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Abstract
In this paper, we study the solutions of a nonlocal elliptic system of (p,q)-Kirchhoff
type on a bounded domain based on the three critical points theorem introduced by
Ricceri. Firstly, we establish the existence of three weak solutions under appropriate
hypotheses; then, we prove the existence of at least three weak solutions for the
nonlocal elliptic system of (p,q)-Kirchhoff type.
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1 Introduction andmain results
We consider the boundary problem involving (p,q)-Kirchhoff

⎧⎪⎪⎨⎪⎪⎩
–[M(

∫
�

|∇u|p)]p–�pu = λFu(x,u,υ) +μGu(x,u,υ), in �,

–[M(
∫
�

|∇υ|q)]q–�qυ = λFυ (x,u,υ) +μGv(x,u,υ), in �,

u = υ = , on ∂�,

(.)

where � ⊂ RN (N ≥ ) is a bounded smooth domain, λ,μ ∈ [, +∞), p > N , q > N , �p is
the p-Laplacian operator �pu = div(|∇u|p–∇u). F ,G :� ×R×R �→ R are functions such
that F(·, s, t), G(·, s, t) are measurable in � for all (s, t) ∈ R × R and F(x, ·, ·), G(x, ·, ·) are
continuously differentiable in R × R for a.e. x ∈ �. Fi is the partial derivative of F with
respect to i, i = u, v, so is Gi. Mi : R+ → R, i = , , are continuous functions which satisfy
the following bounded conditions.
(M) There exist two positive constantsm, m such that

m ≤ Mi(t)≤ m, ∀t ≥ , i = , . (.)

Here and in the sequel, X denotes the Cartesian product of two Sobolev spacesW ,p
 (�)

and W ,q
 (�), i.e., X =W ,p

 (�) × W ,q
 (�). The reflexive real Banach space X is endowed

with the norm

∥∥(u,υ)∥∥ = ‖u‖p + ‖υ‖q, ‖u‖p =
(∫

�

|∇u|p
)/p

, ‖υ‖q =
(∫

�

|∇υ|q
)/q

.
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Since p >N and q >N ,W ,p
 (�) andW ,q

 (�) are compactly embedded in C(�̄). Let

C =max

{
sup

u∈W ,p
 (�)\{}

maxx∈�̄{|u(x)|p}
‖u‖pp , sup

v∈W ,q
 (�)\{}

maxx∈�̄{|υ(x)|q}
‖υ‖qq

}
, (.)

then one has C < +∞. Furthermore, it is known from [] that

sup
u∈W ,p

 (�)\{}

maxx∈�̄{|u(x)|p}
‖u‖p ≤ N–/p

√
π

(
�

(
 +

N


))/N(
p – 
p –N

)–/p

|�|(/N)–(/p),

where � is the gamma function and |�| is the Lebesgue measure of �. As usual, by a weak
solution of system (.), we mean any (u,υ) ∈ X such that

[
M

(∫
�

|∇u|p
)]p– ∫

�

|∇u|p–∇u∇φ +
[
M

(∫
�

|∇υ|q
)]q– ∫

�

|∇υ|q–∇υ∇ψ

– λ

∫
�

(Fuφ + Fvψ)dx –μ

∫
�

(Guφ +Gvψ)dx =  (.)

for all (φ,ψ) ∈ X.
System (.) is related to the stationary version of a model established by Kirchhoff [].

More precisely, Kirchhoff proposed the following model:

ρ
∂u
∂t

–
(
P

h
+

E
L

∫ L



∣∣∣∣∂u∂x
∣∣∣∣ dx)∂u

∂x
= , (.)

which extends D’Alembert’s wave equation with free vibrations of elastic strings, where ρ

denotes the mass density, P denotes the initial tension, h denotes the area of the cross-
section, E denotes the Young modulus of the material, and L denotes the length of the
string. Kirchhoff’s model considers the changes in length of the string produced during
the vibrations.
Later, (.) was developed into the following form:

utt –M
(∫

�

|∇u|
)

�u = f (x,u) in �, (.)

where M : R+ → R is a given function. After that, many authors studied the following
problem:

–M
(∫

�

|∇u|
)

�u = f (x,u) in �, u =  on ∂�, (.)

which is the stationary counterpart of (.). By applying variational methods and other
techniques, many results of (.) were obtained, the reader is referred to [–] and the
references therein. In particular, Alves et al. [, Theorem ] supposed that M satisfies
bounded condition (M) and f (x, t) satisfies the condition

 < υF(x, t)≤ f (x, t)t, ∀|t| ≥ R,x ∈ � for some v >  and R > , (AR)

where F(x, t) =
∫ t
 f (x, s)ds; one positive solution for (.) was given.
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In [], using Ekeland’s variational principle, Corrêa and Nascimento proved the exis-
tence of a weak solution for the boundary problem associated with the nonlocal elliptic
system of p-Kirchhoff type

⎧⎪⎪⎨⎪⎪⎩
–[M(

∫
�

|∇u|p)]p–�pu = f (u,υ) + ρ(x), in �,

–[M(
∫
�

|∇υ|p)]p–�pυ = g(,u,υ) + ρ(x), in �,
∂u
∂η

= ∂υ
∂η

= , on ∂�,

(.)

where η is the unit exterior vector on ∂�, andMi, ρi (i = , ), f , g satisfy suitable assump-
tions.
In [], when μ =  in (.), Bitao Cheng et al. studied the existence of two solutions and

three solutions of the following nonlocal elliptic system:

⎧⎪⎪⎨⎪⎪⎩
–[M(

∫
�

|∇u|p)]p–�pu = λFu(x,u,υ), in �,

–[M(
∫
�

|∇υ|q)]q–�qυ = λFυ(x,u,υ), in �,

u = υ = , on ∂�.

(.)

In this paper, our objective is to prove the existence of three solutions of problem (.)
by applying the three critical points theorem established by Ricceri []. Our result, un-
der appropriate assumptions, ensures the existence of an open interval  ⊂ [, +∞) and
a positive real number ρ such that, for each λ ∈ , problem (.) admits at least three
weak solutions whose norms in X are less than ρ . The purpose of the present paper is to
generalize the main result of [].
Now, for every x ∈ � and choosing R, R with R > R > , such that B(x,R) ⊆ �,

where B(x,R) = {y ∈ RN : |y – x| < R}, put

α = α(N ,p,R,R) =
C/p(RN

 – RN
 )/p

R – R

(
πN/

�( +N/)

)/p

, (.)

α = α(N ,q,R,R) =
C/q(RN

 – RN
 )/q

R – R

(
πN/

�( +N/)

)/q

. (.)

Moreover, let a, c be positive constants and define

y(x) =
a

R – R

(
R –

{ N∑
i=

(
xi – xi

)}/)
, ∀x ∈ B(x,R)\B(x,R),

A(c) =
{
(s, t) ∈ R× R : |s|p + |t|q ≤ c

}
,

M+ =max

{
mp–


p

,
mq–


q

}
, M– =min

{
mp–


p

,
mq–


q

}
.

Our main result is stated as follows.

Theorem . Assume that R > R >  such that B(x,R) ⊆ �, and suppose that there
exist four positive constants a, b, γ and β with γ < p, β < q, (aα)p + (aα)q > bM+/M–, and
a function α(x) ∈ L∞(�) such that
(j) F(x, s, t)≥  for a.e. x ∈ �\B(x,R) and all (s, t) ∈ [,a]× [,a];
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(j) [(aα)p + (aα)q]|�| sup(x,s,t)∈�×A(bM+/M–) F(x, s, t) < b
∫
B(x,R) F(x,a,a)dx;

(j) F(x, s, t)≤ α(x)( + |s|γ + |t|β ) for a.e. x ∈ � and all (s, t) ∈ R× R;
(j) F(x, , ) =  for a.e. x ∈ �.

Then there exist an open interval  ⊆ [,∞) and a positive real number ρ with the follow-
ing property: for each λ ∈  and for two Carathéodory functions Gu,Gv : � × R × R �→ R
satisfying
(j) sup{|s|≤ξ ,|t|≤ξ }(|Gu(·, s, t)| + |Gv(·, s, t)|) ∈ L(�) for all ξ > ,

there exists δ >  such that, for eachμ ∈ [, δ], problem (.)has at least threeweak solutions
wi = (ui,υi) ∈ X (i = , , ) whose norms ‖wi‖ are less than ρ .

2 Proof of themain result
First we recall the modified form of Ricceri’s three critical points theorem (Theorem  in
[]) and Proposition . of [], which is our primary tool in proving our main result.

Theorem . ([], Theorem ) Suppose that X is a reflexive real Banach space and that
� : X �→ R is a continuously Gâteaux differentiable and sequentially weakly lower semi-
continuous functional whose Gâteaux derivative admits a continuous inverse on X∗, and
that � is bounded on each bounded subset of X; � : X �→ R is a continuously Gâteaux dif-
ferentiable functional whose Gâteaux derivative is compact; I ⊆ R is an interval. Suppose
that

lim‖x‖→+∞
(
�(x) + λ�(x)

)
= +∞

for all λ ∈ I , and that there exists h ∈ R such that

sup
λ∈I

inf
x∈X

(
�(x) + λ

(
�(x) + h

))
< inf

x∈X supλ∈I

(
�(x) + λ

(
�(x) + h

))
. (.)

Then there exist an open interval  ⊆ I and a positive real number ρ with the following
property: for every λ ∈  and every C functional J : X �→ R with compact derivative, there
exists δ >  such that, for each μ ∈ [, δ], the equation

�′(x) + λ� ′(x) +μJ ′(x) = 

has at least three solutions in X whose norms are less than ρ .

Proposition . ([], Proposition .) Assume that X is a nonempty set and�,� are two
real functions on X. Suppose that there are r >  and x,x ∈ X such that

�(x) = –�(x) = , �(x) > , sup
x∈�–([–∞,r])

–�(x) < r
–�(x)
�(x)

.

Then, for each h satisfying

sup
x∈�–([–∞,r])

–�(x) < h < r
–�(x)
�(x)

,
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one has

sup
λ≥

inf
x∈X

(
�(x) + λ

(
�(x) + h

))
< inf

x∈X supλ≥

(
�(x) + λ

(
�(x) + h

))
.

Before proving Theorem ., we define a functional and give a lemma.
The functional H : X → R is defined by

H(u, v) = �(u, v) + λJ(u, v) +μψ(u, v)

=

p
M̂

(∫
�

|∇u|p
)
+

q
M̂

(∫
�

|∇υ|q
)

– λ

∫
�

F(x,u, v)dx –μ

∫
�

G(x,u, v)dx (.)

for all (u,υ) ∈ X, where

M̂ =
∫ t



[
M(s)

]p– ds, M̂ =
∫ t



[
M(s)

]q– ds. (.)

By conditions (M) and (j), it is clear that H ∈ C(X,R) and a critical point of H corre-
sponds to a weak solution of system (.).

Lemma . Assume that there exist two positive constants a, b with (aα)p + (aα)q >
bM+/M– such that
(j) F(x, s, t)≥ , for a.e. x ∈ �\B(x,R) and all (s, t) ∈ [,a]× [,a];
(j) [(aα)p + (aα)q]|�| sup(x,s,t)∈�×A(bM+/M–) F(x, s, t) < b

∫
B(x,R) F(x,a,a)dx.

Then there exist r >  and u ∈ W ,p
 (�), υ ∈W ,q

 (�) such that

�(u, v) > r

and

|�| sup
(x,s,t)∈�×A(bM+/M–)

F(x, s, t)≤ bM+

C

∫
�
F(x,u,υ)dx
�(u,υ)

.

Proof We put

w(x) =

⎧⎪⎪⎨⎪⎪⎩
, x ∈ �̄\B(x,R),

a
R–R

(R – {∑N
i= (xi – xi)}

/
), x ∈ B(x,R)\B(x,R),

a, x ∈ B(x,R),

and u(x) = υ(x) = w(x). Then we can verify easily (u,υ) ∈ X and, in particular, we have

‖u‖pp =
(
RN
 – RN


) πN/

�( +N/)

(
a

R – R

)p

, (.)

and

‖υ‖qq =
(
RN
 – RN


) πN/

�( +N/)

(
a

R – R

)q

. (.)
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Hence, we obtain from (.), (.), (.) and (.) that

‖u‖pp = ‖w‖pp =
(aα)p

C
, ‖υ‖qq = ‖w‖qq =

(aα)q

C
. (.)

Under condition (M), by a simple computation, we have

M–
(‖u‖pp + ‖υ‖qq

) ≤ �(u,υ) ≤ M+(‖u‖pp + ‖υ‖qq
)
. (.)

Setting r = bM+

C and applying the assumption of Lemma .

(aα)p + (aα)q > bM+/M–,

from (.) and (.), we obtain

�(u, v) ≥ M–
(‖u‖pp + ‖v‖qq

)
=
M–

C
[
(aα)p + (aα)q

]
>
M–

C
bM+

M–
= r.

Since, ≤ u ≤ a,  ≤ v ≤ a for each x ∈ �, from condition (j) of Lemma ., we have

∫
�\B(x,R)

F(x,u,υ)dx +
∫
B(x,R)\B(x,R)

F(x,u,υ)dx≥ .

Hence, based on condition (j), we get

|�| sup
(x,s,t)∈�×A(bM+/M–)

F(x, s, t) <
b

(aα)p + (aα)q
∫
B(x,R)

F(x,a,a)dx

=
bM+

C

∫
B(x,R)

F(x,a,a)dx
M+((aα)p + (aα)q)/C

≤ bM+

C

∫
�\B(x,R) F(x,u,υ)dx +

∫
B(x,R)

F(x,u,υ)dx
M+(‖u‖pp + ‖υ‖qq)

≤ bM+

C

∫
�
F(x,u,υ)dx
�(u,υ)

. �

Now, we can prove our main result.

Proof of Theorem . For each (u, v) ∈ X, let

�(u, v) =
M̂(‖u‖pp)

p
+
M̂(‖v‖qq)

q
,

�(u,υ) = –
∫

�

F(x,u,υ)dx, J(u, v) = –
∫

�

G(x,u, v)dx.

From the assumption of Theorem ., we know that � is a continuously Gâteaux differen-
tiable and sequentially weakly lower semicontinuous functional. Additionally, theGâteaux
derivative of � has a continuous inverse on X∗. Since p > N , q > N , � and J are continu-
ously Gâteaux differential functionals whose Gâteaux derivatives are compact. Obviously,

http://www.boundaryvalueproblems.com/content/2013/1/175
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� is bounded on each bounded subset of X. In particular, for each (u, v), (ξ ,η) ∈ X,

〈
�′(u, v), (ξ ,η)

〉
=

[
M

(∫
�

|∇u|p
)]p– ∫

�

|∇u|p–∇u∇ξ

+
[
M

(∫
�

|∇υ|q
)]q– ∫

�

|∇υ|q–∇υ∇η,

〈
� ′(u, v), (ξ ,η)

〉
= –

∫
�

Fu(x,u, v)ξ dx –
∫

�

Fv(x,u, v)ηdx,

〈
J ′(u, v), (ξ ,η)

〉
= –

∫
�

Gu(x,u, v)ξ dx –
∫

�

Gv(x,u, v)ηdx.

Hence, the weak solutions of problem (.) are exactly the solutions of the following equa-
tion:

�′(u, v) + λ� ′(u, v) +μJ ′(u, v) = .

From (j), for each λ > , one has

lim
‖(u,v)‖→+∞

(
λ�(u, v) +μ�(u, v)

)
= +∞, (.)

and so the first condition of Theorem . is satisfied. By Lemma ., there exists (u,υ) ∈
X such that

�(u, v) =
M̂(‖u‖pp)

p
+
M̂(‖v‖qq)

q

≥ M–
(‖u‖pp + ‖v‖qq

)
=
M–

C
[
(aα)p + (aα)q

]
>
M–

C
bM+

M–
=
bM+

C
>  =�(, ), (.)

and

|�| sup
(x,s,t)∈�×A(bM+/M–)

F(x, s, t)≤ bM+

C

∫
�
F(x,u,υ)dx
�(u,υ)

. (.)

From (.), we have

max
x∈�̄

{∣∣u(x)∣∣p} ≤ C‖u‖pp, max
x∈�̄

{∣∣υ(x)∣∣q} ≤ C‖υ‖qq

for each (u,υ) ∈ X. We obtain

max
x∈�̄

{ |u(x)|p
p

+
|v(x)|q

q

}
≤ C

{‖u‖pp
p

+
‖v‖qq
q

}
(.)

for each (u,υ) ∈ X. Let r = bM+

C for each (u,υ) ∈ X such that

�(u,υ) =
M̂(‖u‖pp)

p
+
M̂(‖v‖qq)

q
≤ r.
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From (.), we get

∣∣u(x)∣∣p + ∣∣υ(x)∣∣q ≤ C
(‖u‖pp + ‖υ‖qq

) ≤ Cr
M–

=
C
M–

bM+

C
=
bM+

M–
. (.)

Then, from (.) and (.), we find

sup
(u,υ)∈�–(–∞,r)

(
–�(u,υ)

)
= sup

{(u,υ)|∈�(u,υ)≤r}

∫
�

F(x,u,υ)dx

≤ sup
{(u,υ)||u(x)|p+|υ(x)|q≤bM+/M–}

∫
�

F(x,u,υ)dx

≤
∫

�

sup
(s,t)∈A(bM+/M–)

F(x, s, t)dx

≤ |�| sup
(x,s,t)∈�×A(bM+/M–)

F(x, s, t)

≤ bM+

C

∫
�
F(x,u,υ)dx
�(u,υ)

= r
–�(u,υ)
�(u,υ)

.

Hence, we have

sup
{(u,v)|�(u,v≤r}

(
–�(u, v)

)
< r

–�(u,υ)
�(u,υ)

. (.)

Fix h such that

sup
{(u,v)|�(u,v≤r}

(
–�(u, v)

)
< h < r

–�(u,υ)
�(u,υ)

,

by (.), (.) and Proposition ., with (u, v) = (, ) and (u∗, v∗) = (u, v), we obtain

sup
λ≥

inf
x∈X

(
�(x) + λ

(
h +�(x)

))
< inf

x∈X supλ≥

(
�(x) + λ

(
h +�(x)

))
, (.)

and so assumption (.) of Theorem . is satisfied.
Now, with I = [,∞), from (.) and (.), all the assumptions of Theorem . hold.

Hence, our conclusion follows from Theorem .. �
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