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Abstract
In this paper, we study the multiplicity of solutions for a class of quasilinear elliptic
equations with p-Laplacian in R

N . In this case, the functional J is not differentiable.
Hence, it is difficult to work under the classical framework of the critical point theory.
To overcome this difficulty, we use a nonsmooth critical point theory, which provides
the existence of critical points for nondifferentiable functionals.
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1 Introduction andmain results
Recently, the multiplicity of solutions for the quasilinear elliptic equations has been stud-
ied extensively, and many fruitful results have been obtained. For example, in [], Shibo
Liu considered the existence ofmultiple nonzero solutions of theDirichlet boundary value
problem

⎧⎨
⎩
–�pu = f (x,u), in �,

u = , on ∂�,
(.)

where p > , �pu = div(|∇u|p–∇u) denotes the p-Laplacian operator, � is a bounded do-
main in R

N with smooth boundary ∂�.
Moreover, Aouaoui studied the following quasilinear elliptic equation in []:

–div
(
A(x,u)∇u

)
+


A′
s(x,u)|∇u| + (

b(x) – λ
)
u = f (x,u), in R

N , (.)

and proved the multiplicity of solutions of the problem (.) by using the nonsmooth crit-
ical point theory. One can refer to [, ] and [] for more results.
In this paper, we shall investigate the existence of infinitely many solutions of the fol-

lowing problem

– div
(
A(x,u)|∇u|p–∇u

)
+

p
As(x,u)|∇u|p + (

b(x) – λ
)|u|p–u = f (x,u),

in R
N , (.)
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where  < p <N , λ ∈ R and As(x,u) ≡ ∂A
∂s (x, s)|s=u, b(x) is a given continuous function sat-

isfying

b(x)≥  for all x ∈R
N and lim|x|→+∞b(x) = +∞.

In order to determine weak solutions of (.) in a suitable functional space E, we look
for critical points of the functional J : E → R defined by

J(v) =

p

∫
RN

A(x, v)|∇v|p dx + 
p

∫
RN

(
b(x) – λ

)|v|p dx –
∫
RN

F(x, v)dx,

∀v ∈ E, (.)

where F(x, ξ ) =
∫ ξ

 f (x, t)dt. Under reasonable assumptions, the functional J is continuous,
but not even locally Lipschitz. However, one can see from [, ] and [] that the Gâteaux-
derivative of J exists in the smooth directions, i.e., it is possible to evaluate

〈
J ′(u), v

〉
= lim

t→

J(u + tv) – J(u)
t

=
∫
RN

A(x,u)|∇u|p–∇u∇vdx +

p

∫
RN

As(x,u)|∇u|pvdx

+
∫
RN

(
b(x) – λ

)|u|p–uvdx –
∫
RN

f (x,u)vdx

for all u ∈ E and v ∈ E ∩ L∞(RN ).

Definition . A critical point u of the functional J is defined as a function u ∈ E such
that 〈J ′(u), v〉 = , ∀v ∈ E ∩ L∞(RN ), i.e.,

∫
RN

A(x,u)|∇u|p–∇u∇vdx +

p

∫
RN

As(x,u)|∇u|pvdx

+
∫
RN

(
b(x) – λ

)|u|p–uvdx –
∫
RN

f (x,u)vdx = , ∀v ∈ E ∩ L∞(
R

N)
. (.)

Our approach to study (.) is based on the nonsmooth critical point theory developed
in [] and []. Dealing with this class of problems, the main difficulty is that the associated
functional is not differentiable in all directions.
The main goal here is to establish multiplicity of results for (.), when f (x, s) is odd and

A(x, s) is even in s. Such solutions for (.) will follow from a version of the symmetric
mountain pass theorem due to Ambrosetti and Rabinowitz [, ]. Compared with prob-
lem (.) in [], problem (.) ismuchmore difficult, since the discreteness of the spectrum
is not guaranteed. Therefore, we only consider the first eigenvalue λ.
To state and prove our main result, we consider the following assumptions.
Suppose that N ≥  and p∗ = Np

N–p .
(H) Let A(·, ·) :RN ×R →R be a function such that
• for each s ∈R, A(x, s) is measurable with respect to x;
• for a.e. x ∈R

N , A(x, s) is a function of class C with respect to s;
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• there exist  < α < β < +∞ such that

α ≤ A(x, s)≤ β , a.e. x ∈R
N and ∀s ∈ R, (.)

∣∣As(x, s)
∣∣ ≤ β , a.e. x ∈ R

N and ∀s ∈R. (.)

(H) There exist θ > p,  < γ < θ
p and α >  such that

 ≤ γ

p
As(x, s)s≤

(
θ

p
– γ

)
A(x, s) – α, a.e. x ∈R

N and ∀s ∈R. (.)

(H) Let a Carathéodory function f (·, ·) :RN ×R →R satisfy f (x, ) = , a.e. x ∈R
N and

 < θF(x, s)≤ f (x, s)s, a.e. x ∈R
N and ∀s �=  in R, (.)

where θ is the same as that in (H).
(H) There exists p –  ≤ q < p∗ –  such that

∣∣f (x, s)∣∣ ≤ c|s|q, a.e. x ∈R
N and ∀s ∈R, (.)

where c is a positive constant.

Example . Let p = . The following function satisfies hypotheses (H) and (H)

A(x, s) = 
(
sin

(|x|) + 
)
arctan

(
s

)
+ ,

and the corresponding constants are

α = , β =  + π , θ = , γ = , α = .

Example . The following function satisfies hypotheses (H) and (H)

f (x, s) = |s|q–s, a.e. x ∈R
N and ∀s ∈R.

On the other hand, we define the operator Lu = –�pu+b(·)u. It follows from [] that the
discreteness of the spectrum is not guaranteed. Hence, we only consider the first eigen-
value λ, where

λ = inf
{‖u‖p;u ∈ E,‖u‖Lp(RN ) = 

}
.

Next, we can state the main theorem of the paper.

Theorem . Assume that A(x, s) and f (x, s) satisfy (H)-(H). Moreover, let A(x, –s) =
A(x, s) and f (x, –s) = –f (x, s), a.e. x ∈ R

N , ∀s ∈ R. If there exists a positive number μ such
that λ ∈ (–∞,μλ), then problem (.) has infinitelymany distinct solutions in E∩L∞(RN ),
i.e., there exists a sequence {un} ⊂ E∩L∞(RN ), satisfying (.) and J(un) → +∞, as n → ∞.
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To explain our result, we introduce some functional spaces. We define the reflexive Ba-
nach space E of all functions u :RN → R with the norm ‖u‖p = ∫

RN (|∇u|p + b(x)|u|p)dx <
∞.
Such a weighted Sobolev space has been used in many previous papers, see [] and

[]. Now, we give an important property of the space E, which will play an essential role
in proving our main results.

Remark . One can easily deduce E ↪→ Lz(RN ) and E ↪→↪→ Lz(RN ) for p ≤ z < p∗. More
details can be found in [].

Throughout this paper, let ‖ · ‖ denote the norm of E and un → u (un ⇀ u) means that
un converges strongly (weakly) in corresponding spaces. ↪→ stands for a continuous map,
and ↪→↪→ means a compact embedding map. C denotes any universal positive constant
unless specified.
The paper is organized as follows. In Section , we introduce the nonsmooth critical

framework and preliminaries to our work. In Section , we give some lemmas to prove
the main result. Finally, the proof of Theorem . is presented in Section .

2 Nonsmooth critical framework and preliminaries
Our results are based on the techniques of nonsmooth critical point theory. In this section,
we recall some basic tools from [] and [].

Definition . Let (X,d) be a metric space, let I : X → R be a continuous functional and
u ∈ X. We denote by |dI|(u) the supremum of the σ ’s in [,+∞) such that there exist δ > 
and a continuous map H : B(u, δ)× [, δ]→ X, satisfying

d
(
H(v, t), v

) ≤ t and I
(
H(v, t)

) ≤ I(v) – σ t, (v, t) ∈ B(u, δ)× [, δ].

The extended real number |dI|(u) is called the weak slope of I at u.

Note that the notion above was independently introduced in [], as well.

Definition . Let (X,d) be a metric space, let I : X →R be a continuous functional and
c ∈ R. We say that I satisfies (P – S)c, i.e., the Palais-Smale condition at level c, if every
sequence {un} in X with |dI|(un) →  and I(un) → c admits a strongly convergent subse-
quence.

In order to treat the Palais-Smale condition, we need to introduce an auxiliary notion.

Definition . Let c be a real number. We say that functional I satisfies the concrete
Palais-Smale condition at level c ((C – P – S)c for short) if every sequence {un} ⊂ E sat-
isfying

lim
n→+∞ I(un) = c and

∣∣〈I ′(un), v〉∣∣ ≤ εn‖v‖, ∀v ∈ E ∩ L∞(
R

N)

possesses a strongly convergent subsequence in E, where {εn} is some real number con-
verging to zero.

http://www.boundaryvalueproblems.com/content/2013/1/179
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Remark . Under assumptions (H)-(H), if the functional J satisfies (.), then J is con-
tinuous, and for every u ∈ E we have

|dJ|(u) ≥ sup
{〈
J ′(u), v

〉
; v ∈ E ∩ L∞(

R
N)

,‖v‖ ≤ 
}
,

where |dJ|(u) denotes the weak slope of J at u.

Remark . Let c be a real number. If J satisfies (C – P – S)c, then J satisfies (P – S)c.

Proof Let {un} ⊂ E be a sequence such that

lim
n→+∞|dJ|(un) =  and lim

n→+∞ J(un) = c.

Note that for v ⊂ E ∩ L∞(RN ),

∣∣〈J ′(un), v〉∣∣ ≤ ∥∥J ′(un)∥∥‖v‖ = sup
{〈
J ′(un), v

〉
,‖v‖ ≤ 

}‖v‖.

ByRemark ., we have |dJ|(un) ≥ sup{〈J ′(un), v〉,‖v‖ ≤ }. Taking εn = sup{〈J ′(un), v〉,‖v‖ ≤
}, the conclusion follows. �

3 Basic lemmas
To derive ourmain theorem, we need the following lemmas. The first lemma is the version
of the Ambrosetti-Rabinowitz mountain pass lemma [, ] and [].

Lemma . Let X be an infinite-dimensional Banach space, and let I : X → R be a con-
tinuous even functional satisfying (P – S)c for every c ∈R. Assume that

(i) there exist � > , α > I() and a subspace V ⊂ X of finite codimension such that

∀u ∈ {
V : ‖u‖ = �

} ⇒ I(u) ≥ α,

(ii) for every finite-dimensional subspaceW ⊂ X , there exists R >  such that

∀u ∈ {
W : ‖u‖ = R

} ⇒ I(u) ≤ I().

Then there exists a sequence {ch} of critical values of I with ch → ∞.

Lemma . If u ∈ E is a critical point of J , then u ∈ L∞(RN ).

Proof For r > ,M > , consider the real functions Tr , UM andWM defined in R by

Tr(s) =

⎧⎪⎪⎨
⎪⎪⎩
s – r, if s > r,

, if –r ≤ s ≤ r,

s + r, if s < –r,

(.)

http://www.boundaryvalueproblems.com/content/2013/1/179
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UM =min(Tr(s),M) and WM =max(Tr(s), –M). Denoting s+ =max(s, ) and s– =min(s, ),
we can take v =UM(u+) ∈ E ∩ L∞(RN ) as a test function in (.). Therefore,

∫
RN

A(x,u)|∇u|p–∇u∇(
UM

(
u+

))
dx +


p

∫
RN

As(x,u)|∇u|pUM
(
u+

)
dx

+
∫
RN

(
b(x) – λ

)|u|p–uUM
(
u+

)
dx =

∫
RN

f (x,u)UM
(
u+

)
dx.

Noting that u+ ·UM(u+) ≥  and As(x,u+)UM(u+) ≥ , we get

∫
RN

A
(
x,u+

)∣∣∇u+
∣∣p–∇u+∇(

UM
(
u+

))
dx

≤ |λ|
∫
RN

∣∣u+∣∣p–u+∣∣UM
(
u+

)∣∣dx +
∫
RN

∣∣f (x,u+)∣∣∣∣UM
(
u+

)∣∣dx.

From (.) and the fact |UM(u+)| ≤ u+ we deduce

∫
{u+>r}

A
(
x,u+

)∣∣∇u+
∣∣p–∇u+∇(

UM
(
u+

))
dx ≤ C

∫
{u+>r}

(
u+

)q+ dx.

SinceUM(u+) → Tr(u+) a.e. inR
N andUM(u+) ⇀ Tr(u+) in E asM → +∞. It follows from

M → +∞ that
∫

{u+>r}
A

(
x,u+

)∣∣∇u+
∣∣p dx ≤ C

∫
{u+>r}

(
u+

)q+ dx.

Denote �+
r = {x ∈ R

N ,u+(x) > r}. If mes(�+
r ) = , then the result is true. In the following

discussion, mes(�+
r ) �=  is assumed. By (.), we obtain

∫
�+
r

∣∣∇u+
∣∣p dx ≤ C

∫
�+
r

(
u+ – r

)q+ dx +Crq+mes
(
�+

r
)
. (.)

Note that (
∫
�+
r
(u+ – r)q+ dx)–

p
q+ ≤ C, then we can get

∫
�+
r

(
u+ – r

)q+ dx ≤ C
(∫

�+
r

(
u+ – r

)q+ dx
) p

q+
. (.)

On the other hand, we have
∫

�+
r

rp
∗
dx ≤

∫
�+
r

|u|p∗
dx = C,

which implies that

rp
∗ ≤ C

mes(�+
r )
. (.)

Eventually, one can deduce from (.)-(.) that

∫
�+
r

∣∣∇u+
∣∣p dx ≤ C

(∫
�+
r

(
u+ – r

)q+ dx
) p

q+
+Crpmes

(
�+

r
)– q+

p∗ + p
p∗ , ∀r > . (.)

http://www.boundaryvalueproblems.com/content/2013/1/179
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ByTheorem . of [], we get that u+ ∈ L∞(RN ). ReplacingUM(u+) byW (u–), we can sim-
ilarly prove that u– ∈ L∞(RN ). We conclude that u ∈ L∞(RN ), and the proof of Lemma .
is completed. �

Lemma . Let {un} be a bounded sequence in E with

〈
J ′(un), v

〉 ≤ εn‖v‖, ∀v ∈ E ∩ L∞(
R

N)
, (.)

where {εn} is a sequence of real numbers converging to zero. Then there exists u ∈ E such
that ∇un → ∇u a.e. in R

N and, up to a subsequence, {un} is weakly convergent to u in E.
Moreover, we have

〈
J ′(u), v

〉
= , ∀v ∈ E ∩ L∞(

R
N)

, (.)

i.e., u is a critical point of J .

Proof Since {un} is bounded in E, and there is a u ∈ E (see []) such that, up to a subse-
quence,

un ⇀ u in E, un → u in Lp
(
R

N)
, un → u a.e. in R

N .

Moreover, since {un} satisfies (.), by Theorem . of [], we have, up to a further sub-
sequence, ∇un → ∇u a.e. in R

N .
We will use the device of []. We consider the test functions

vn = ϕ exp
{
–Mu+n

}
, (.)

where ϕ ∈ E ∩ L∞(RN ), ϕ ≥  andM > . According to (.) and (.), we have

MA(x,un) ≥ 
p
∣∣As(x,un)

∣∣.

Since (.) holds by density for every v ∈ E∩L∞(RN ), we can put v = vn in (.) and obtain
that

∫
RN

A(x,un)|∇un|p–∇un∇ϕ exp
{
–Mu+n

}
dx

+
∫
RN

(

p
As(x,un)|∇un|p –MA(x,un)|∇un|p–∇un∇u+n

)
ϕ exp

{
–Mu+n

}
dx

+
∫
RN

(
b(x) – λ

)|un|p–unϕ exp
{
–Mu+n

}
dx

–
∫
RN

f (x,un)ϕ exp
{
–Mu+n

}
dx ≥ –εn‖v‖. (.)

On the other hand, note that

∫
RN

(

p
As(x,un)|∇un|p –MA(x,un)|∇un|p–∇un∇u+n

)
ϕ exp

{
–Mu+n

}
dx ≤ . (.)

http://www.boundaryvalueproblems.com/content/2013/1/179


Jia et al. Boundary Value Problems 2013, 2013:179 Page 8 of 13
http://www.boundaryvalueproblems.com/content/2013/1/179

One can deduce from (.) and Fatou’s lemma that
∫
RN

A(x,u)|∇u|p–∇u∇ϕ exp
{
–Mu+

}
dx

+
∫
RN

(

p
As(x,u)|∇u|p –MA(x,u)|∇u|p–∇u∇u+

)
ϕ exp

{
–Mu+

}
dx

+
∫
RN

(
b(x) – λ

)|u|p–uϕ exp
{
–Mu+

}
dx –

∫
RN

f (x,u)ϕ exp
{
–Mu+

}
dx

≥ . (.)

We consider the test functions ϕn = ϕg( un ) exp{Mu+} with ϕ ∈ E ∩ L∞(RN ), ϕ ≥  and
g :R →R, g ∈ C(R),  ≤ g ≤ ,

g =  on
[
–

p
,

p

]
, g =  on [–∞, –]∪ [,∞].

This together with (.) can prove that
∫
RN

A(x,u)|∇u|p–∇u∇ϕ dx +

p

∫
RN

As(x,u)|∇u|pϕ dx

+
∫
RN

(
b(x) – λ

)|u|p–uϕ dx –
∫
RN

f (x,u)ϕ dx ≥ ,

∀ϕ ∈ E ∩ L∞(
R

N)
, as n→ ∞. (.)

In a similar way, by considering the test functions vn = ϕ exp{Mu–n}, it is possible to prove
that

∫
RN

A(x,u)|∇u|p–∇u∇ϕ dx +

p

∫
RN

As(x,u)|∇u|pϕ dx

+
∫
RN

(
b(x) – λ

)|u|p–uϕ dx –
∫
RN

f (x,u)ϕ dx ≤ ,

∀ϕ ∈ E ∩ L∞(
R

N)
, as n→ ∞. (.)

From (.) and (.), it follows that
∫
RN

A(x,u)|∇u|p–∇u∇ϕ dx +

p

∫
RN

As(x,u)|∇u|pϕ dx

+
∫
RN

(
b(x) – λ

)|u|p–uϕ dx –
∫
RN

f (x,u)ϕ dx = , ∀ϕ ∈ E ∩ L∞(
R

N)
. (.)

Finally, we can deduce (.) from (.). �

Remark . (see []) Let {un} be a sequence in E satisfying (.). Then –λ|un|p –
f (x,un)un ∈ L(RN ) and

∣∣∣∣
∫
RN

(
A(x,un)|∇un|p + 

p
As(x,un)un|∇un|p +

(
b(x) – λ

)|un|p – f (x,un)un
)
dx

∣∣∣∣
≤ εn‖un‖, ∀n ∈ N. (.)

http://www.boundaryvalueproblems.com/content/2013/1/179
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In the following lemma, we will prove the boundedness of a (C–P–S)c sequence {un} ⊂
E under (.), (.) and (.).

Lemma . Let c ∈R and {un} be a sequence in E satisfying (.) and

lim
n→+∞ J(un) = c. (.)

Then {un} is bounded in E.

Proof Calculating θ J(un) – γ 〈J ′(un),un〉, from (.) and (.), we obtain

(
θ

p
– γ

)∫
RN

A(x,un)|∇un|p dx – γ

p

∫
RN

As(x,un)|∇un|pun dx

+
(

θ

p
– γ

)∫
RN

(
b(x) – λ

)|un|p dx +
∫
RN

(
γ f (x,un)un – θF(x,un)

)
dx

≤ C
(
 + ‖un‖

)
, ∀n ∈ N.

From (.) and (.), it follows that

α

∫
RN

|∇un|p dx +
(

θ

p
– γ

)∫
RN

(
b(x) – λ

)|un|p dx + θ (γ – )
∫
RN

F(x,un)dx

≤ C
(
 + ‖un‖

)
, ∀n ∈N. (.)

Moreover, there existM >  and C(λ) >  such that
(

θ

p
– γ

)∫
RN

(
b(x) – λ

)|un|p dx≥
(

θ

p
– γ

)∫
RN

b(x)


|un|p dx –C

∫
{|x|<M}

|un|p dx.

Therefore, denoting DM = {x ∈R
N , |x| <M}, we obtain from (.) that

α

∫
RN

|∇un|p dx +
(

θ

p
– γ

)∫
RN

b(x)


|un|p dx + θ (γ – )
∫
RN

F(x,un)dx

≤ C
(
 + ‖un‖

)
+C‖un‖pLp(DM), ∀n ∈N . (.)

By virtue of hypothesis (H), we know that there exist a >  and b >  such that

F(x, s)≥ a|s|θ – b, a.e. x ∈DM and ∀s ∈R. (.)

From (.) and (.), it follows that

min

(
α,




(
θ

p
– γ

))
‖un‖p + θ (γ – )a‖un‖θ

Lθ (DM)

≤ C
(
 + ‖un‖

)
+ bθ (γ – )mes(DM) +C‖un‖pLp(DM). (.)

On the other hand, by Hölder’s inequality and Young’s inequality, for all ε > , there exists
Cε >  such that

C‖un‖pLp(DM) ≤ C‖un‖pLθ (DM) ≤ Cε + ε‖un‖θ

Lθ (DM). (.)

http://www.boundaryvalueproblems.com/content/2013/1/179
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Using (.) and (.), we get

min

(
α,




(
θ

p
– γ

))
‖un‖p

≤ C
(
 + ‖un‖

)
+ bθ (γ – )mes(DM) +Cε +

(
ε – θ (γ – )a

)‖un‖θ

Lθ (DM). (.)

Choosing  < ε < θ (γ – )a in (.), we find that {un} is bounded in E. �

Lemma . Let {un} be the same as that in Lemma .. Then {un}, up to a subsequence,
converges strongly to u in E.

Proof By Lemma ., we know that u is a critical point of the functional J . Then, from
Lemma ., we get u ∈ L∞(RN ). Therefore, taking v = u as a test function in (.), we get

∫
RN

A(x,u)|∇u|p dx + 
p

∫
RN

As(x,u)u|∇u|p dx +
∫
RN

(
b(x) – λ

)|u|p dx

=
∫
RN

f (x,u)udx. (.)

By virtue of {un} is bounded in E, we can assume that there exists u ∈ E satisfying

un ⇀ u in E and un → u in Lp
(
R

N)
and un → u a.e. x ∈ R

N .

By Lemma ., ∇un → ∇u a.e. in R
N . Then by Fatou’s lemma, we have

∫
RN

As(x,u)u|∇u|p dx ≤ lim inf
n→+∞

∫
RN

As(x,un)un|∇un|p dx. (.)

Moreover, by E ↪→↪→ Lp(RN ) and E ↪→↪→ Lq+(RN ), we get

lim
n→+∞

∫
RN

f (x,un)un dx =
∫
RN

f (x,u)udx, (.)

lim
n→+∞

∫
RN

|un|p dx =
∫
RN

|u|p dx. (.)

By using (.)-(.) and passing to limit in (.), we obtain

lim sup
n→+∞

(∫
RN

A(x,un)|∇un|p dx +
∫
RN

b(x)|un|p dx
)

≤
∫
RN

A(x,u)|∇u|p dx +
∫
RN

b(x)|u|p dx. (.)

On the other hand, by Lebesgue’s dominated convergence theorem and the weak con-
vergence of un to u in E, we get

lim
n→+∞

∫
RN

A(x,un)∇un|∇u|p–∇udx =
∫
RN

A(x,u)|∇u|p dx, (.)

lim
n→+∞

∫
RN

A(x,un)|∇u|p dx =
∫
RN

A(x,u)|∇u|p dx, (.)

http://www.boundaryvalueproblems.com/content/2013/1/179


Jia et al. Boundary Value Problems 2013, 2013:179 Page 11 of 13
http://www.boundaryvalueproblems.com/content/2013/1/179

lim
n→+∞

∫
RN

b(x)|u|p–uun dx =
∫
RN

b(x)|u|p dx. (.)

Moreover, since A(x,un)|∇un|p–∇un and b(x)
p–
p |un|p–un are bounded in L

p
p– (RN ), then

we have

A(x,un)|∇un|p–∇un ⇀ A(x,u)|∇u|p–∇u in L
p

p–
(
R

N)
,

b(x)
p–
p |un|p–un ⇀ b(x)

p–
p |u|p–u in L

p
p–

(
R

N)
.

Therefore, from the definition of weak convergence, we obtain

lim
n→+∞

∫
RN

A(x,un)|∇un|p–∇un∇udx =
∫
RN

A(x,u)|∇u|p dx, (.)

lim
n→+∞

∫
RN

b(x)|un|p–unudx =
∫
RN

b(x)|u|p dx. (.)

Combining (.)-(.), it follows that

lim sup
n→+∞

(∫
RN

A(x,un)
(|∇un|p–∇un – |∇u|p–∇u

)
(∇un –∇u)dx

+
∫
RN

b(x)
(|un|p–un – |u|p–u)

(un – u)dx
)

≤ .

It is well known that the following inequality

(|ξ |t–ξ – |η|t–η)
(ξ – η) >  (.)

holds for any t > , ξ ,η ∈R
N and ξ �= η. Therefore,

lim sup
n→+∞

(∫
RN

A(x,un)|∇un –∇u|p dx +
∫
RN

b(x)|un – u|p dx
)

≤ .

According to (.), we conclude that {un} converges strongly to u in E. �

Lemma . For every real number c, the functional J satisfies (C – P – S)c.

Proof Let {un} be a sequence in E satisfying (.) and (.). By Lemma ., {un} is
bounded in E. Therefore, the conclusion can be deduced from Lemma .. �

4 Proof of Theorem 1.1
It is easy to check that the functional J is continuous and even. Moreover, by Remark .
and Lemma ., J satisfies (P – S)c for every c ∈R.
On the other hand, from (.), (.), (.) and (.), for u ∈ E, we have

J(u) ≥ min(,α)
p

‖u‖p – λ

p

∫
RN

|u|p dx –C‖u‖q+. (.)

We discuss (.) in the following two cases:
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In case λ ≤ , we get

J(u) ≥ min(,α)
p

‖u‖p –C‖u‖q+.

In case λ > , by the definition of λ, we get

J(u) ≥ 
p

(
min(,α) –

λ

λ

)
‖u‖p –C‖u‖q+,

i.e., μ = min(,α). Therefore, if λ satisfies λ < min(,α)λ, there exist � >  small enough
and δ >  such that

J(u) ≥ δ for ‖u‖ = �.

Hence, condition (i) of Lemma . holds with V = E.
Now we consider a finite-dimensional subspace W of E. Let u ∈ W and J(u) ≥ . From

(.), we have

 ≤ J(u) ≤ max(,β)‖u‖p – λ

p
‖u‖pLp(RN ) –

∫
RN

F(x,u)dx. (.)

By virtue of (.) and (.), we know that there exist z(x) ∈ L∞(RN ), satisfying z(x) >  a.e.
x ∈R

N and a positive constant C such that

F(x, s)≥ z(x)|s|θ –C|s|p, a.e. x ∈R
N and ∀s ∈R. (.)

Combining (.)-(.), we have

max(,β)‖u‖p ≥
∫
RN

z(x)|u|θ dx –C

∫
RN

|u|p dx. (.)

Since W is finite-dimensional, then all norms of W are equivalent. From (.), there
exists C >  such that

‖u‖θ ≤ C‖u‖p.

In view of θ > p , we deduce that the set {u ∈W , J(u) ≥ } is bounded in E and condition (ii)
of Lemma . holds. By Lemma ., the conclusion follows.
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