � is the Planck constant, m is the particle’s mass, i is the imaginary unit, � is the
Laplace operator and p > . In literature, solutions of the form

�(t,x) = u(x) exp
(
iλ�–t

)
,

where λ ∈ R and u(x) is a real-valued function, are called stationary waves. Their search
leads to the equation

–
�


m
�u + λu +V(x)u –V(x)|u|p–u = , x ∈R

N (.)

(see []). Usually, the Planck constant and the mass are omitted in (.) after rescaling.
In many significant models of NLSE, one-dimensional waves are considered. They are

studied, for example, in nonlinear optics, in the theory of ocean rogue waves and for Bose-
Einstein condensates (just to mention a few cases). For instance, in [], Belmonte-Beitia
and Torres analyzed the one-dimensional equation

–


u′′ + λu + g(x)u = , x ∈R, (.)

which is a particular case of (.) withN = , p =  andV = . In equation (.) the nonlin-
earity is called inhomogeneous due to the presence of a non-constant weight V(x) = g(x),
which in [] is assumed to be positive. The sign condition on g(x) implies that nontrivial
bounded solutions of (.) can exist only for λ <  (see [, Theorem ]). For this reason,
we prefer to set λ = –k with k > .
In order to study equation (.) or its variants, we are going to follow a dynamical system

approach, hence we choose to treat the independent variable (which in the applications
has a spatial connotation) as a time variable, via the substitution x←→ t. Similarly, for the
dependent variable, we make the substitution u ←→ x. In this way, equation (.) reads
as

x′′ + kx – g(t)x = , (.)

which belongs to the same class of (.).
In spite of the apparent simplicity of equation (.), a throughout study of its solutions

may be a rather difficult task for a general nonconstant weight function g(t). Looking for
homoclinic and heteroclinic solutions of (.), it will be natural to focus on the behav-
ior of g(t) at ±∞. In similar situations, various authors have confined their study to the
case in which g(t) is asymptotically constant [–], or eventually constant [, ]. These as-
sumptions are also justified by the analysis of some physical underlyingmodels, in which a
layered structure is present. With this respect, see the introduction in [], where different
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eventually autonomous cases are listed for related NLSEs arising in nonlinear optics. Ex-
amples in which the nonlinear term presents a piecewise constant weight function have
been studied also in biological and chemical models. In particular, these situations oc-
cur in the theory of wave propagation for reaction-diffusion systems; see, for instance,
[–]. In the context of equation (.), examples in which g(t) is a piecewise constant
function have been considered as well (see []).
The aim of the present paper is to provide multiplicity results regarding homoclinic

and heteroclinic solutions for equation (.) under particular assumptions on the weight
function a(t). Actually, we suppose that a(t) is an eventually constant piecewise function
with only two steps.
Our approach combines phase-plane analysis with time-mapping estimates. As in [, ,

, , , ], the solutions are obtained by connecting the unstable and stable manifolds
of the equilibrium points of the asymptotically autonomous equations. Such connections
are performed by means of orbit paths of an intermediate equation, which represents the
behavior of the system during a suitable interval of transition [t–, t+] between the asymp-
totic states. Multiple connecting solutions arise when such interval length is sufficiently
large. Lower estimates for t+ – t– will be provided in terms of timemappings, which can be
expressed by Abelian integrals. This kind of approach is also reminiscent of some topolog-
ical methods for the study of Sturm-Liouville boundary value problems. Indeed, a solution
that satisfies the Sturm-Liouville boundary conditions can be interpreted as a trajectory
in the phase-plane that connects two lines (see [–]). Generalized Sturm-Liouville so-
lutions, which connect the graphs of two functions or given planar continua, have been
considered as well (see [–]). Often these problems can be settled in the framework of
the theory of ODEs with nonlinear boundary conditions (see [, ]).
In order to make our approach more transparent, we are going to perform our analysis

for equation (.). This choice is motivated by the sake of avoiding unnecessary technicali-
ties. Our arguments can bemodified in a straightforwardmanner in the case of more gen-
eral equation (.), with f satisfying (∗) (see Section ). Homoclinic and heteroclinic orbits
can be interpreted as solutions for some boundary value problems on unbounded inter-
vals. In the last section we also outline possible applications of our approach to boundary
value problems on a compact interval (like the Sturm-Liouville one).
Besides his manifold achievements in different areas of mathematics, Professor Jean

Mawhin is one of the pioneers in the study of topological methods for nonlinear boundary
value problems. It is a pleasure and an honor to have the possibility to dedicate our work
to his important contributions in this area.

2 Homoclinic and heteroclinic solutions: multiplicity results
2.1 General setting
We consider the second-order nonlinear differential equation

x′′ + kx – g(t)x =  (.)

and its equivalent system in the phase-plane

⎧⎨
⎩
x′ = y,

y′ = –kx + g(t)x,
(.)

http://www.boundaryvalueproblems.com/content/2013/1/167
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where k >  is a fixed coefficient and g :R →R
+
 := ],+∞) is a bounded measurable func-

tion. Solutions of (.) are meant in the generalized (i.e., Carathéodory) sense (see []).
Actually, in our results a step function g(t) with only two jumps is considered and the
solutions are piecewise smooth.
In the particular case of a constant coefficient g(t)≡ μ > , an elementary analysis of the

system

⎧⎨
⎩
x′ = y,

y′ = –kx + μx
(.)

shows that the associated phase portrait presents a centerO = (, ) and two saddle points
P± := (±(k/μ)  , ). These saddles are connected by two heteroclinic solutions (one con-
necting P– to P+ in the upper half-plane and a symmetric one from P+ to P– in the lower
half-plane). The heteroclinic orbits are described by

y = μ
(
x – (k/μ)

) for –(k/μ)

 < x < (k/μ)


 . (.)

In [] Belmonte-Beitia and Torres supposed that the weight function g(t) is even and T-
periodic and proved the existence of a heteroclinic solution connecting two periodic sta-
tionary states. Such a result generalizes to the case of periodic coefficients the situation
described above for the autonomous system.
As already observed in the introduction, equation (.) has been already studied by var-

ious authors for its relevance in many applicative models. The aim of the present paper
is to provide multiplicity results for heteroclinic and also homoclinic solutions of equa-
tion (.). A possible way to obtain this goal is to assume that the weight function g(t) has a
different behavior at infinity and in some intermediate time interval. In this setting, a first
step consists of analyzing the situation in which g(t) is a stepwise function assuming only
two values. We believe that the study of such a simplified case may lead to more general
considerations, in which, for instance, g(t) is eventually periodic. In this way, multiplicity
results for Belmonte-Beitia and Torres’s model can be obtained (see Section  for a brief
overview concerning possible applications of our approach). Equation (.) with a periodic
stepwise coefficient g(t) has recently been studied in [] in the context of chaotic-like dy-
namics.
As a tool, in our paper, we use the Poincaré map associated to system (.). Given a

fixed time interval [t, t] and a point z ∈ R
, we indicate by ζ (·, t, z) the solution ζ (t) =

(x(t), y(t)) of (.) satisfying the initial condition ζ (t) = z. The Poincaré map on [t, t] is
defined as

� = �
t
t : z 	→ ζ (t, t, z).

From the fundamental theory of differential equations it follows that the domain D� of �
is an open subset of the plane and � is an orientation preserving homeomorphism of D�

onto its image �(D�).
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2.2 Analysis of the equation
Let us consider system (.) for the stepwise weight function g(t), defined as

g(t) =

⎧⎨
⎩

μ for t ≤ t– or t ≥ t+,

μ for t– < t < t+,
(.)

where

t– < t+ and  < μ < μ.

System (.) can be seen as the superposition of the autonomous systems

⎧⎨
⎩
x′ = y,

y′ = –kx + μx
(.)

and
⎧⎨
⎩
x′ = y,

y′ = –kx + μx.
(.)

The first one describes the asymptotic behavior of the equation. We are going to use the
orbits of the second system for connecting unstable/stable manifolds of (.) during the
time interval [t–, t+]. Figure  shows the superposition of the phase portraits of the two
systems.
First of all, we briefly analyze the structure of system (.). Its equilibrium points are the

origin (which is a center) and two saddle points P± = (±ξ, ), where

ξ := (k/μ)

 .

The stable and unstable manifolds of P± are illustrated in Figure . The sets I(P–) ∪
L(P+,P–) and O(P–) ∪ L(P–,P+) are, respectively, the stable and the unstable manifolds
of P–. Symmetrically, I(P+) ∪ L(P–,P+) and O(P+) ∪ L(P+,P–) are the stable and the un-
stable manifolds of P+.

Figure 1 In the present figure we have considered the superposition of the phase portraits of systems
(.) (in darker color) and (.) (in lighter color) with k = 1, μ1 = 4, μ0 = 1/4. For graphical reasons, a
slightly different x- and y-scaling has been used.
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Figure 2 The stable and unstable manifolds of P– and P+. The
arrows show the direction of the flow along the orbits.

In the case of the cubic nonlinearity, we find

I(P–) =
{
(x, y) : y =

∣∣μx – k
∣∣/√μ,x < –(k/μ)



}
,

O(P–) =
{
(x, y) : y = –

∣∣μx – k
∣∣/√μ,x < –(k/μ)



}
,

I(P+) =
{
(x, y) : y = –

∣∣μx – k
∣∣/√μ,x > (k/μ)



}
,

O(P+) =
{
(x, y) : y =

∣∣μx – k
∣∣/√μ,x > (k/μ)



}
,

L(P–,P+) =
{
(x, y) : y =

∣∣μx – k
∣∣/√μ, –(k/μ)


 < x < (k/μ)



}
,

L(P+,P–) =
{
(x, y) : y = –

∣∣μx – k
∣∣/√μ, –(k/μ)


 < x < (k/μ)



}
.

The solutions of system (.) with g(t) defined as in (.) will be obtained by connecting
suitably chosen parts of stable and unstable manifolds of (.) with trajectories of (.).
More in detail, we proceed as follows.
Due to the Hamiltonian nature of the equation under consideration, we can consider

the ‘energy’ level lines of system (.), given by

E(x, y) := y + kx –μx = c. (.)

We also set


c :=
{
(x, y) : –ξ ≤ x≤ ξ,E(x, y) = c

}
,

where

ξ := (k/μ)

 .

The curve 
c is the part of the line at level c ∈R in the strip [–ξ, ξ]×R. For every c such
that

 < c < � :=
k

μ
,

the set 
c is a periodic orbit of (.) run in the clockwise sense, which intersects the y-axis
at the points (,±√

c). The (minimal) period τc of 
c can be expressed by the following

http://www.boundaryvalueproblems.com/content/2013/1/167
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time-mapping formula:

τc = 
∫ s

s

dx√
c – F(x)

, (.)

where F(x) is the potential associated to the equation and s, s are such that

F(s) = F(s) = c/ with – ξ < s <  < s < ξ.

In our case,

F(x) = kx –
μ


x

and by symmetry s = –s. More in detail, we can express the period τc by means of an
elliptic integral in the following way:

τc =

μ

∫ s



dx√
(a – x)(b – x)

, (.)

for a := s, b := ( k
μ

– s )/ and  < s < ξ,  < c = ks –μs < �. Notice that  < a < b in

(.). Therefore

τc =


bμ
sn–(,a/b),

where sn(·,k) is the Jacobi elliptic sine function of modulus k := a/b (see [, ]).
The level line 
� contains the saddle points Q± := (±ξ, ) of system (.) and their

heteroclinic connections L(Q–,Q+) in the upper half-plane and L(Q+,Q–) in the lower
half-plane. The energy level

� :=
k

μ

corresponds to the closed curve 
� , which is tangent to L(P–,P+) and L(P+,P–). More-
over, for

�∗ :=
k

μ

(
 –

μ

μ

)
,

the energy level line 
�∗ contains the saddle points P± of system (.).
Using the parameters �, � and �∗, we define the regions

E :=
{
(x, y) : –ξ ≤ x≤ ξ,� ≤ E(x, y)≤ �∗},

F :=
{
(x, y) : –ξ ≤ x ≤ ξ,�∗ < E(x, y) < �

}
.

Both E and F are invariant sets for (.); they are filled by periodic orbits. In the sequel,
the orbits in the region E will be called internal, while those in F will be called external.

http://www.boundaryvalueproblems.com/content/2013/1/167
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Figure 3 The energy level lines ��0 , ��1 and
��∗

for system (.) superimposed over the
stable and unstable manifolds of P± for system
(.). The colored regions are the invariant sets E
(the darker one) and F (lighter). The figure has
been plotted with the parameters k = 1, μ0 = 1/2,
μ1 = 2. For graphical reasons, a slightly different x-
and y-scaling has been used.

The choice of these names is made in order to distinguish the trajectories with respect
to 
�∗ , which contains the saddle points P± of system (.). (See Figure .)
In order to obtain homoclinic or heteroclinic solutions for system (.) with g(t) defined

as in (.), we connect the unstable manifold of the point A ∈ {P–,P+} to the stable man-
ifold of B ∈ {P–,P+} via an orbit path of 
c for c ∈ [�,�[. Actually, this is the only way to
get the desired solutions. If c≤ �∗, such connection will follow a trajectory (x(t), y(t)) with
–ξ ≤ x(t)≤ ξ, so it will lie in the invariant annular region E bounded by 
� and 
�∗ . On
the contrary, for c > �∗ the connection lies in the set F between 
�∗ and 
� .
To provide more explicit details, we consider the case A = P+. A solution of (.), which

is homoclinic to P+, can be produced in two ways. One consists in connecting O(P+) to
I(P+), using an orbit path of 
c for c ∈ ]�∗,�[. Another possibility is given by connecting a
point ofL(P+,P–) to a point ofL(P–,P+) via an orbit path of
c for c ∈ [�,�∗[. For c = �∗, we
can obtain our solution if and only if t+–t– is an integermultiple of the fundamental period
τ�∗ of the orbit 
�∗ . Indeed, such a solution will be constantly equal to P+ for t /∈]t–, t+[,
and for t ∈ [t–, t+] it coincides with the periodic solution of (.) such that x(t–) = ξ and
y(t–) = . This solution makes (t+ – t–)/τ�∗ turns around the origin for t ∈ [t–, t+].
Similar considerations can be developed with respect to heteroclinic solutions. For in-

stance, a heteroclinic orbit from P+ to P– can be obtained as follows: by connecting a point
of O(P+) with one of I(P–) using an orbit path of 
c for c ∈ ]�∗,�[, or by a connection of
two different points of L(P+,P–) via an orbit path of 
c for c ∈ [�,�∗[. For c = �∗, we can
obtain our solution if and only if t+ – t– is an odd multiple of τ�∗/, where τ�∗ is the period
of the orbit 
�∗ . Indeed, such a solution will be constantly equal to P+ for t ∈ (–∞, t–] and
constantly equal to P– for t ∈ [t+, +∞). Moreover, it coincides for t ∈ [t–, t+] with the solu-
tion of (.) such that x(t–) = ξ and y(t–) = . This solution makes (t+ – t–)/τ�∗ half-turns
around the origin for t ∈ [t–, t+].
Figure , although not exhaustive of all the conceivable cases, summarizes several dif-

ferent possibilities. Indeed, a trajectory homoclinic to P+ can be obtained as follows: move
by system (.) alongO(P+) from P+ to the intersection point ofO(P+) with a closed curve
external to P+, namely δ (for t ∈ (–∞, t–]). This point is put in evidence with a small black
circle. Next, follow δ (by system (.)) in order to reach the intersection of δ with I(P+)
(for t ∈ [t–, t+]). Such an intersection point is indicated by a grey square. Finally, switch to
system (.) andmove toward P+ along I(P+) (for t ∈ [t+,+∞)). With a similar procedure,
we can obtain a heteroclinic trajectory from P+ to P–. In fact, we canmove by system (.)
along O(P+) from P+ to the intersection point of O(P+) with a closed curve external to
P+, namely γ (for t ∈ (–∞, t–]). Next, follow γ (by system (.)) to the intersection with

http://www.boundaryvalueproblems.com/content/2013/1/167
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Figure 4 In the present figure we have
considered the superposition of (.) and (.)
for k = 1, μ1 = 4, μ0 = 1/4. The closed curves α , β ,
γ , δ represent four different level lines of system
(.): the curves α and β in E correspond to a level
c ∈ ]�1,�∗[, while γ and δ in F refer to c ∈ ]�∗ ,�0[.
In order to describe a connection from an unstable
manifold to a stable one of system (.) via an orbit
path of (.), we have marked with a black circle
possible starting points and with a grey square
some available end points on the same level lines.

I(P–) (for t ∈ [t–, t+]). Finally, switch to system (.) and move toward P– along I(P–) (for
t ∈ [t+, +∞)).
In general, the connections through the trajectories of system (.) will either involve

only an arc of the closed curve 
c, or they will require to perform a certain number of
winds around the origin, depending on the available time. If the length of the time interval
[t–, t+] is small, only the first case is possible. However, if t+ – t– is large enough, more
choices arise. For instance, looking at the orbit δ in Figure , we could make a certain
number of loops from the black circle before reaching the grey square on the same orbit.
Similar considerations apply to the heteroclinic trajectory described above with reference
to γ .
Until now we have described the ‘external connections’, namely those which lie in the

region F . Further possibilities appear if we consider ‘internal connections’ by means of
orbit paths contained in E . For example, if we look at the orbit β in Figure , we can obtain
trajectories homoclinic to P+ by choosing one of the two black circles as a starting point
from L(P+,P–) and one of the two grey squares as an end point on L(P–,P+). Loops along
β will be permitted if the time is sufficiently large. The construction of heteroclinic orbits
from P+ to P– via the line α follows a similar procedure.

2.3 Study of the Poincaré map
Another possible point of view to describe the previous construction of homoclinic and
heteroclinic solutions consists in considering the Poincaré map associated to system (.)
for the time interval [t–, t+]. Due to the autonomous nature of this system, we have that
�

t+
t– = �

t+–t–
 , denoted simply by � when no confusion may occur. Moreover, the region

W :=
{
(x, y) : –ξ ≤ x≤ ξ,E(x, y)≤ �

}

is a compact invariant set contained in the domain of �. Let us denote by Y :=O(P+)∩ F

the part of the unstablemanifoldO(P+) between P+ and 
� , including the extreme points.
Hence the external connections can be precisely described by looking at the intersection
points of �(Y) with I(P+) (for the homoclinics) and with I(P–) (for the heteroclinics), as
illustrated in Figure .
With reference to Figure , we observe that the intersection point of O(P+) with 
�

(indicated by a small circle) is moved by � along 
� to a point very close to Q+. On

http://www.boundaryvalueproblems.com/content/2013/1/167
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Figure 5 In the present figure we show the
transformation of Y under the Poincaré map �
for t+ – t– = 5.5. The parameters used are k = 1, μ1

= 2, μ0 = 1/2. For graphical reasons a slightly
different x- and y-scaling has been used.

Figure 6 In the present figure we show the
transformation of L := L(P+,P–) under the
Poincaré map � for t+ – t– = 5.5, the same time
considered in Figure 5. The parameters used are k
= 1, μ1 = 2, μ0 = 1/2, as before. The point indicated
by a cross is precisely the same point �(P+) of
Figure 5. Notice that for this time interval the point
makes a little more than a complete turn around the
origin. For graphical reasons, a slightly different x-
and y-scaling has been used.

the other hand, during the time interval [t–, t+], the point P+ makes a little more than
a complete turn around the origin; the final position �(P+) is indicated by a cross. The
arc �(Y) is a spiral-like curve with one end near Q+ and the other on 
�∗ . For the time
length t+ – t– = ., considered in Figure , there are precisely two intersections of �(Y)
with I(P+), corresponding to external homoclinic solutions. Meanwhile, we have also an
external heteroclinic solution due to the intersection of �(Y) with I(P–). All these three
intersection points have been indicated by a grey square (following the same convention
used in Figure ).
In order to describe further these solutions, let us consider their energy at the time t+

that we denote by k, k, k, with �∗ < k < k < k < �. Let us define the points Hi as
{Hi} = O(P+) ∩ 
ki for i = , , . The solution ζ (t) = (x(t), y(t)) of (.) with ζ (t–) = H or
ζ (t–) = H has the following behavior: ζ (t) → P+ for t → ±∞, with x(t) > ξ and convex
for t /∈ ]t–, t+[. Moreover, x(t) is increasing on (–∞, t–] and decreasing on [t+, +∞). On
the interval [t–, t+], if i = , the solution x(t) is concave, while if i = , the solution has
two maxima and one (negative) minimum separated by two simple zeros. The solution of
system (.)with ζ (t–) =H is such that ζ (t)→ P+ for t → –∞with x(t) > ξ and ζ (t) → P–

for t → +∞ with x(t) < –ξ; x(t) is convex for t /∈ ]t–, t+[. Moreover, the solution has one
maximum and one minimum separated by one simple zero.
Even if the time interval length t+ – t– is small, we always have at least one intersec-

tion of �(Y) with I(P+) and thus a homoclinic solution. On the other hand, if t+ – t–
grows, the spiral curve �(Y) will wind more times around the origin, hence more homo-
clinic/heteroclinic solutions will appear.
If we look for the internal connections (made by orbit paths lying in the region E ), we

proceed as follows.
Let us setL := L(P+,P–) and denote byL′ :=L(P–,P+) its symmetric partwith respect to

the x-axis. Figure  illustrates the involved geometry from the point of view of the Poincaré
map.We observe that all the points ofL are contained in E , hence they are periodic points

http://www.boundaryvalueproblems.com/content/2013/1/167
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(of different periods). As before, during the time interval [t–, t+], the point P+ moves clock-
wise around the origin along 
�∗ ; the final position �(P+) ∈ 
�∗ is indicated by a cross.
Symmetrically, the point P– performs exactly the same angle around the origin, reaching
the final position �(P–) ∈ 
�∗ , indicated by a small circle. All the other points of L(P+,P–)
move, under the action of�, on the energy level lines
c with � ≤ c < �∗. The arc�(L) is a
curve contained in E , connecting the two antipodal points�(P±) ∈ 
�∗ and leaning on one
point of 
� . This tangent point is the image through � of the point R := (,–

√
�). Such a

property of �(L) implies that �(L) intersects both L and L′ (at different points). These
two points have been indicated by a grey square in the figure. Accordingly, we always find
at least an internal homoclinic solution and an internal heteroclinic one.
Summarizing the above information, we conclude that, for every time interval [t–, t+],

we have at least two solutions which are homoclinic to P+ (one external and one internal)
and one internal heteroclinic solution from P+ to P–.
For the external connections, if the time interval length t+ – t– grows, the situation can

be summarized as follows. The number of external homoclinic/heteroclinic solutions in-
creases, depending on the number of winds around the origin of the curve �(Y). Indeed,
the end point of such a curve on
� cannot go beyondQ+, while the other end point�(P+)
is free to move on the periodic orbit 
�∗ . If we denote by ηext and νext the number of ex-
ternal homoclinic and heteroclinic solutions respectively, it holds that  ≤ ηext – νext ≤ .
From the above discussion, we can conclude that if, for some nonnegative integer n, we
have t+ – t– > nτ�∗ (where τ�∗ is the period of 
�∗ ), then ηext ≥ n + . An analogous lower
bound can be provided for νext. For a formal proof, see Theorem ..
When t+ – t– grows, the situation for the internal homoclinic/heteroclinic solutions is

more intriguing, as illustrated in Figure  and Figure . A twist effect depending on the
different periods of 
� and 
�∗ produces a double spiral-like curve �(L) when t+ – t– is
sufficiently large.
The fact that �(L) looks like a double spiral depends on the different velocities of the

points P± and R = (,–
√

�) (which is the intersection of L with the negative y-axis).
In fact, since τ� < τ�∗ , the points on 
� move faster than those of 
�∗ . By construction,
P± ∈ 
�∗ , while R ∈ 
� . Therefore, when the time gap t+ – t– is sufficiently large, the num-
ber of turns of �(R) around the origin will exceed the number of turns of �(P±). Accord-
ingly, the image through � of the right part of L (the sub-arc of L connecting P+ to R)
is a spiral that winds a certain number of times in the clockwise sense around the origin.

Figure 7 In the present figure we show the transformation of L under the Poincaré map � for
t+ – t– = 50. The parameters used are k = 1, μ1 = 2, μ0 = 1/2, as before. For graphical reasons, a slightly
different x- and y-scaling has been used.

http://www.boundaryvalueproblems.com/content/2013/1/167
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Figure 8 The present figure shows the evolution
of L under the Poincaré map � for time
intervals of different lengths. The parameters
used are k = 1, μ1 = 2, μ0 = 1/2, as before, while for
t+ – t–, we have considered the cases 35, 60, 100,
150 (from the left to the right). For graphical reasons,
a slightly different x- and y-scaling has been used.

Figure 9 The present figure explains the twist
effect due to the different periods of ��1 and
��∗

.We have considered the evolution of the part
of L with x ≥ 0 connecting P+ to the point R for
two different time gaps: t+ – t– = 5.5 and t+ – t– = 50.
The corresponding two images �(P+) are indicated
by a cross, while the images �(R) are marked by a
black dot. The parameters used are k = 1, μ1 = 2,
μ0 = 1/2, as before. Notice that the two images
�(P+), although close to each other in the figure,
have made a different number of turns around the
origin. For graphical reasons, a slightly different x-
and y-scaling has been used.

Indeed, it connects the slower point �(P+) to the faster one �(R) inside the region E , as
illustrated in Figure . The number of half-turns of this spiral depends on a ‘rotational gap’
that, for our purposes, it will be convenient to define as

w(t+ – t–) :=
⌈
(t+ – t–)

τ�

⌉
–

⌊
(t+ – t–)

τ�∗

⌋
– . (.)

Similarly, the image through � of the left part of L (the sub-arc of L connecting R to P–)
is a spiral-like curve winding a certain number of times in the counterclockwise sense
around the origin. Indeed, it connects the points �(R) and �(P–) inside the region E (the
first point moves at a faster speed than the second one). Again, the number of half-turns
of this second curve will depend on w(t+ – t–). In the end, gluing together the two spiral-
like curves, we conclude that, if t+ – t– is sufficiently large, the arc �(L) will appear like
a double spiral with a central ‘hook’. To better describe the structure of �(L), we should
observe that the ‘tip of the hook’ is not �(R), but it is the image through � of a point
(close to R) on the left part of L \ {R} (we owe this remark to the referee). For a formal
proof based on the argument outlined above, see Theorem ..
In preparation for this theorem, we introduce the following notation. Given a positive

real number S and an energy level � ∈ [�,�∗], we denote by n(S,�) := � S
τ�

� the lower integer
part of S/(τ�/), and by n(S,�) := � S

τ�
� the upper integer part of S/(τ�/). By definition,

during a time interval of length S, a point on the orbit 
� makes more that n(S,�) –  half-
turns around the origin, but less that n(S,�) +  half-turns. Thus the rotational gap defined
above can be written as w(T) = n(T ,�) – n(T ,�∗) –  for T = t+ – t–. By definition, in the
open interval ]T/τ�∗ , T/τ� [, the smallest integer is n(T ,�∗) + , while the largest integer
is n(T ,�∗)–. Hence, the open interval ]T/τ�∗ , T/τ� [ containsw(T)+ positive integers.

http://www.boundaryvalueproblems.com/content/2013/1/167
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2.4 Conclusion
After the preliminary study of the previous subsections, we are now in a position to express
our results for the equation

x′′ + kx – g(t)x =  (.)

as statements with a formal proof. Recall that the weight function g(t) is defined as follows:

g(t) =

⎧⎨
⎩

μ for t ≤ t– or t ≥ t+,

μ for t– < t < t+,

where

t– < t+ and  < μ < μ.

We also set T := t+ – t– and consider the Poincaré map �T
 associated to the system

⎧⎨
⎩
x′ = y,

y′ = –kx + μx.
(.)

In order to make the exposition more clear, we have decided to consider separately the
cases of external and internal connections.

Theorem . (External connections) Under the above assumptions, the following results
hold for solutions which satisfy the energy condition

x′(t) + kx(t) –μx(t) ∈ ]�∗,�[, ∀t ∈ R :

• there always exist a (positive) solution homoclinic to P+ and a (negative) solution
homoclinic to P–;

• if t+ – t– > τ�∗/, there always exist a heteroclinic solution from P+ to P– and a
heteroclinic solution from P– to P+, both with exactly one zero;

• if t+ – t– > nτ�∗ (for some integer n≥ ) then, for each integer j with  ≤ j ≤ n, there
exist at least one solution homoclinic to P+ and one solution homoclinic to P–, both
with exactly j zeros;

• if t+ – t– > (n + )τ�∗/ (for some integer n≥ ) then, for each integer j with  ≤ j ≤ n,
there exist at least one heteroclinic solution from P+ to P– and one from P– to P+, both
with exactly j +  zeros.

Proof As a first step, we focus our attention on the search of solutions homoclinic to the
point P+. The case of homoclinics to P– is analogous, thus it will be omitted.
Recalling that T = t+ – t–, our goal is to find points on O(P+) which are moved by the

Poincaré map �T
 on I(P+).

We introduce in the phase-plane for (.), a system of polar coordinates (θ ,ρ), with cen-
ter in the origin. The initial points in the arc Y (which is the closure of the intersection of
O(P+) with the external region F ) are parameterized as γ (s) := (ρ(s) cos θ (s),ρ(s) sin θ (s)),

http://www.boundaryvalueproblems.com/content/2013/1/167
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for s ∈ [, ], with γ () = P+, γ () ∈ 
� and E(γ (s)) strictly increasing with s. The target set
is the symmetric ofYwith respect to the x-axis. It will be denoted byY′ and parameterized
by reversing the angle θ (s).
Using the same polar coordinates to represent the solutions of (.), we can express the

final points �T
 (γ (s)) as

�T

(
γ (s)

)
=

(
ρ(T , s) cos θ (T , s),ρ(T , s) sin θ (T , s)

)
,

with

ρ(, s) = ρ(s), θ (, s) = θ (s).

We notice that

(
x(t), y(t)

)
=

(
ρ(t, s) cos θ (t, s),ρ(t, s) sin θ (t, s)

)

is the solution of (.) (at the time t), which departed from the point γ (s) at the time t = .
Observe that, for every s ∈ [, ], the map

t 	→ θ (t, s)

is strictly decreasing on [,+∞) (this is an equivalent way to express the fact that the
solutions turn around the origin in the clockwise sense).
With these positions, we obtain an external solution homoclinic to P+ if and only if there

exists ŝ ∈ ], [ such that �T
 (γ (ŝ)) ∈ Y′. This happens if and only if

ρ(T , ŝ) = ρ(ŝ) and θ (T , ŝ) = –θ (ŝ) – jπ , (.)

for some nonnegative integer j. In this case, if we denote by x̂(·) the corresponding homo-
clinic solution of (.) such that (x̂(t–), x̂′(t–)) = γ (ŝ), we have that E(x̂(t), x̂′(t)) ∈ ]�∗,�[ for
all t ∈ R. Moreover, if j = , x̂(t) > ξ for all t ∈ [t–, t+], while x̂(t) has precisely j zeros in
]t–, t+[ if j ≥ .
Using the fact that the energy level lines of (.) in the region W \ {O} = {(x, y) : –ξ ≤

x ≤ ξ,  < E(x, y) ≤ �} are strictly star-shaped with respect to the origin and symmetric
with respect to the x-axis, we find that (.) holds (for some nonnegative integer j) if and
only if

θ (T , ŝ) = –θ (ŝ) – jπ (.)

is satisfied (for the same j).
By virtue of (.), we can refer only to the angular coordinates, hence we will obtain

solutions as follows. Since the point �T
 (γ ()) lies on 
� (which is the trajectory of a het-

eroclinic solution of (.)), it can never reach the point Q+. Accordingly, the angle θ (T , )
satisfies

θ (T , ) > , ∀T ≥ .

http://www.boundaryvalueproblems.com/content/2013/1/167
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On the other hand, as γ () = P+, we have that θ (, ) = θ () = , therefore

θ (T , ) < , ∀T > .

As a consequence, θ (T , ) + θ () <  < θ (T , ) + θ () and the intermediate value theorem
ensures the existence of an ŝ such that θ (T , ŝ) = –θ (ŝ). In this way we have found a positive
homoclinic solution to P+, independently of the length T of the time interval [t–, t+].
Suppose now that T > nτ�∗ for some positive integer n. In this case,

θ (T , ) < –nπ , ∀T > .

As a consequence, for every integer j with  ≤ j ≤ n, we have θ (T , ) + θ () < –jπ <  <
θ (T , ) + θ (), and again the intermediate value theorem ensures the existence of an ŝ such
that θ (T , ŝ) = –θ (ŝ) – jπ . This ends the proof for homoclinic solutions.
For the search of heteroclinic solutions from P+ to P–, we follow a similar procedure,

choosing as a target the set Y′′, which is the symmetric of Y with respect to the y-axis
(here we exploit the oddness of the nonlinear term x). In terms of polar coordinates, the
desired solutions will be obtained if and only if there exists ŝ ∈ ], [ such that

θ (T , ŝ) = –θ (ŝ) – (j – )π (.)

for some integer j ≥ . Then the proof can be concluded as above, via the intermediate
value theorem. We observe that the case of heteroclinic solutions from P– to P+ is analo-
gous, thus it will be omitted. �

The next theoremdeals with the internal connections. For this result, it is useful to recall
the rotational gap defined in (.).

Theorem . (Internal connections) Under the above assumptions, the following results
hold for solutions which satisfy the energy condition

x′(t) + kx(t) –μx(t) ∈ [
�,�∗], ∀t ∈R :

• there always exist a solution homoclinic to P+ and a solution homoclinic to P–;
• there always exist a heteroclinic solution from P+ to P– and a heteroclinic solution from
P– to P+;

• if t+ – t– >
τ� τ�∗
τ�∗–τ�

, there exist at least w(t+ – t–) +  solutions homoclinic to P+ and
w(t+ – t–) +  solutions homoclinic to P–;

• if t+ – t– >
τ� τ�∗
τ�∗–τ�

, there exist at least w(t+ – t–) +  heteroclinic solutions from P+ to P–

and w(t+ – t–) +  from P– to P+.

Proof As the first step, we focus our attention on the search of solutions homoclinic to the
point P+. The case of homoclinics to P– is analogous, thus it will be omitted.
Our goal is to find points on L = L(P+,P–) which are moved by the Poincaré map �T



on L′ = L(P–,P+).
As a preliminary remark, we note that �T

 (L) is a simple arc contained in E , connecting
its end points �T

 (P+) and �T
 (P–) on 
�∗ through the ‘intermediate’ point �T

 (R) on 
� .
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Observe also that �T
 (P+) and �T

 (P–) are antipodal. In fact, P– and P+ are antipodal and
�T

 is an odd map (indeed, (x(t), y(t)) is a solution of (.) if and only if (–x(t), –y(t)) is
a solution of the same equation). Now, if the trivial situation {�T

 (P–),�T
 (P+)} = {P–,P+}

occurs, we have �T
 (L) ∩ L′ = {P–,P+} �= ∅. Otherwise, we find that �T

 (P–) and �T
 (P+)

belong to the two different components of E \ L′. Since �T
 (P–) and �T

 (P+) are the end
points of the arc �T

 (L) ⊆ E , by an elementary connectivity argument, we conclude that
�T

 (L)∩ L′ �= ∅. This proves the first assertion of the theorem.
For the search of heteroclinic solutions from P+ to P–, we adopt a similar procedure,

choosing as a target the set L itself. The fact that, for every T > , there is always at least
one intersection point between�T

 (L) andL follows by the same argument developed for
homoclinic solutions. Namely, if the trivial situation {�T

 (P–),�T
 (P+)} = {P–,P+} occurs,

we have �T
 (L)∩ L = {P–,P+} �= ∅. Otherwise, we find that �T

 (P–) and �T
 (P+) belong to

the two different components of E \ L. Therefore, it follows that �T
 (L)∩ L �= ∅.

We study now the problem of multiplicity of solutions. As before, we consider at first
the case of solutions homoclinic to P+.
We introduce in the inner region E of a phase-plane for (.) a system of modified polar

coordinates (θ ,E) with center in the origin. In this system, every point is determined by its
angular coordinate θ and its energy E defined in (.). Since the energy level lines in E are
strictly star-shaped with respect to the origin, we obtain a coordinate system equivalent
to the polar one.
Observe that the set L ∪ L′ intersects every half-line from the origin exactly in one

point. Accordingly, we can parameterize those points using the angular coordinate. With
this convention, the initial points in the arc L are parameterized as γ (s) for s ∈ [π , π ]
(s is the angle) with γ (π ) = P–, γ (π ) = P+ and γ (π/) = R. As a consequence, E(γ (s)) is
strictly decreasing for s ∈ [π , π/] and strictly increasing in [π/, π ]. The target set L′

(the symmetric of L with respect to the x-axis) is parameterized with the angle s ∈ [,π ].
For the specific case of system (.), an analytic expression forL as a graph in the (θ ,E)-

plane, is given as follows:

E(θ ) := E
(
ρ(θ ) cos θ ,ρ(θ ) sin θ

)
= ρ(θ ) sin θ + kρ(θ ) cos θ –μρ

(θ ) cos θ , (.)

with

ρ(θ ) =
(k/√μ)

(sin θ + k cos θ )/ – sin θ
, θ ∈ [π , π ].

Hence, the natural parametrization of L in the (θ ,E)-plane is given by γ (s) = (s,E(s)) for
s = θ ∈ [π , π ].
Using the same modified polar coordinates to represent the solutions of (.), we can

express the final points �T
 (L) in the (θ ,E)-plane by means of their angular coordinate

θ (t, s) and energy E(t, s). As in the previous proof, we observe that, for every s ∈ [π , π ],
the map t 	→ θ (t, s) is strictly decreasing on [,+∞), while the energy is constant with
respect to t. Observe also that in the new coordinates (θ ,E), system (.) becomes

⎧⎨
⎩

θ ′ = – sin θ – k cos θ + μ�(θ ,E) cos θ ,

E′ = ,
(.)
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with

�(θ ,E) :=
E

sin θ + k cos θ + ((sin θ + k cos θ ) – μE cos θ )/
.

In the (θ ,E)-plane, the points of L move with a negative angular speed along the lines
of constant energy. Thus, under the action of the flow associated to (.), the points of L
shift from the right to the left in the strip

E (–∞, π ] :=
{
(θ ,E) : θ ≤ π ,� ≤ E ≤ �∗}.

As we have explained before, we obtain an internal solution homoclinic to P+ whenever
there is a point z ∈ L such that �T

 (z) ∈ L′, with T = t+ – t–. In the (θ ,E)-plane, this target
set is expressed as the union of the graphs

� :=
∞⋃
j=

{(
θ ,ϒ(θ )

)
: –jπ ≤ θ ≤ π – jπ

}
,

where

ϒ(θ ) := E
(
�(θ ) cos θ ,�(θ ) sin θ

)
= �(θ ) sin θ + k�(θ ) cos θ –μ�

(θ ) cos θ ,

with

�(θ ) =
(k/√μ)

(sin θ + k cos θ )/ + sin θ

(see Figures ,  for a graphical description).
In this setting, we obtain an internal solution homoclinic to P+ if and only if there exists

ŝ ∈ [π , π ] such that �(γ (ŝ)) ∈ �, where we have denoted by � the Poincaré map for
(.) in the time interval [,T]. Of course � is exactly �T

 (which was the Poincaré map
associated to (.)) in the new (θ ,E)-coordinates. Using the parameterized curve γ (s) for
the initial points, we can express � as

�
(
γ (s)

)
=

(
θ (T , s),E(s)

)
for s ∈ [π , π ]

(recall that γ (s) = (s,E(s)) for s = θ ∈ [π , π ]).

Figure 10 The initial set L and the target set L′ represented in the (θ ,E)-plane. The present figure is
drawn for the parameters k = 1, μ1 = 2, μ0 = 1/2. The internal region E corresponds to the strip R× [�1,�∗].
Since we are interested in the evolution of the set L through the Poincaré map, we consider only the
half-strip E (–∞, 2π ] = (–∞, 2π ]× [�1,�∗]. For the flow associated to (.), all the points of L move from the
right to the left on lines parallel to the θ -axis. The point R (as well as the points on the line E = �1) moves faster
than the points P± which are on the line E = �∗ . During all the evolution, the distance between the images of
P– and P+ remains constantly equal to π .
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Figure 11 The present figure describes the same situation of Figure 7 in the angle-energy
coordinates (with the same choice of the coefficients k, μ1, μ0 and time gap T = t+ – t– = 50).

The points P– and P+ are antipodal, lie on the same energy line 
�∗ and move with
the same angular speed. In the (θ ,E)-plane, P– and P+ are expressed by P– = (π ,�∗), P+ =
(π ,�∗). Therefore,

θ (t,π ) – θ (t, π ) = –π , ∀t ≥ . (.)

Moreover, for every integer j ≥ , we have that

θ (t,π )� π – jπ if and only if t � j
τ�∗



(this follows from the fact that the orbit 
�∗ has a period τ�∗ and is symmetric with respect
to the x-axis).
In the same plane, the point R is indicated by R = (π/,�). Using the fact that the orbit


� has a period τ� and is symmetric with respect to the y-axis, we find that, for every
integer i ≥ ,

θ (t, π/)� π


– iπ if and only if t � τ�


+ iτ� .

Suppose now that

T
τ�

–
T
τ�∗

> . (.)

Then, the open interval ]T/τ�∗ , T/τ� [ contains at least one odd integer.
Letmo(T) be the largest odd integer contained in ]T/τ�∗ , T/τ� [. FromT >mo(T)τ� /,

we have that

θ (T , π/) <
π


–

(
mo(T) – 

)
π =

π


–mo(T)π . (.)

Suppose also that j is a positive integer with T/τ�∗ < j ≤ mo(T). In this case, from T <
jτ�∗/, we have that

θ (T ,π ) > π – jπ and θ (T , π ) > π – jπ . (.)

Let

Lleft :=
{(

θ ,E(θ )
)
: π ≤ θ ≤ π/

}
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and

Lright :=
{(

θ ,E(θ )
)
: π/ ≤ θ ≤ π

}
,

with L = Lleft ∪ Lright be the left and the right parts of L in the (θ ,E)-plane. Similarly, we
define

L′
left :=

{(
θ ,ϒ(θ )

)
:  ≤ θ ≤ π/

}

and

L′
right :=

{(
θ ,ϒ(θ )

)
: π/ ≤ θ ≤ π

}
.

By definition, for any nonnegative integer i, the setL′
left –(iπ , ) is a simple arc connecting

the points (–iπ ,�∗) and (–iπ + (π/),�) in the rectangle [–iπ , –iπ + (π/)]× [�,�∗]
and, similarly, L′

right – (iπ , ) is a simple arc connecting the points (–iπ + (π/),�) and
(–iπ + π ,�∗) in the rectangle [–iπ + (π/), –iπ + π ] × [�,�∗]. On the other hand,
the set �(Lleft) is a simple arc connecting the points (θ (T ,π ),�∗) and (θ (T , π/),�) in
E (–∞, π ] and, similarly, �(Lright) is a simple arc connecting the points (θ (T , π/),�)
and (θ (T , π ),�∗) = (π + θ (T ,π ),�∗) in the same strip.
Suppose now that j = mo(T) = k +  (in this case, j is odd). In such a situation, from

(.) and (.) we have that

θ (T , π/) <
π


– kπ , θ (T ,π ) > –kπ , θ (T ,π ) > π – kπ ,

for k = j –  an even integer. Hence the points (θ (T , π/),�) and (θ (T ,π ),�∗) are sep-
arated by the arc L′

left – (kπ , ), while the points (θ (T , π/),�) and (θ (T , π ),�∗) are
separated by L′

left – (kπ , ) and L′
right – (kπ , ). As a consequence, �(L) ∩ � contains

at least three points, precisely the nonempty intersections of �(Lleft) ∩ (L′
left – (kπ , )),

�(Lright)∩ (L′
left – (kπ , )) and �(Lright)∩ (L′

right – (kπ , )).
Suppose that j =mo(T) –  (in this case, j is even). In such a situation, from (.) and

(.) we have that

θ (T , π/) <
π


– kπ , θ (T ,π ) > π – kπ , θ (T ,π ) > π – kπ

for k =mo(T) –  an even integer. Hence the points (θ (T , π/),�) and (θ (T ,π ),�∗) are
separated by the arcs L′

left – (kπ , ) and L′
right – (kπ , ). The points (θ (T , π/),�) and

(θ (T , π ),�∗) are separated by L′
left – (kπ , ), L′

right – (kπ , ) and L′
left – ((k – )π , ).

As a consequence, �(L) ∩ � contains at least five points: two points coming from the
intersections of�(Lleft) with the target set� and three from the intersections of�(Lright).
Proceeding by induction, with the same argument, the following result is obtained.

Claim  �(L) ∩ � has at least n# +  solutions, where n# is the number of integers less
than or equal tomo(T) which are contained in the open interval ]T/τ�∗ , T/τ� [.

A completely symmetric argument leads to the same multiplicity result for solutions
which are homoclinic to P–.
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At last, we look for a multiplicity result for heteroclinic solutions from P+ to P–. We
follow step by step the argument described in the part of the proof devoted to the search
of multiple internal homoclinic solutions and, therefore, we transform our equation in the
(θ ,E)-coordinates. As we have explained before, we obtain an internal heteroclinic (from
P+ to P–) whenever there is a point z ∈ L such that �T

 (z) ∈ L, with T = t+ – t–. In the
(θ ,E)-plane, this target set is expressed as the union of the graphs

�′ :=
∞⋃
j=

{(
θ ,E(θ )

)
: π – jπ ≤ θ ≤ π – jπ

}
,

where E(θ ) is the function defined in (.).
As before, we assume the validity of condition (.). Then the open interval ]T/τ�∗ ,

T/τ� [ contains at least one even integer.
Letme(T) be the largest even integer contained in ]T/τ�∗ , T/τ� [. From T >me(T)τ� /

, we have that

θ (T , π/) <
π


–me(T)π .

For any positive integer j with T/τ�∗ < j ≤ me(T), we have that (.) holds too. At this
point, we have simply to repeat (with obvious changes due to the fact that the target set is
�′ which is a shift of� by (pi, )) the argument presented above for the case of homoclinic
connections and obtain the following conclusion.

Claim  �(L) ∩ �′ has at least n# +  solutions, where n# is the number of integers less
than or equal tome(T) which are contained in the open interval ]T/τ�∗ , T/τ� [.

A completely symmetric argument leads to a multiplicity result for heteroclinic solu-
tions from P– to P+.
As final step, we have just to show how the condition on the rotational gap allows us to

achieve the conclusion from Claim  and Claim  that we have obtained along the proof.
Now, it is sufficient to observe that t+ – t– = T > τ� τ�∗

τ�∗–τ�
implies (.) and, therefore, the

open interval ]T/τ�∗ , T/τ� [ contains at least two integers. More precisely, by the defini-
tion ofw(T), the interval ]T/τ�∗ , T/τ� [ contains at leastw(T)+ integers and, therefore,

n#,n# ≥ w(T).

This concludes the proof of the theorem. �

3 Remarks and related results
We end the paper with a list of remarks about possible variants and extensions of themain
results obtained for equation

x′′ + kx – g(t)x = . (.)

. A problem which naturally arises from the analysis that we have performed concerns
what happens if, for a stepwise weight function satisfying (.), we suppose that
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 < μ < μ. Repeating the preliminary phase-plane analysis of Section ., one can
easily check that for any gap T = t+ – t– > , there always exist a solution homoclinic
to P+ and another homoclinic to P–, as well as a heteroclinic from P+ to P– and
another one from P– to P+. However, in general, if  < μ < μ, one cannot obtain
multiplicity results like those achieved in Section  without some extra assumptions
on h(x). This is the reason for which, in the study of equation (.), we have
considered only the case  < μ < μ. For different examples on related equations in
which a weight coefficient can be above or below its limits at infinity, see, for
instance, [–].
On the other hand, if we assume that the weight function changes its sign, with

μ <  < μ, some interesting multiplicity results could be produced. In fact the phase
portrait of (.) in the time interval [t–, t+] shows a global center, hence if t+ – t– is
large, a lot of connections between the unstable and stable manifolds of the points P±
can be obtained. For the sake of conciseness, we omit the study of this latter
situation, which is beyond the goal of the present paper.

. We notice that the same argument of the proofs applies to an equation of the form

x′′ + σx – a(t)h(x) =  (.)

for σ > , h(x) = xf (x), and with f (x) satisfying condition (∗), if we assume that a(t) is
a stepwise weight function, playing the same role of g(t) in (.). In such a case, the
saddle points become P± = (±ξ, ) with ξ := f –(σ /μ), where f – is the inverse of f
restricted to [, +∞). In this way, we can apply our results to nonlinearities like those
considered in [, ]. More precisely, Theorem . holds without any further
assumption, while for Theorem . we need to require a gap between the periods of
the orbits 
� and 
�∗ . In order to obtain this gap, we can apply (for instance) some
results ensuring the monotonicity of the time-map (like [, Theorem A]).

. Due to the special form of the weight coefficient, it is standard to verify (via a simple
rescaling procedure) that (.) is equivalent to an equation of the form

x′′ + b(t)x – ah(x) = , (.)

where a >  and b(t) is a stepwise coefficient. In this manner, one can deal with some
nonlinear Schrödinger-type equations related to the case of potential wells or
potential walls [, ].

. The approach used in the proofs, based on the properties of the Poincaré map,
guarantees that our results are stable with respect to small perturbations. More
precisely, fixed a suitable length T = t+ – t– for the time interval, Theorems . and
. provide a lower bound for the number of solutions. We can state that the same
lower bound persists for a small perturbation of the coefficient in the L-norm on
[t–, t+]. Therefore, the assumption that the weight a(t) in (.) or b(t) in (.) are
stepwise functions can be slightly relaxed, so we can ‘smooth’ them.

. With reference to equations (.) or (.) with stepwise coefficients, we observe that
our approach can be adapted to boundary value problems on a compact interval
[,T] like, e.g., the Dirichlet (two-point) or the Neumann problem. In these cases, we
have to find solutions connecting given lines which depart from the origin. For the
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Figure 12 In the present figure the line ϒ∗ is
the transformation of the segment [–ξ∗

1 ,ξ
∗
1 ]

× {0} under the Poincaré map �1 for τ = 2.2.
The parameters used are k = 1, μ1 = 2, μ0 = 1/2. For
graphical reasons, a slightly different x- and
y-scaling has been used.

sake of conciseness, we cannot describe the most general situation, but we just
outline a possible application for the Neumann problem

⎧⎨
⎩
x′′ + kx – g(t)x = ,

x′() = , x′(T) = ,
(.)

with g(t) a stepwise function such that g(t) = μ for t ∈ [, τ [ and g(t) = μ for
t ∈ [τ ,T], for  < μ < μ. Let us denote by � the Poincaré map associated to system
(.) on the time interval [, τ ], and by � the Poincaré map associated to system
(.) on the time interval [,T – τ ]. We observe that there exists a maximal compact
interval [–ξ ∗

 , ξ ∗
 ] with ξ < ξ ∗

 < ξ such that E(�(z)) ≤ � for all the points z = (x, )
with x ∈ [–ξ ∗

 , ξ ∗
 ]. In this manner �(±ξ ∗

 , ) ∈ 
� . The curve

ϒ∗ :=
{
�(x, ) : –ξ ∗

 ≤ x≤ ξ ∗

}

represents the set of all the points in the region W = {(x, y) : –ξ ≤ x ≤ ξ,
E(x, y)≤ �}, which are images (by �) of initial points of the x-axis (therefore
x′() = ). Figure  illustrates the curve ϒ∗ for a short time interval (τ = .). For a
larger τ , the line ϒ∗ becomes a double spiral with a certain number of turns around
the origin, while the part of ϒ∗ contained in the region F gets very close to O(P+)
and O(P–). Then we can repeat the same argument developed in the previous
sections by looking for the intersections of �(ϒ∗) with the x-axis.

. As a final remark, we mention the fact that combining our technique with
Ważewski’s method [], following the approach developed by Conley in [], one
can deal with some more general classes of weight functions. For example, one could
tackle with these techniques the cases of asymptotically constant or asymptotically
periodic coefficients. These extensions, however, need a more delicate analysis and
they are beyond the goals of the present paper.

We hope that the abundance of multiplicity results found in the present work (in the
special case of stepwise coefficients) may suggest possible directions for extending The-
orem . and Theorem . to more general weight functions. This will be our goal for a
future investigation of the problem.
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