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Abstract
We provide the existence of a positive solution for the quasilinear elliptic equation

–div(a(x, |∇u|)∇u) = f (x,u,∇u)

in � under the Dirichlet boundary condition. As a special case (a(x, t) = tp–2), our
equation coincides with the usual p-Laplace equation. The solution is established as
the limit of a sequence of positive solutions of approximate equations. The positivity
of our solution follows from the behavior of f (x, tξ ) as t is small. In this paper, we do
not impose the sign condition to the nonlinear term f .
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1 Introduction
In this paper, we consider the existence of a positive solution for the following quasilinear
elliptic equation:

⎧⎨
⎩–divA(x,∇u) = f (x,u,∇u) in �,

u =  on ∂�,
(P)

where � ⊂ R
N is a bounded domain with C boundary ∂�. Here, A : � × R

N → R
N is

a map which is strictly monotone in the second variable and satisfies certain regularity
conditions (see the following assumption (A)). Equation (P) contains the corresponding
p-Laplacian problem as a special case. However, in general, we do not suppose that this
operator is (p – )-homogeneous in the second variable.
Throughout this paper, we assume that the map A and the nonlinear term f satisfy the

following assumptions (A) and (f ), respectively.
(A) A(x, y) = a(x, |y|)y, where a(x, t) >  for all (x, t) ∈ � × (, +∞), and there exist

positive constants C, C, C, C,  < t ≤  and  < p <∞ such that
(i) A ∈ C(� ×R

N ,RN )∩C(� × (RN \ {}),RN );
(ii) |DyA(x, y)| ≤ C|y|p– for every x ∈ �, and y ∈R

N \ {};
(iii) DyA(x, y)ξ · ξ ≥ C|y|p–|ξ | for every x ∈ �, y ∈R

N \ {} and ξ ∈R
N ;
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(iv) |DxA(x, y)| ≤ C( + |y|p–) for every x ∈ �, y ∈R
N \ {};

(v) |DxA(x, y)| ≤ C|y|p–(– log |y|) for every x ∈ �, y ∈R
N with  < |y| < t.

(f ) f is a continuous function on � × [,∞)×R
N satisfying f (x, , ξ ) =  for every

(x, ξ ) ∈ � ×R
N and the following growth condition: there exist  < q < p, b >  and

a continuous function f on � × [,∞) such that

–b
(
 + tq–

) ≤ f(x, t)≤ f (x, t, ξ )≤ b
(
 + tq– + |ξ |q–) ()

for every (x, t, ξ ) ∈ � × [,∞)×R
N .

In this paper, we say that u ∈W ,p
 (�) is a (weak) solution of (P) if

∫
�

A(x,∇u)∇ϕ dx =
∫

�

f (x,u,∇u)ϕ dx

for all ϕ ∈ W ,p
 (�).

A similar hypothesis to (A) is considered in the study of quasilinear elliptic problems (see
[, Example ..], [–] and also refer to [, ] for the generalized p-Laplace operators).
From now on, we assume that C ≤ p –  ≤ C, which is without any loss of generality as
can be seen from assumptions (A)(ii), (iii).
In particular, for A(x, y) = |y|p–y, that is, divA(x,∇u) stands for the usual p-Laplacian

�pu, we can take C = C = p –  in (A). Conversely, in the case where C = C = p – 
holds in (A), by the inequalities in Remark (ii) and (iii), we see that a(x, t) = |t|p– whence
A(x, y) = |y|p–y. Hence, our equation contains the p-Laplace equation as a special case.
In the case where f does not depend on the gradient of u, there are many existence

results because our equation has the variational structure (cf. [, , ]). Although there are
a few results for our equation (P) with f including∇u, we can refer to [, ] and [] for the
existence of a positive solution in the case of the (p,q)-Laplacian orm-Laplacian ( <m <
N ). In particular, in [] and [], the nonlinear term f is imposed to be nonnegative. The
results in [] and [] are applied to the m-Laplace equation with an (m – )-superlinear
term f w.r.t. u. Here, we mention the result in [] for the p-Laplacian. Faria, Miyagaki
and Motreanu considered the case where f is (p – )-sublinear w.r.t. u and ∇u, and they
supposed that f (x,u,∇u) ≥ cur for some c >  and  < r < p – . The purpose of this paper
is to remove the sign condition and to admit the condition like f (x,u,∇u) ≥ λup– +o(up–)
for large λ >  as u→ +. Concerning the condition for f as |u| → , Zou in [] imposed
that there exists an L >  satisfying f (x,u,∇u) = Lum–+o(|u|m–+|∇u|m–) as |u|, |∇u| → 
for them-Laplace problem. Hence, we cannot apply the result of [] and [] to the case of
f (x,u,∇u) = λm(x)up– + ( –up–)|∇u|r– + o(up–) as u → + for  < r < p andm ∈ L∞(�)
(admitting sign changes), but we can do our result if λ >  is large.
In [], the positivity of a solution is proved by the comparison principle. However, since

we are not able to do it for our operator in general, after we provide a non-negative and
non-trivial solution as a limit of positive approximate solutions (in Section ), we obtain
the positivity of it due to the strong maximum principle for our operator.

1.1 Statements
To state our first result, we define a positive constant Ap by

Ap :=
C

p – 

(
C

C

)p–

≥ , ()
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which is equal to  in the case of A(x, y) = |y|p–y (i.e., the case of the p-Laplacian) because
we can choose C = C = p – . Then, we introduce the hypothesis (f) to the function
f(x, t) in (f ) as t is small.
(f) There existm ∈ L∞(�) and b > μ(m)Ap such that the Lebesgue measure of

{x ∈ �;m(x) > } is positive and

lim inf
t→+

f(x, t)
tp–

≥ bm(x) uniformly in x ∈ �, ()

where f is the continuous function in (f ) and μ(m) is the first positive eigenvalue
of the p-Laplacian with the weight functionm obtained by

μ(m) := inf

{∫
�

|∇u|p dx;u ∈W ,p
 (�) and

∫
�

m|u|p dx = 
}
. ()

Theorem  Assume (f). Then equation (P) has a positive solution u ∈ intP, where

P :=
{
u ∈ C

(�);u(x) ≥  in �
}
,

intP :=
{
u ∈ C

(�);u(x) >  in � and ∂u/∂ν <  on ∂�
}
,

and ν denotes the outward unit normal vector on ∂�.

Next, we consider the case where A is asymptotically (p– )-homogeneous near zero in
the following sense:
(AH) There exist a positive function a ∈ C(�, (, +∞)) and

ã(x, t) ∈ C(� × [, +∞),R) such that

A(x, y) = a(x)|y|p–y + ã
(
x, |y|)y for every x ∈ �, y ∈R

N and ()

lim
t→+

ã(x, t)
tp–

=  uniformly in x ∈ �. ()

Under (AH), we can replace the hypothesis (f) with the following (f):
(f) There existm ∈ L∞(�) and b > λ(m) such that () and the Lebesgue measure of

{x ∈ �;m(x) > } is positive, where λ(m) is the first positive eigenvalue of
–div(a(x)|∇u|p–∇u) with a weight function m obtained by

λ(m) := inf

{∫
�

a(x)|∇u|p dx;u ∈W ,p
 (�) and

∫
�

m|u|p dx = 
}
. ()

Theorem  Assume (AH) and (f). Then equation (P) has a positive solution u ∈ intP.

Throughout this paper, we may assume that f (x, t, ξ ) =  for every t ≤ , x ∈ � and ξ ∈
R

N because we consider the existence of a positive solution only. In what follows, the
norm on W ,p

 (�) is given by ‖u‖ := ‖∇u‖p, where ‖u‖q denotes the usual norm of Lq(�)
for u ∈ Lq(�) (≤ q ≤ ∞). Moreover, we denote u± :=max{±u, }.

1.2 Properties of the map A
Remark  The following assertions hold under condition (A):

(i) for all x ∈ �, A(x, y) is maximal monotone and strictly monotone in y;
(ii) |A(x, y)| ≤ C

p– |y|p– for every (x, y) ∈ � ×R
N ;
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(iii) A(x, y)y≥ C
p– |y|p for every (x, y) ∈ � ×R

N ,
where C and C are the positive constants in (A).

Proposition  ([, Proposition ]) Let A : W ,p
 (�) →W ,p

 (�)∗ be a map defined by

〈
A(u), v

〉
=

∫
�

A(x,∇u)∇vdx

for u, v ∈ W ,p
 (�). Then A is maximal monotone, strictly monotone and has (S)+ prop-

erty, that is, any sequence {un} weakly convergent to u with lim supn→∞〈A(un),un – u〉 ≤ 
strongly converges to u.

2 Constructing approximate solutions
Choose a function ψ ∈ P \ {}. In this section, for such ψ and ε > , we consider the
following elliptic equation:

⎧⎨
⎩–divA(x,∇u) = f (x,u,∇u) + εψ(x) in �,

u =  on ∂�.
(P; ε)

In [], the case ψ ≡  in the above equation is considered.

Lemma  Suppose (f) or (f). Then there exists λ >  such that f (x, t, ξ )t + λtp ≥  for
every x ∈ �, t ≥  and ξ ∈R

N .

Proof From the growth condition of f and (), it follows that

f(x, t)t ≥ –b‖m‖∞tp – b′
t

p for every (x, t) ∈ � × [,∞)

holds, where b′
 is a positive constant independent of (x, t). Therefore, for λ ≥ b‖m‖∞ +

b′
, we easily see that f (x, t, ξ )t+λtp ≥ f(x, t)t+λtp ≥  for every x ∈ �, t ≥  and ξ ∈ R

N

holds. �

Proposition  If uε ∈ W ,p
 (�) is a non-negative solution of (P; ε) for ε ≥ , then uε ∈

L∞(�). Moreover, for any ε > , there exists a positive constant D >  such that ‖uε‖∞ ≤
Dmax{,‖uε‖} holds for every ε ∈ [, ε].

Proof Set p∗ = Np/(N – p) if N > p, and in the case of N ≤ p, p∗ > p is an arbitrarily fixed
constant. Let uε be a non-negative solution of (P; ε) with  ≤ ε ≤ ε (some ε > ). For
r > , choose a smooth increasing function η(t) such that η(t) = tr+ if  ≤ t ≤ , η(t) =
dt if t ≥ d and η′(t) ≥ d >  if  ≤ t ≤ d for some  < d <  < d,d. Define ξM(u) :=
Mr+η(u/M) forM > .
If uε ∈ Lr+p(�), then by taking ξM(uε) as a test function (note that η′ is bounded), we

have

C

p – 

∫
�

|∇uε|pξ ′
M(uε)dx

≤
∫

�

A(x,∇uε)∇uεξ
′
M(uε)dx

http://www.boundaryvalueproblems.com/content/2013/1/173
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=
∫

�

(
f (x,uε ,∇uε) + εψ

)
ξM(uε)dx

≤ b
∫

�

(
 + uq–ε + ε‖ψ‖∞

)
Mr+η(uε/M)dx + b

∫
�

|∇uε|q–ξM(uε)dx

≤ dd
(
b + ε‖ψ‖∞

)(‖uε‖r+qr+q + ‖uε‖r+r+
)
+ b

∫
�

|∇uε|q–ξM(uε)dx ()

due to Remark (iii) and Mr+η(t/M) ≤ ddtr+. Putting β := p/(p – q + ) < p, we see
that (ξM(uε))/(ξ ′

M(uε))(q–)/p = ur+ε /((r + )urε)(q–)/p ≤ u+r/βε provided  < uε < M (note
r > ). Similarly, ifM ≤ uε ≤ dM, then (ξM(uε))/(ξ ′

M(uε))(q–)/p ≤ ddMr+/(dMr)(q–)/p =
ddd

(–q)/p
 M+r/β ≤ ddd

(–q)/p
 u+r/βε , and if uε > dM, then (ξM(uε))/(ξ ′

M(uε))(q–)/p =
d/β
 Mr/βuε ≤ d/β

 u+r/βε (note d > ). Thus, according toYoung’s inequality, for every δ > ,
there exists Cδ >  such that

∫
�

|∇uε|q–ξM(uε)dx ≤ δ

∫
�

|∇uε|pξ ′
M(uε)dx +Cδ

∫
uε>

(ξM(uε))β

(ξ ′
M(uε))(q–)β/p

dx

≤ δ

∫
�

|∇uε|pξ ′
M(uε)dx +Cδd

∫
�

ur+β
ε dx, ()

where β := p/(p – q + ) < p and d = max{ddd(–q)/p
 ,d/β

 } (> ). As a result, because of
r+p > r+q, r+β , according to Hölder’s inequality and the monotonicity of tr with respect
to r on [,∞), taking a  < δ < C/b(p – ) and setting uMε (x) :=min{uε(x),M}, we obtain

b
(
r′
)p
max

{
,‖uε‖r+pr+p

} ≥ (
r′
)p ∫

�

|∇uε|pξ ′
M(uε)dx ≥ (

r′
)p ∫

�

∣∣∇uMε
∣∣p(uMε )r dx

=
∥∥(
uMε

)r′∥∥p ≥ C∗
∥∥(
uMε

)r′∥∥p
p̄∗ = C∗

∥∥uMε ∥∥r+p
p̄∗r′ ()

provided uε ∈ Lr+p(�) by () and (), where r′ =  + r/p, C∗ comes from the continu-
ous embedding of W ,p

 (�) into Lp∗ (�) and d is a positive constant independent of uε ,
ε and r. Consequently, Moser’s iteration process implies our conclusion. In fact, we de-
fine a sequence {rm}m by r := p∗ – p and rm+ := p∗(p + rm)/p – p. Then, we see that uε ∈
Lp∗(p+rm)/p(�) = Lp+rm+ (�) holds if uε ∈ Lp+rm (�) by applying Fatou’s lemma to () and
letting M → ∞. Here, we also see rm+ = p∗rm/p + p∗ – p ≥ (p∗/p)m+r → ∞ as m → ∞.
Therefore, by the same argument as in Theorem C in [], we can obtain uε ∈ L∞(�) and
‖uε‖∞ ≤ Dmax{,‖uε‖} for some positive constant D independent of uε and ε. �

Lemma Suppose (f) or (f). If uε ∈ W ,p
 (�) is a solution of (P; ε) for ε > , then uε ∈ intP.

Proof Taking –(uε)– as a test function in (P; ε), we have

C

p – 
∥∥∇(uε)–

∥∥p
p ≤

∫
�

A(x,∇uε)
(
–∇(uε)–

)
dx = –ε

∫
�

ψ(uε)– dx≤ 

because of f (x, t, ξ ) =  if t ≤  and byRemark (iii). Hence, uε ≥  follows. Because Propo-
sition  guarantees that uε ∈ L∞(�), we have uε ∈ C,α

 (�) (for some  < α < ) by the regu-
larity result in []. Note that uε �≡  because of ε >  andψ �≡ . In addition, Lemma  im-
plies the existence of λ >  such that –divA(x,∇uε)+λu

p–
ε ≥  in the distribution sense.
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Therefore, according to Theorem A and Theorem B in [], uε >  in � and ∂uε/∂ν <  on
∂�, namely, uε ∈ intP. �

The following result can be shown by the same argument as in [, Theorem .].

Proposition  Suppose (f) or (f). Then, for every ε > , (P; ε) has a positive solution uε ∈
intP.

Proof Fix any ε >  and let {e, . . . , em, . . .} be a Schauder basis of W ,p
 (�) (refer to

[] for the existence). For each m ∈ N, we define the m-dimensional subspace Vm of
W ,p

 (�) by Vm := lin.sp.{e, . . . , em}. Moreover, set a linear isomorphism Tm : Rm → Vm

by Tm(ξ, . . . , ξm) :=
∑m

i= ξiei ∈ Vm, and let T∗
m : V ∗

m → (Rm)∗ be a dual map of Tm. By iden-
tifying R

m and (Rm)∗, we may consider that T∗
m maps from V ∗

m to R
m. Define maps Am

and Bm from Vm to V ∗
m as follows:

〈
Am(u), v

〉
:=

∫
�

A(x,∇u)∇vdx and
〈
Bm(u), v

〉
:=

∫
�

f (x,u,∇u)vdx + ε

∫
�

ψvdx

for u, v ∈ Vm. We claim that for every m ∈ N, there exists um ∈ Vm such that Am(um) –
Bm(um) =  in V ∗

m. Indeed, by the growth condition of f , Remark (iii) and Hölder’s in-
equality, we easily have

〈
Am(u) – Bm(u),u

〉
≥ C

p – 
‖u‖p – b

(‖u‖ + ‖u‖qq + ‖∇u‖q–p ‖u‖β

)
– ε‖ψ‖∞‖u‖ ()

for every u ∈ Vm, where β = p/(p – q + ) < p. This implies that Am – Bm is coercive on Vm

by q < p. Set a homotopyHm(t, y) := ty+ (– t)T∗
m(Am(Tm(y)) –Bm(Tm(y))) for t ∈ [, ] and

y ∈ R
m. By recalling that Am –Bm is coercive on Vm, we see that there exists an R >  such

that (Hm(t, y), y) >  for every t ∈ [, ] and |y| ≥ R because ‖ · ‖ and the norm of Rm are
equivalent on Vm. Therefore, we have

 = deg
(
Im,BR(), 

)
= deg

(
Hm(, ·),BR(), 

)
= deg

(
Hm(, ·),BR(), 

)
= deg

(
T∗
m ◦ (Am – Bm) ◦ Tm,BR(), 

)
,

where Im is the identity map on R
m, BR() := {y ∈ R

m; |y| < R} and deg(g,B, ) denotes the
degree on R

m for a continuous map g : B → R
m (cf. []). Hence, this yields the existence

of ym ∈ R
m such that (T∗

m ◦ (Am – Bm) ◦ Tm)(ym) = , and so the desired um is obtained by
setting um = Tm(ym) ∈ Vm since T∗

m is injective.
Because () with u = um ∈ W ,p

 (�) leads to the boundedness of ‖um‖ by q < p, we may
assume, by choosing a subsequence, that um converges to some u weakly inW ,p

 (�) and
strongly in Lp(�). Let Pm be a natural projection onto Vm, that is, Pmu =

∑m
i= ξiei for u =∑∞

i= ξiei. Since um,Pmu ∈ Vm and Am(um) – Bm(um) =  in V ∗
m, by noting that Am = A on

Vm for a map A defined in Proposition , we obtain

〈
A(um),um – u

〉
+

〈
A(um),u – Pmu

〉
=

〈
Am(um),um – Pmu

〉
=

〈
Bm(um),um – Pmu

〉

http://www.boundaryvalueproblems.com/content/2013/1/173
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=
∫

�

(
f (x,um,∇um) + εψ

)
(um – u)dx

+
∫

�

(
f (x,um,∇um) + εψ

)
(u – Pmu)dx → 

asm → ∞, where we use the boundedness of ‖um‖, the growth condition of f and um →
u in Lp(�). In addition, since ‖A(um)‖W ,p

 (�)∗ is bounded, by the boundedness of ‖um‖,
we see that 〈A(um),u – Pmu〉 →  as m → ∞, whence 〈A(um),um – u〉 →  as m →
∞ holds. As a result, it follows from the (S)+ property of A that um → u in W ,p

 (�) as
m→ ∞.
Finally, we shall prove that u is a solution of (P; ε). Fix any l ∈ N and ϕ ∈ Vl . For each

m ≥ l, by lettingm → ∞ in 〈Am(um),ϕ〉 = 〈Bm(um),ϕ〉, we have
∫

�

A(x,∇u)∇ϕ dx =
∫

�

f (x,u,∇u)ϕ dx + ε

∫
�

ψϕ dx. ()

Since l is arbitrary, () holds for every ϕ ∈ ⋃
l≥Vl . Moreover, the density of

⋃
l≥Vl in

W ,p
 (�) guarantees that () holds for every ϕ ∈W ,p

 (�). This means that u is a solution
of (P; ε). Consequently, our conclusion u ∈ intP follows from Lemma . �

3 Proof of theorems
Lemma  Let ϕ,u ∈ intP. Then

∫
�

A(x,∇u)∇
(

ϕp

up–

)
dx ≤ Ap‖∇ϕ‖pp

holds, where Ap is the positive constant defined by ().

Proof Because of ϕ,u ∈ intP, there exist δ > δ >  such that δu ≥ ϕ ≥ δu in �. Thus,
δ ≥ ϕ/u ≥ δ and /δ ≥ u/ϕ ≥ /δ in �. Hence, u/ϕ,ϕ/u ∈ L∞(�) hold. Therefore, we
have

A(x,∇u)∇
(

ϕp

up–

)
= p

(
ϕ

u

)p–

A(x,∇u)∇ϕ – (p – )
(

ϕ

u

)p

A(x,∇u)∇u

≤ pC

p – 

(
ϕ

u

)p–

|∇u|p–|∇ϕ| –C

(
ϕ

u

)p

|∇u|p

=
{(

pC

p – 

)/p
ϕ

u
|∇u|

}p–( p
p – 

)/p

CC
(–p)/p
 |∇ϕ|

–C

(
ϕ

u

)p

|∇u|p ≤ Ap|∇ϕ|p ()

in � by (ii) and (iii) in Remark  and Young’s inequality. �

Lemma  Assume that a ∈ C(�, [,∞)) and let ϕ,u ∈ intP. Then

∫
�

a(x)|∇ϕ|p–∇ϕ∇
(

ϕp – up

ϕp–

)
dx –

∫
�

a(x)|∇u|p–∇u∇
(

ϕp – up

up–

)
dx ≥ 

holds.

http://www.boundaryvalueproblems.com/content/2013/1/173
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Proof First, we note that u/ϕ,ϕ/u ∈ L∞(�) hold by the same reason as in Lemma . Ap-
plying Young’s inequality to the second term of the right-hand side in () (refer to ()
with C = C = p – ), we obtain

a(x)|∇ϕ|p–∇ϕ∇
(

ϕp – up

ϕp–

)

≥ a(x)
(

|∇ϕ|p – p
(
u
ϕ

)p–

|∇ϕ|p–|∇u| + (p – )
(
u
ϕ

)p

|∇ϕ|p
)

()

≥ a(x)
(|∇ϕ|p – |∇u|p) ()

in �. Similarly, we also have

a(x)|∇u|p–∇u∇
(

ϕp – up

up–

)
≤ a(x)

(|∇ϕ|p – |∇u|p) in �. ()

The conclusion follows from () and (). �

Under (f) or (f), we denote a solution uε ∈ intP of (P; ε) for each ε >  obtained by
Proposition .

Lemma  Assume (f) or (f). Let I := (, ]. Then {uε}ε∈I is bounded in W ,p
 (�).

Proof Taking uε as a test function in (P; ε), we have

C

p – 
‖∇uε‖pp ≤

∫
�

A(x,∇uε)∇uε dx =
∫

�

f (x,uε ,∇uε)uε dx + ε

∫
�

ψuε dx

≤ b
(‖uε‖ + ‖uε‖qq + ‖∇uε‖q–p ‖uε‖β

)
+ ‖ψ‖∞‖uε‖

≤ b′

(‖uε‖ + ‖uε‖q

)
by Remark (iii), the growth condition of f , Hölder’s inequality and the continuity of the
embedding ofW ,p

 (�) into Lp(�), where β = p/(p–q+) (< p) and b′
 is a positive constant

independent of uε . Because of q < p, this yields the boundedness of ‖uε‖ (= ‖∇uε‖p). �

Lemma  Assume (f) or (f). Then |∇uε|/uε ∈ Lp(�) and ‖|∇uε|/uε‖pp ≤ λ|�|/C hold
for every ε > , where |�| denotes the Lebesgue measure of �, and where C and λ are
positive constants as in (A) and Lemma , respectively.

Proof Fix any ε >  and choose any ρ > . By taking (uε +ρ)–p as a test function, we obtain

( – p)
∫

�

A(x,∇uε)∇uε

(uε + ρ)p
dx =

∫
�

f (x,uε ,∇uε) + εψ

(uε + ρ)p–
dx ≥ –λ

∫
�

up–ε

(uε + ρ)p–
dx

≥ –λ|�|, ()

by Lemma  and εψ ≥ . On the other hand, by Remark (iii) and  – p < , we have

( – p)
∫

�

A(x,∇uε)∇uε

(uε + ρ)p
dx ≤ –C

∫
�

|∇uε|p
(uε + ρ)p

dx. ()
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Tanaka Boundary Value Problems 2013, 2013:173 Page 9 of 11
http://www.boundaryvalueproblems.com/content/2013/1/173

Therefore, () and () imply the inequality
∫
�

|∇uε|p/(uε + ρ)p dx ≤ λ|�|/C for every
ρ > . As a result, by letting ρ → +, our conclusion is shown. �

Lemma  Assume (f) and (AH). Let ϕ ∈ intP. If uε →  in C
(�) as ε → +, then

lim
ε→+

∣∣∣∣
∫

�

ã
(
x, |∇uε|

)∇uε∇
(

ϕp – upε
up–ε

)
dx

∣∣∣∣ = 

holds, where ã is a continuous function as in (AH).

Proof Note that uε/ϕ,ϕ/uε ∈ L∞(�) hold (as in the proof of Lemma ). Because we easily
see that | ∫

�
ã(x, |∇u|)|∇u| dx| ≤ C‖∇u‖pp for every u ∈ W ,p

 (�) with some C >  inde-
pendent of u (see ()), it is sufficient to show | ∫

�
ã(x, |∇uε|)∇uε∇(ϕp/up–ε )dx| →  as

ε → +. Here, we fix any δ > . By the property of ã (see ()) and because we are assum-
ing that uε →  in C

(�) as ε → +, we have |̃a(x, |∇uε|)| ≤ δ|∇uε|p– for every x ∈ �

provided sufficiently small ε > . Therefore, for such sufficiently small ε > , we obtain

∣∣∣∣
∫

�

ã
(
x, |∇uε|

)∇uε∇
(

ϕp

up–ε

)
dx

∣∣∣∣
≤ p

∫
�

|̃a(x, |∇uε|)||∇uε||∇ϕ|ϕp–

up–ε

dx + (p – )
∫

�

|̃a(x, |∇uε|)||∇uε|ϕp

upε
dx

≤ δ‖ϕ‖pC
(�)

{
p
∫

�

( |∇uε|
uε

)p–

dx + (p – )
∫

�

( |∇uε|
uε

)p

dx
}

≤ δ‖ϕ‖pC
(�)|�|(p(λ/C)–/p + (p – )(λ/C)

)
because of |∇uε|/uε ∈ Lp(�) by Lemma . Since δ >  is arbitrary, our conclusion is
shown. �

3.1 Proof of main results
Proof of Theorems
Let ε ∈ (, ]. Due to Proposition  and Lemma , we have ‖uε‖∞ ≤ M for some M > 
independent of ε ∈ (, ]. Hence, there existM′ >  and  < α <  such that uε ∈ C,α

 (�) and
‖uε‖C,α

 (�) ≤ M′ for every ε ∈ (, ] by the regularity result in []. Because the embedding
of C,α

 (�) into C
(�) is compact and by uε ∈ intP, there exists a sequence {εn} and u ∈ P

such that εn → + and un := uεn → u in C
(�) as n → ∞. If u �=  occurs, then u ∈

intP by the same reason as in Lemma , and hence our conclusion is proved. Now, we
shall prove u �=  by contradiction for each theorem. So, we suppose that u = , whence
un →  in C

(�) as n → ∞.

Proof of Theorem  Let ϕ ∈ intP be an eigenfunction corresponding to the first positive
eigenvalueμ(m) (cf. [, ], it is well known that we can obtain ϕ as theminimizer of ()),
namely, ϕ is a positive solution of –�pu = μ(m)m(x)|u|p–u in � and u =  on ∂�. Since
p-Laplacian is (p– )-homogeneous, we may assume that ϕ satisfies

∫
�
m(x)ϕp dx = , and

hence ‖∇ϕ‖pp = μ(m)
∫
�
m(x)ϕp dx = μ(m) holds by taking ϕ as a test function. Choose

ρ >  satisfying b – Apμ(m) > ρ‖ϕ‖pp (note that b – Apμ(m) >  as in (f)). Due to (f),
there exists a δ >  such that f(x, t)≥ (bm(x) –ρ)tp– for every  ≤ t ≤ δ and x ∈ �. Since

http://www.boundaryvalueproblems.com/content/2013/1/173
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we are assuming un →  in C
(�) as n → ∞, ‖un‖∞ ≤ δ occurs for sufficiently large n.

Then, for such sufficiently large n, according to Lemma , () and ψ ≥ , we obtain

Apμ(m) = Ap‖∇ϕ‖pp ≥
∫

�

A(x,∇un)∇
(

ϕp

up–n

)
dx =

∫
�

f (x,un,∇un) + εψ

up–n
ϕp dx

≥
∫

�

f(x,un)
up–n

ϕp dx ≥ b
∫

�

m(x)ϕp dx – ρ‖ϕ‖pp = b – ρ‖ϕ‖pp > Apμ(m).

This is a contradiction. �

Proof of Theorem  Since ∞ > supx∈� a(x) ≥ infx∈� a(x) >  holds, by the standard ar-
gument as in the p-Laplacian, we see that λ(m) >  and it is the first positive eigenvalue
of –div(a(x)|∇u|p–∇u) = λm(x)|u|p–u in � and u =  on ∂�. Therefore, by the well-
known argument, there exists a positive eigenfunction ϕ ∈ intP corresponding to λ(m)
(we can obtain ϕ as the minimizer of ()). Hence, by taking ϕ as a test function, we
have  <

∫
�
a(x)|∇ϕ|p dx = λ(m)

∫
�
m(x)ϕp

 dx. Thus,
∫
�
m(x)ϕp

 dx >  follows. Because
un ∈ intP is a solution of (P; εn) and ϕ ∈ intP is an eigenfunction corresponding to λ(m),
according to Lemma  and Lemma  (note A(x, y) = a|y|p–y + ã(x, |y|)y as in (AH)),
we obtain

 ≤
∫

�

a(x)|∇ϕ|p–∇ϕ∇
(

ϕ
p
 – upn
ϕ
p–


)
dx –

∫
�

a(x)|∇un|p–∇un∇
(

ϕ
p
 – upn
up–n

)
dx

≤ λ(m)
∫

�

m
(
ϕ
p
 – upn

)
dx –

∫
�

f(x,un)
up–n

ϕ
p
 dx

+
∫

�

ã
(
x, |∇un|

)∇un∇
(

ϕ
p
 – upn
up–n

)
dx +

∫
�

f (x,un,∇un)un dx + εn

∫
�

ψun dx

= –
∫

�

(
f(x,un)
up–n

– bm(x)
)

ϕ
p
 dx –

(
b – λ(m)

)∫
m(x)ϕp

 dx + o() ()

as n → ∞ since we are assuming un →  in C
(�), where we use the facts that ψ ≥  and

ϕ >  in �. Furthermore, by Fatou’s lemma and (), we have

lim inf
n→∞

∫
�

(
f(x,un)
up–n

– bm(x)
)

ϕ
p
 dx ≥ .

As a result, by taking a limit superior with respect to n in (), we have  ≤ –(b –
λ(m))

∫
m(x)ϕp

 dx < . This is a contradiction. �
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