
Buterin et al. Boundary Value Problems 2013, 2013:180
http://www.boundaryvalueproblems.com/content/2013/1/180

RESEARCH Open Access

Inverse spectral problems for non-selfadjoint
second-order differential operators with
Dirichlet boundary conditions
Sergey A Buterin1, Chung-Tsun Shieh2* and Vjacheslav A Yurko1

*Correspondence:
ctshieh@mail.tku.edu.tw
2Department of Mathematics,
Tamkang University, Tamsui, New
Taipei, 25137, Taiwan
Full list of author information is
available at the end of the article

Abstract
We study the inverse problem for non-selfadjoint Sturm-Liouville operators on a finite
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and sufficient conditions of its solvability and also prove the stability of the solution.
MSC: 34A55; 34B24; 47E05

Keywords: non-selfadjoint Sturm-Liouville operators; inverse spectral problems;
method of spectral mappings; generalized spectral data; generalized weight numbers

1 Introduction
Inverse spectral problems consist of recovering operators from given spectral characteris-
tics. Such problems play an important role in mathematics and have many applications in
natural sciences and engineering (see, for example, monographs [–] and the references
therein). We study the inverse problem for the Sturm-Liouville operator corresponding to
the boundary value problem L = L(q(x),T) of the form

�y := –y′′ + q(x)y = λy,  < x < T <∞, ()

y() = y(T) = , ()

where q(x) ∈ L(,T) is a complex-valued function. The results for the non-selfadjoint
operator (), () that we obtain in this paper are crucial in studying inverse problems for
Sturm-Liouville operators on graphs with cycles. Here also lies the main reason of consid-
ering the case of Dirichlet boundary conditions () and arbitrary length T of the interval.
For the selfadjoint case, i.e., when q(x) is a real-valued function, the inverse problem

of recovering L from its spectral characteristics was investigated fairly completely. As
the most fundamental works in this direction we mention [, ], which gave rise to the
so-called transformation operator method having become an important tool for study-
ing inverse problems for selfadjoint Sturm-Liouville operators. The inverse problems for
non-selfadjoint operators are more difficult for investigation. Some aspects of the inverse
problem theory for non-selfadjoint Sturm-Liouville operators were studied in [–] and
other papers.
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In the present paper, we use the method of spectral mappings [], which is effective
for a wide class of differential and difference operators including non-selfadjoint ones.
The method of spectral mappings is connected with the idea of the contour integration
method and reduces the inverse problem to the so-called main equation of the inverse
problem, which is a linear equation in the Banach space of bounded sequences. We prove
the uniqueness theorem of the inverse problem, obtain algorithms for constructing its
solution together with the necessary and sufficient conditions of its solvability. In general,
by sufficiency one should require solvability of themain equation. Therefore, we also study
those cases when the solvability of the main equation can be proved or easily checked,
namely, selfadjoint case, the case of finite perturbations of the spectral data and the case
of small perturbations. The study of the latter case allows us to prove also the stability of
the inverse problem.
In the next section, we introduce the spectral data, study their properties and give the

formulation of the inverse problem. In Section , we prove the uniqueness theorem. In
Section  we derive the main equation and prove its solvability. Further, using the solu-
tion of the main equation, we provide an algorithm for solving the inverse problem. In
Section , we obtain another algorithm, which we use in Section  for obtaining necessary
and sufficient conditions of solvability of the inverse problem and for proving its stability.

2 Generalized spectral data. Inverse problem
Let {λn}n≥ be the spectrumof the boundary value problem (), (). In the self-adjoint case,
the potential q(x) is determined uniquely by specifying the classical discrete spectral data
{λn,αn}n≥, where αn are weight numbers determined by the formula

αn =
∫ π


S(x,λn)dx, ()

while S(x,λ) is a solution of equation () satisfying the initial conditions

S(,λ) = , S′(,λ) = . ()

In the non-selfadjoint case, there may be a finite number of multiple eigenvalues and,
hence, for unique determination of the Sturm-Liouville operator, one should specify some
additional information. In the present section, we introduce the so-called generalized
weight numbers, as was done for the case of operator () with Robin boundary conditions
(see [, ]) and study the properties of the generalized spectral data.
Let the function ψ(x,λ) be a solution of equation () under the conditions

ψ(T ,λ) = , ψ ′(T ,λ) = –. ()

For every fixed x ∈ [,T], the functions S(x,λ), ψ(x,λ) and their derivatives with respect
to x are entire in λ. The eigenvalues λn, n ≥  of the problem L coincide with the zeros of
its characteristic function

�(λ) :=
〈
ψ(x,λ),S(x,λ)

〉
= ψ(,λ) = S(T ,λ), ()
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where 〈y, z〉 := yz′ – y′z. It is known (see, e.g., []) that the spectrum {λn}n≥ has the asymp-
totics

ρn :=
√

λn =
πn
T

+
ω

πn
+

κn

n
, κn = o(), ()

where

ω =Q(T), Q(x) =



∫ x


q(t)dt.

Denote by mn the multiplicity of the eigenvalue λn (λn = λn+ = · · · = λn+mn–) and put
S = {n : n– ∈ N,λn– �= λn}∪ {}. Note that by virtue of () for sufficiently large n, we have
mn = . Denote

Sν(x,λ) =

ν!

dν

dλν
S(x,λ), ψν(x,λ) =


ν!

dν

dλν
ψ(x,λ).

Hence, for ν ≥  we have

�Sν(x,λ) = λSν(x,λ) + Sν–(x,λ), Sν(,λ) = S′
ν(,λ) = ,

�ψν(x,λ) = λψν(x,λ) +ψν–(x,λ), ψν(T ,λ) = ψ ′
ν(T ,λ) = .

}
()

Moreover, for n ∈ S formula () yields

Sν(T ,λn) = ψν(,λn) =

ν!

�(ν)(λn) = , ν = ,mn – . ()

Put

Sn+ν(x) = Sν(x,λn), ψn+ν(x) = ψν(x,λn), n ∈ S,ν = ,mn – . ()

Thus, {Sn(x)}n≥, {ψn(x)}n≥ are complete systems of eigen- and the associated functions of
the boundary value problem L. Together with the eigenvalues λn we consider generalized
weight numbers αn, n ≥ , determined in the following way:

αk+ν =
∫ T


Sk+ν(x)Sk+mk–(x)dx, k ∈ S,ν = ,mk – . ()

We note that the numbers αn for sufficiently large n coincide with the classical weight
numbers () for the selfadjoint Sturm-Liouville operator.

Definition  The numbers {λn,αn}n≥ are called the generalized spectral data of L.

Consider the following inverse problem.

Inverse Problem  Given the generalized spectral data {λn,αn}n≥, find q(x).

Let the functions C(x,λ), �(x,λ) be solutions of equation () under the conditions

C(,λ) = �(,λ) = , C′(,λ) = �(T ,λ) = .

http://www.boundaryvalueproblems.com/content/2013/1/180
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The functions�(x,λ) andM(λ) := �′(,λ) are called theWeyl solution and theWeyl func-
tion for L, respectively. According to (), we have

�(x,λ) =
ψ(x,λ)
�(λ)

= C(x,λ) +M(λ)S(x,λ), ()

〈
S(x,λ),�(x,λ)

〉 ≡ –, ()

M(λ) = –
d(λ)
�(λ)

, d(λ) :=
〈
ψ(x,λ),C(x,λ)

〉
= –ψ ′(,λ) = C(T ,λ). ()

The function d(λ) is the characteristic function of the boundary value problem for the
equation () with the boundary conditions y′() = y(T) = . Let {μn}n≥ be its spectrum.
Clearly, {λn}n≥ ∩ {μn}n≥ = ∅. Thus, M(λ) is a meromorphic function with poles in λn,
n≥ , and zeros in μn, n≥ . Moreover, (see, e.g., [])

�(λ) =
T

π

∞∏
n=

λn – λ

n
, d(λ) =

T

π

∞∏
n=

μn – λ

(n + /)
. ()

Let λ = ρ and put τ = Imρ . Using the known method (see, e.g., []), one can prove the
following asymptotics.

Lemma  (i) For |ρ| → ∞, the following asymptotics holds

S(x,λ) =
sinρx

ρ
–Q(x)

cosρx
ρ +


ρ

∫ x


q(t) cosρ(x – t)dt

+O
(


ρ exp

(|τ |x)),
S′(x,λ) = cosρx +Q(x)

sinρx
ρ

–

ρ

∫ x


q(t) sinρ(x – t)dt

+O
(


ρ exp

(|τ |x)),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

()

ψ(x,λ) =
sinρ(T – x)

ρ
–

(
Q(T) –Q(x)

)cosρ(T – x)
ρ

+ o
(


ρ

exp
(|τ |(T – x)

))
,

ψ ′(x,λ) = – cosρ(T – x) –
(
Q(T) –Q(x)

) sinρ(T – x)
ρ

+ o
(


ρ
exp

(|τ |(T – x)
))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

()

uniformly with respect to x ∈ [,T].
(ii) Fix δ > . Then for sufficiently large |λ|

∣∣�(λ)
∣∣ ≥ Cδ

|ρ| exp
(|τ |T)

, λ ∈Gδ , ()

where Gδ = {λ = ρ : |ρ – πk/T | ≥ δ,k ∈ Z}.

Using (), (), () and (), one can calculate

αn =
T

πn

(
 +

κn

n

)
, κn = o(),n→ ∞. ()

http://www.boundaryvalueproblems.com/content/2013/1/180


Buterin et al. Boundary Value Problems 2013, 2013:180 Page 5 of 24
http://www.boundaryvalueproblems.com/content/2013/1/180

Fix k ∈ S. According to (), the functionM(λ) has a representation

M(λ) =
mk–∑
ν=

Mk+ν

(λ – λk)ν+
+M

k (λ), ()

where Mk+mk– �= , and the function M
k (λ) is regular in a vicinity of λk . The sequence

{Mn}n≥ is called the Weyl sequence for L. By virtue of (), () and (), the following
estimate holds

M(λ) =O(ρ), |λ| → ∞,λ ∈Gδ . ()

Moreover, according to (), (), () and (), for each fixed δ > , we have

M
(
ρ) = iρ + o(), |ρ| → ∞, argρ ∈ [δ,π – δ]. ()

The maximum modulus principle together with (), () and () give

|Mn| ≤ Cn. ()

Choose ω >  such that �(±iω) �=  and put

β(λ) :=
λ

λ +ω , bn+ν :=

ν!

β (ν)(λn), n ∈ S,ν = ,mn – .

According to () and (), we get

(


λ – λn
+ bn

)
Mn =O

(

n

)
, n→ ∞,

and hence the series

N(λ) :=
∑
n∈S

mn–∑
ν=

(


(λ – λn)ν+
+ bn+ν

)
Mn+ν ()

converges absolutely and uniformly in λ on bounded sets.

Theorem  The following representation holds

M(λ) =N(λ) + a, a = lim
τ→+∞

(
iτ –N

(
–τ )). ()

Proof Consider the contour integral

IN (λ) =


π i

∫
�N

(


λ –μ
+ β(μ)

)
M(μ)dμ, λ ∈ int�N ,

where the contour �N := {μ : |μ| = (π (N + /)/T)}, N ∈ N has the counterclockwise cir-
cuit. According to (), we have �N ⊂ Gδ for sufficiently largeN and sufficiently small fixed
δ > . By virtue of (), we obtain the estimate

(


λ –μ
+ β(μ)

)
M(μ) =O

(
μ– 


)
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uniformly with respect to λ in bounded subsets of C, and hence

lim
N→∞ IN (λ) = . ()

On the other hand, using the residue theorem [], we calculate

IN (λ) = –M(λ) +
∑

n∈S,λn∈int�N

(
Res
μ=λn

M(μ)
λ –μ

+ Res
μ=λn

(
M(μ)β(μ)

))
+ b,

λ ∈ int�N \ {λn}n≥, ()

where

b = Res
μ=iω

(
M(μ)β(μ)

)
+ Res

μ=–iω

(
M(μ)β(μ)

)
=
M(iω) +M(–iω)


.

Further, we calculate

Res
μ=λn

M(μ)
λ –μ

=
mn–∑
ν=

Mn+ν

(λ – λn)ν+
, Res

μ=λn

(
M(μ)β(μ)

)
=

mn–∑
ν=

bn+νMn+ν .

Substituting this into () and using (), we obtainM(λ) =N(λ) + b. By virtue of (), we
get b = a and arrive at (). �

Theorem  The coefficients Mn and the generalized weight numbers αn determine each
other uniquely by the formula

ν∑
j=

αn+ν–jMn+mn–j– = –δν,, n ∈ S,ν = ,mn – . ()

Proof Using (), () and (), one can calculate

ν∑
j=

Mn+mn–j–�mn+ν–j,n = ψ ′
n+ν(), n ∈ S,ν = ,mn – , ()

where�p,n = �(p)(λn)/(p!). Obviously,ψn(x) = ψ ′
n()Sn(x), n ∈ S. Moreover, by virtue of ()

and (), induction gives

ψn+ν(x) =
ν∑
j=

ψ ′
n+j()Sn+ν–j(x), n ∈ S,ν = ,mn – . ()

Further, since

–S′′(x,λ) + q(x)S(x,λ) = λS(x,λ), –ψ ′′(x,μ) + q(x)ψ(x,μ) = μψ(x,μ),

we get

(
S(x,λ)ψ ′(x,μ) –ψ(x,μ)S′(x,λ)

)′ = (λ –μ)S(x,λ)ψ(x,μ),

http://www.boundaryvalueproblems.com/content/2013/1/180
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and (), () and () yield

�(λ) –�(μ)
λ –μ

= –
∫ T


S(x,λ)ψ(x,μ)dx.

Hence,

d
dλ

�(λ) = –
∫ T


S(x,λ)ψ(x,λ)dx,

and we calculate

�mn+ν,n = –


mn + ν

mn+ν–∑
j=

∫ T


ψj(x,λn)Smn+ν––j(x,λn)dx, ν ≥ .

Using () and () and integrating by parts, we obtain

�mn+ν,n = –
∫ T


ψn+ν(x)Sn+mn–(x)dx, n ∈ S,ν = ,mn – . ()

Substituting () in () and taking () into account, we arrive at

�mn+ν,n = –
ν∑
j=

αn+ν–jψ
′
n+j(), n ∈ S,ν = ,mn – . ()

Finally, substituting () in (), we get

ν∑
j=

ψ ′
n+ν–j()

j∑
k=

αn+j–kMn+mn–k– = –ψ ′
n+ν(), n ∈ S,ν = ,mn – .

Since ψ ′
n() �= , n ∈ S, by induction we obtain (). �

According to () and (), we have the asymptotics

Mn = –
πn

T

(
 +

κn

n

)
, κn = o(). ()

Consider the following inverse problems.

Inverse Problem  Given the spectra {λn}n≥, {μn}n≥, construct the function q(x).

Inverse Problem  Given the Weyl functionM(λ), construct the function q(x).

Remark  According to (), (), (), () and (), inverse Problems - are equivalent.
The numbers {λn,Mn}n≥ can also be used as spectral data.

http://www.boundaryvalueproblems.com/content/2013/1/180
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3 The uniqueness theorem
We agree that together with L we consider a boundary value problem L̃ = L(q̃(x), T̃) of the
same form but with another potential. If a certain symbol γ denotes an object related to L,
then this symbol with tilde γ̃ denotes the analogous object related to L̃ and γ̂ := γ – γ̃ .

Theorem  If λn = λ̃n, αn = α̃n, n ≥ , then L = L̃, i.e., T = T̃ , q(x) = q̃(x) a.e. on (,T).
Thus, the specification of the generalized spectral data {λn,αn}n≥ determines the potential
uniquely.

Proof By virtue of (), we have T = T̃ . According to Remark , it is sufficient to prove that
ifM(λ) = M̃(λ), then L = L̃. Define the matrix P(x,λ) = [Pjk(x,λ)]j,k=, by the formula

P(x,λ)

[
S̃(x,λ) �̃(x,λ)
S̃′(x,λ) �̃′(x,λ)

]
=

[
S(x,λ) �(x,λ)
S′(x,λ) �′(x,λ)

]
. ()

Using () and (), we calculate

Pj(x,λ) = �(j–)(x,λ)S̃′(x,λ) – S(j–)(x,λ)�̃′(x,λ),

Pj(x,λ) = S(j–)(x,λ)�̃(x,λ) –�(j–)(x,λ)S̃(x,λ),

}
()

S(x,λ) = P(x,λ)S̃(x,λ) + P(x,λ)S̃′(x,λ),

�(x,λ) = P(x,λ)�̃(x,λ) + P(x,λ)�̃′(x,λ).

}
()

It follows from () and () that

P(x,λ) =  +


�(λ)
(
ψ(x,λ)

(
S̃′(x,λ) – S′(x,λ)

)
– S(x,λ)

(
ψ̃ ′(x,λ) –ψ ′(x,λ)

))
,

P(x,λ) =


�(λ)
(
S(x,λ)ψ̃(x,λ) –ψ(x,λ)S̃(x,λ)

)
,

P(x,λ) =


�(λ)
(
ψ ′(x,λ)S̃′(x,λ) – S′(x,λ)ψ̃ ′(x,λ)

)
,

P(x,λ) =  +


�(λ)
(
S′(x,λ)

(
ψ̃(x,λ) –ψ(x,λ)

)
–ψ ′(x,λ)

(
S̃(x,λ) – S(x,λ)

))
.

By virtue of ()-(), this yields

P(x,λ) =  +O
(

ρ

)
, P(x,λ) =O

(

ρ

)
, |λ| → ∞,λ ∈ Gδ , ()

P(x,λ) =  +O
(

ρ

)
, P(x,λ) =O(), |λ| → ∞,λ ∈ Gδ , ()

uniformly with respect to x ∈ [,T]. On the other hand, according to () and (), we get

P(x,λ) = C(x,λ)S̃′(x,λ) – S(x,λ)C̃′(x,λ) + M̂(λ)S(x,λ)S̃′(x,λ),

P(x,λ) = S(x,λ)C̃(x,λ) – S̃(x,λ)C(x,λ) – M̂(λ)S(x,λ)S̃(x,λ).

http://www.boundaryvalueproblems.com/content/2013/1/180
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Thus, if M̂(λ) ≡ , then for each fixed x, the functions P(x,λ) and P(x,λ) are entire
in λ. Together with () this yields P(x,λ) ≡ , P(x,λ) ≡ . Substituting into (), we
get S(x,λ)≡ S̃(x,λ) and consequently L = L̃. �

4 Main equation. Solution of the inverse problem
Let the spectral data {λn,αn}n≥ of L = L(q(x),T) be given. We choose an arbitrary model
boundary value problem L̃ = L(q̃(x),T) (e.g., one can take q̃(x)≡ ). Introduce the numbers
ξn, n≥  by the formulae

ξk+ν := |ρk – ρ̃k| + 
k

mk–∑
p=ν

|Mk+p – M̃k+p|,k ∈ S∩ S̃,mk = m̃k ,ν = ,mk – ,

ξn :=  for the rest of n.

⎫⎪⎪⎬
⎪⎪⎭ ()

According to () and (), we have

ξn =O
(

n

)
, n→ ∞. ()

Denote

λn, := λn, λn, := λ̃n, Mn, :=Mn, Mn, := M̃n,

S := S, S := S̃, mn, :=mn, mn, := m̃n,

Sk+ν,i(x) := Sν(x,λk,i), S̃k+ν,i(x) := S̃ν(x,λk,i), k ∈ Si,ν = ,mk,i – , i = , ,

D(x,λ,μ) :=
〈S(x,λ),S(x,μ)〉

λ –μ
=

∫ x


S(t,λ),S(t,μ)dt,

Dν,η(x,λ,μ) :=


ν!η!
∂ν+η

∂λνμη
D(x,λ,μ).

For i, j = , , n ∈ Si put

An+ν,i(x,λ) :=
mn,i–∑
p=ν

Mn+p,iD,p–ν(x,λ,λn,i), Pn+ν,i;k,j(x) :=

ν!

∂ν

∂λν
Ak,j(x,λ)

∣∣∣
λ=λn,i

,

where k ≥ , ν = ,mn,i – . Analogously, we define D̃(x,λ,μ), D̃ν,η(x,λ,μ), Ãn,i(x,λ) and
P̃n,i;k,j(x), n,k ≥ , i, j = , , replacing S with S̃ in the definitions above.
By the same way as in [], using (), (), () and Schwarz’s lemma [], we get the such

estimates as ±Reρ ≥ , n,k ≥ , i, j = , , ν = , 

∣∣S(ν)n,i (x)
∣∣ ≤ Cnν–,

∣∣S(ν)n,(x) – S(ν)n,(x)
∣∣ ≤ Cξnnν–, ()

∣∣D(x,λ,λk,j)
∣∣ ≤ C exp(|τ |x)

|ρ|k(|ρ ∓ πk/T | + )
,

∣∣D(x,λ,λk,) –D(x,λ,λk,)
∣∣ ≤ Cξk exp(|τ |x)

|ρ|k(|ρ ∓ πk/T | + )
,

⎫⎪⎪⎬
⎪⎪⎭ ()

http://www.boundaryvalueproblems.com/content/2013/1/180
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∣∣Pn,i;k,j(x)
∣∣ ≤ Ck

(|n – k| + )n
,

∣∣P(ν+)
n,i;k,j(x)

∣∣ ≤ C
(

νk +
kν+

n

)
,

∣∣Pn,i;k,(x) – Pn,i;k,(x)
∣∣ ≤ Ckξk

(|n – k| + )n
,

∣∣P(ν+)
n,i;k,(x) – P(ν+)

n,i;k,(x)
∣∣ ≤ Cξk

(
νk +

kν+

n

)
,

∣∣Pn,;k,j(x) – Pn,;k,j(x)
∣∣ ≤ Ckξn

(|n – k| + )n
,

∣∣P(ν+)
n,;k,j(x) – P(ν+)

n,;k,j(x)
∣∣ ≤ Cξn

(
νk +

kν+

n

)
,

∣∣Pn,;k,(x) – Pn,;k,(x) – Pn,;k,(x) + Pn,;k,(x)
∣∣ ≤ Ckξnξk

(|n – k| + )n
,

∣∣P(ν+)
n,;k,(x) – P(ν+)

n,;k,(x) – P(ν+)
n,;k,(x) + P(ν+)

n,;k,(x)
∣∣ ≤ Cξnξk

(
νk +

kν+

n

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

()

The analogous estimates are also valid for S̃n,i(x), D̃(x,λ,λk,j), P̃n,i;k,j(x).

Lemma  The following relation holds

S̃n,i(x) = Sn,i(x) –
∞∑
k=

(
P̃n,i;k,(x)Sk,(x) – P̃n,i;k,(x)Sk,(x)

)
, n≥ , i = , , ()

where the series converges absolutely and uniformly with respect to x ∈ [,T].

Proof Let real numbers a, b be such that a <minReλn,i, b >max | Imλn,i|, n≥ , i = , . In
the λ-plane consider a closed contour γN := ∂�N (with a counterclockwise circuit), where
�N = {λ : a ≤ Reλ ≤ (N + /)π/T, | Imλ| ≤ b}. By the standard method (see []), using
(), ()-() and Cauchy’s integral formula [], we obtain the representation

S̃(x,λ) = S(x,λ) –


π i

∫
γN

M̂(μ)D̃(x,λ,μ)S(x,μ)dμ + εN (x,λ), ()

where

lim
N→∞

∂ν

∂λν
εN (x,λ) = , ν ≥ ,

uniformly with respect to x ∈ [,T] and λ on bounded sets. Calculating the integral in ()
by the residue theorem and using (), we get


π i

∫
γN

M̂(μ)D̃(x,λ,μ)S(x,μ)dμ =
N∑
k=

(
Ãk,(x,λ)Sk,(x) – Ãk,(x,λ)Sk,(x)

)

for sufficiently large N . Taking the limit in () as N → ∞, we obtain

S̃(x,λ) = S(x,λ) –
∞∑
k=

(
Ãk,(x,λ)Sk,(x) – Ãk,(x,λ)Sk,(x)

)
. ()

Differentiating this with respect to λ, the corresponding number of times and then taking
λ = λn,i, we arrive at (). �
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Analogously to (), one can obtain the following relation

�̃(x,λ) = �(x,λ) –
∞∑
k=

(
F̃k,(x,λ)Sk,(x) – F̃k,(x,λ)Sk,(x)

)
, ()

where

F̃n+ν,i(x,λ) :=
mn,i–∑
p=ν

Mn+p,iG̃p–ν(x,λ,λn,i), n ∈ Si,ν = ,mn,i – , i = , ,

G̃ν(x,λ,μ) :=

ν!

dν

dμν
G̃(x,λ,μ),

G̃(x,λ,μ) :=
〈�̃(x,λ), S̃(x,μ)〉

λ –μ
=


λ –μ

+
∫ x


�̃(t,λ)S̃(t,μ)dt.

For each fixed x ∈ [,T], the relation () can be considered as a system of linear equa-
tions with respect to Sn,i(x), n≥ , i = , . But the series in () converges only with brack-
ets, i.e., the terms in them cannot be dissociated. Therefore, it is inconvenient to use ()
as amain equation of the inverse problem. Below, we will transfer () to a linear equation
in the Banach space of bounded sequences (see ()).
Let w be the set of indices u = (n, i), n ≥ , i = , . For each fixed x ∈ [,T], we define the

vector

φ(x) =
[
φu(x)

]T
u∈w =

[
φn,(x),φn,(x)

]T
n≥

(where T is the sign for transposition) by the formula

[
φn,(x)
φn,(x)

]
= n

[
χn –χn

 

][
Sn,(x)
Sn,(x)

]
, χn =

⎧⎨
⎩ξ–

n , ξn �= ,

, ξn = .

Note that if φn,, φn, are given, then Sn,, Sn, can be found by the formula

[
Sn,(x)
Sn,(x)

]
=

n

[
ξn 
 

][
φn,(x)
φn,(x)

]
. ()

Consider also a block-matrix

H(x) =
[
Hu;v(x)

]
u,v∈w =

[
Hn,;k,(x) Hn,;k,(x)
Hn,;k,(x) Hn,;k,(x)

]
n,k≥

, u = (n, i), v = (k, j),

where
[
Hn,;k,(x) Hn,;k,(x)
Hn,;k,(x) Hn,;k,(x)

]
=
n
k

[
χn –χn

 

][
Pn,;k,(x) Pn,;k,(x)
Pn,;k,(x) Pn,;k,(x)

][
ξk 
 –

]
.

Analogously, we introduce φ̃n,i(x), φ̃(x) and H̃n,i;k,j(x), H̃(x) by the replacement of Sn,i(x),
Pn,i;k,j(x) in the preceding definitionswith S̃n,i(x), P̃n,i;k,j(x), respectively. Using () and (),

http://www.boundaryvalueproblems.com/content/2013/1/180
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we get the estimates

∣∣φ(ν)
n,i (x)

∣∣ ≤ Cnν ,
∣∣Hn,i;k,j(x)

∣∣ ≤ Cξk

|n – k| + 
,

∣∣H (ν+)
n,i;k,j(x)

∣∣ ≤ Cξk(n + k)ν , ν = , ,
()

∣∣φ̃(ν)
n,i (x)

∣∣ ≤ Cnν ,
∣∣H̃n,i;k,j(x)

∣∣ ≤ Cξk

|n – k| + 
,

∣∣H̃ (ν+)
n,i;k,j(x)

∣∣ ≤ Cξk(n + k)ν , ν = , ,
()

∣∣H̃n,i;k,j(x) – H̃n,i;k,j(x)
∣∣ ≤ Cξk|x – x|, x,x ∈ [,T]. ()

Consider the Banach space B of bounded sequences a = [au]Tu∈w with the norm ‖a‖B =
supu∈w |au|. It follows from () and () that for each fixed x ∈ [,T], the operators H(x)
and H̃(x), acting from B to B, are linear bounded ones and

∥∥H(x)
∥∥
B→B,

∥∥H̃(x)
∥∥
B→B ≤ C sup

n≥

∞∑
k=

ξk

|n – k| + 
< ∞. ()

Theorem  For each fixed x ∈ [,T], the vector φ(x) ∈ B satisfies the equation

φ̃(x) =
(
I – H̃(x)

)
φ(x) ()

in the Banach space B, where I is the identity operator.

Proof We rewrite () in the form

[
S̃n,(x)
S̃n,(x)

]
=

[
Sn,(x)
Sn,(x)

]
–

∞∑
k=

[
P̃n,;k,(x) –P̃n,;k,(x)
P̃n,;k,(x) –P̃n,;k,(x)

][
Sk,(x)
Sk,(x)

]
, n≥ .

Substituting here (), and taking into account our notations, we arrive at

φ̃n,i(x) = φn,i(x) –
∑
(k,j)∈w

H̃n,i;k,j(x)φk,j(x), (n, i) ∈ w,

which is equivalent to (). �

For each fixed x ∈ [,T], the relation () can be considered as a linear equation with
respect to φ(x). This equation is called the main equation of the inverse problem. Thus,
the nonlinear inverse problem is reduced to the solution of the linear equation. Let us
prove the unique solvability of the main equation.

Theorem For each fixed x ∈ [,T], the operator I – H̃(x) has a bounded inverse operator,
namely I +H(x), i.e., the main equation () is uniquely solvable.

Proof Acting in the same way as in Lemma  and using () and (), we obtain

D(x,λ,μ) – D̃(x,λ,μ) =


π i

∫
γN

D̃(x,λ, ξ )M̂(ξ )D(x, ξ ,μ)dξ + εN (x,λ,μ),

http://www.boundaryvalueproblems.com/content/2013/1/180
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where

lim
N→∞

∂ν+j

∂λν ∂μj ε

N (x,λ,μ) = , ν, j ≥ ,

uniformly with respect to x ∈ [,T] and λ, μ on bounded sets. Calculating the integral by
the residue theorem and passing to the limit as N → ∞, we obtain

D(x,λ,μ) – D̃(x,λ,μ) =
∑

p=

(–)p
∑
l∈Sp

ml,p–∑
ν=

Ãl+ν,p(x,λ)Dν,(x,λl,p,μ).

According to the definition of Pn,i;k,j(x), P̃n,i;k,j(x), we arrive at

Pn,i;k,j(x) – P̃n,i;k,j(x) =
∞∑
l=

(
P̃n,i;l,(x)Pl,;k,j(x) – P̃n,i;l,(x)Pl,;k,j(x)

)
, n,k ≥ , i, j = , .

Further, taking the definition of Hn,i;k,j(x), H̃n,i;k,j(x) into account, we get

Hn,i;k,j(x) – H̃n,i;k,j(x) =
∑
(l,p)∈w

H̃n,i;l,p(x)Hl,p;k,j(x), (n, i), (k, j) ∈ w,

which is equivalent to (I – H̃(x))(I +H(x)) = I . Symmetrically, one gets

(
I +H(x)

)(
I – H̃(x)

)
= I.

Hence the operator (I – H̃(x))– exists, and it is a linear bounded operator. �

Using the solution of the main equation, one can construct the function q(x). Thus, we
obtain the following algorithm for solving the inverse problem.

Algorithm  Let the spectral data {λn,αn}n≥ be given. Then
(i) constructMn, n≥ , by solving the linear systems ();
(ii) choose L̃ and calculate φ̃(x) and H̃(x);
(iii) find φ(x) by solving equation ();
(iv) choose n ∈ S (e.g., n = ) and construct q(x) by the formula

q(x) =
φ′′
n,(x)

φn,(x)
+ λn.

Remark  In the particular case, when λn = λ̃n, αn = α̃n for n > N (let for definiteness
N +  ∈ S ∩ S̃) according to () and the definition of Sn,i(x), P̃n,i;k,j(x), the main equation
becomes the linear algebraic system

S̃n,i(x) = Sn,i(x) –
N∑
k=

(
P̃n,i;k,(x)Sk,(x) – P̃n,i;k,(x)Sk,(x)

)
, n = ,N , i = , , ()

whose determinant does not vanish for any x ∈ [,T] by virtue of Theorem .

http://www.boundaryvalueproblems.com/content/2013/1/180
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In the next section for the case q(x) ∈ L(,T), we give another algorithm, which is used
in Section  for obtaining the necessary and sufficient conditions for the solvability of the
inverse problem.

5 Algorithm 2
Here and in the sequel, we assume that q(x) ∈ L(,T). It is known that then {κn} ∈ l in for-
mulae (), () and ().We agree that in the sequel one and the same symbol {κn} denotes
different sequences in l. Let us choose the model boundary value problem L = L(q̃(x),T),
so that ω̃ = ω (for example, one can take q̃(x) ≡ ω/T ). Then besides (), according to
(), () and (), we have

ξn =
κn

n
, � :=

( ∞∑
n=

(nξn)
) 



< ∞,
∞∑
n=

ξn < ∞. ()

Denote

B̃n+ν,i(x) :=
mn,i–∑
p=ν

Mn+p,iS̃n+p–ν,i(x), n ∈ Si,ν = ,mn,i – , i = , , ()

ε(x) :=
∞∑
k=

(
B̃k,(x)Sk,(x) – B̃k,(x)Sk,(x)

)
, ε(x) := ε′

(x). ()

It is obvious that

Ã′
n,i(x,λ) = S̃(x,λ)B̃n,i(x), n≥ , i = , . ()

Lemma  The series in () converges absolutely and uniformly on [,T] and allows
termwise differentiation. The function ε(x) is absolutely continuous, and ε(x) ∈ L(,T).

Proof It is sufficient to prove for the case mn,i = , n ≥ , i = , . We rewrite ε(x) to the
form ε(x) = A(x) +A(x), where

A(x) =
∞∑
k=

(Mk, –Mk,)S̃k,(x)Sk,(x),

A(x) =
∞∑
k=

Mk,((S̃k,(x) – S̃k,(x))Sk,(x) + S̃k,(x)(Sk,(x) – Sk,(x))).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

()

It follows from (), () and () that the series in () converges absolutely and uniformly
on [,T], and

∣∣Aj(x)
∣∣ ≤ C

∞∑
k=

ξk ≤ C�, j = , .

Furthermore, using the asymptotic formulae (), () and (), we calculate

A′
(x) =

∞∑
k=

(Mk, –Mk,)
d
dx

(
S̃k,(x)Sk,(x)

)
=

∞∑
k=

(
κk sinkx +O

(
κk

k

))
.

Hence A(x) ∈ W 
 [,T]. Similarly, we get A(x) ∈ W 

 [,T], and consequently ε(x) ∈
W 

 [,T]. �
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Lemma  The following relation holds

q(x) = q̃(x) + ε(x). ()

Proof Differentiating () twice with respect to x and using () and (), we get

S̃′(x,λ) = S′(x,λ) – ε(x)S̃(x,λ) –
∞∑
k=

(
Ãk,(x,λ)S′

k,(x) – Ãk,(x,λ)S′
k,(x)

)
,

S̃′′(x,λ) = S′′(x,λ) –
∞∑
k=

((
S̃(x,λ)B̃k,(x)

)′Sk,(x) –
(
S̃(x,λ)B̃k,(x)

)′Sk,(x)
)

– S̃(x,λ)
∞∑
k=

(
B̃k,(x)S′

k,(x) – B̃k,(x)S′
k,(x)

)
–

∞∑
k=

(
Ãk,(x,λ)S′′

k,(x)

– Ãk,(x,λ)S′′
k,(x)

)
.

Using () and (), we replace here the second derivatives, and then replace S(x,λ) using
(). This yields

q̂(x)S̃(x,λ)

= S̃(x,λ)
∞∑
k=

(
B̃k,(x)S′

k,(x) – B̃k,(x)S′
k,(x)

)

+
∞∑
k=

((
S̃(x,λ)B̃k,(x)

)′Sk,(x) –
(
S̃(x,λ)B̃k,(x)

)′Sk,(x)
)

+
∞∑
k=

(
(λ – λk,)Ãk,(x,λ)Sk,(x) – (λ – λk,)Ãk,(x,λ)Sk,(x)

)
–A(x,λ), ()

where

A(x,λ) =
∑
j=

(–)j
∑

mk,j≥

mk,j–∑
ν=

Ãk+ν+,j(x,λ)Sk+ν,j(x).

Using () and () for j = , , k ∈ Sj, ν = ,mk,j – , we calculate
(
S̃(x,λ)B̃k+ν,j(x)

)′ + (λ – λk,j)Ãk+ν,j(x,λ) = S̃(x,λ)B̃′
k+ν,j(x) + ( – δν,mk,j–)Ãk+ν+,j(x,λ).

Applying this relation, we get

∞∑
k=

((
S̃(x,λ)B̃k,(x)

)′Sk,(x) –
(
S̃(x,λ)B̃k,(x)

)′Sk,(x)
)

+
∞∑
k=

(
(λ – λk,)Ãk,(x,λ)Sk,(x) – (λ – λk,)Ãk,(x,λ)Sk,(x)

)

= S̃(x,λ)
∞∑
k=

(
B̃′
k,(x)Sk,(x) – B̃′

k,(x)Sk,(x)
)
+A(x,λ),

which together with () and () gives (). �
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Thus, we obtain the following algorithm for solving the inverse problem.

Algorithm  Let the spectral data {λn,αn}n≥ be given. Then
(i) constructMn, n≥ , by solving the linear systems ();
(ii) choose L̃ so that ω = ω̃ and calculate φ̃(x) and H̃(x);
(iii) find φ(x) by solving equation (), and calculate Sn,j(x), n≥ , j = , , by ();
(iv) calculate q(x) by formulae (), () and ().

6 Necessary and sufficient conditions
In the present section, we obtain necessary and sufficient conditions for the solvability of
the inverse problem. In the general non-selfadjoint case, they must include the require-
ment of the solvability of the main equation. In Section , some important cases will be
considered when the solvability of themain equation can be proved by sufficiency, namely,
the selfadjoint case, the case of finite-dimensional perturbations of the spectral data and
the case of small perturbations.

Theorem For complex numbers {λn,αn}n≥ to be the spectral data of a certain boundary
value problem L(q(x),T) with q(x) ∈ L(,T), it is necessary and sufficient that

(i) the relations () and () hold with {κn} ∈ l;
(ii) αn �=  for all n ∈ S;
(iii) (Condition S) for each x ∈ [,T], the linear bounded operator I – H̃(x), acting from

B to B, has a bounded inverse one. Here L̃ is chosen so that ω̃ = ω.
The boundary value problem L = L(q(x),T) can be constructed by Algorithms  and .

The necessity part of the theorem was proved above; here, we prove the sufficiency. We
note that sufficiency condition (ii) of the theorem allows to solve linear systems () for
findingMn, n≥ , which are used for constructing the main equation. Moreover, we have

Mn+mn– �= , n ∈ S. ()

Let φ(x) = [φu(x)]u∈w be the solution of the main equation (). Denote

H(x) =
[
Hu;v(x)

]
u,v∈w :=

(
I – H̃(x)

)– – I,

i.e.,

(
I – H̃(x)

)(
I +H(x)

)
=

(
I +H(x)

)(
I – H̃(x)

)
= I. ()

Similarly to Lemma .. in [] using () and (), one can prove the following assertion.

Lemma  For n,k ≥ , i, j,ν = , , x ∈ [,T], the following relations hold

φn,i(x) ∈ C[,T],
∣∣φ(ν)

n,i (x)
∣∣ ≤ Cnν , ()∣∣φ(ν)

n,i (x) – φ̃
(ν)
n,i (x)

∣∣ ≤ C�η–ν
n , ()

∣∣Hn,i;k,j(x)
∣∣ ≤ Cξk

(


|n – k| + 
+�ηn

)
, ()

http://www.boundaryvalueproblems.com/content/2013/1/180
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∣∣Hn,i;k,j(x)
∣∣ ≤ Cξk

(


|n – k| + 
+�ηk

)
, ()

∣∣H ′
n,i;k,j(x)

∣∣ ≤ Cξk , ()

where � is defined in () and

ηn :=

( ∞∑
k=


k(|n – k| + )

)/

.

We define the functions Sn,i(x) by formulae (), and according to (), we get (). Then
() is also valid. By virtue of (), () and Lemma , we have

∣∣S(ν)n,i (x) – S̃(ν)n,i (x)
∣∣ ≤ C

n
�η–ν

n , ()

Furthermore, we construct the functions S(x,λ) and�(x,λ) via () and () and the func-
tion q(x) by formulae (), () and (). Clearly,

Sν(x,λn,i) = Sn+ν,i(x), n ∈ Si,ν = ,mn,i – , i = , . ()

Analogously to Lemma .. in [] using () and (), one can prove the following asser-
tion.

Lemma  q(x) ∈ L(,T).

Lemma  For i = , , n ∈ Si, ν = ,mn,i –  the following relations hold

�Sn,i(x) = λnSn,i(x), �Sn+ν,i(x) = λnSn+ν,i(x) + Sn+ν–,i(x), ()

�S(x,λ) = λS(x,λ), ��(x,λ) = λ�(x,λ), ()

S(,λ) = , S′(,λ) = , �(,λ) = , �(T ,λ) = . ()

Proof () According to the estimates (), the series in () is termwise differentiable
with respect to x, and hence S(,λ) = , S′(,λ) = . By virtue of (), we have Sn,j() = ,
(n, j) ∈ w. Thus, formula () gives �(,λ) = .
() In order to prove () and (), we first assume that

� :=

( ∞∑
k=

(
kξk

))/

< ∞. ()

Differentiating () twice, we obtain

H ′′(x) =
(
I +H(x)

)
H̃ ′′(x)

(
I +H(x)

)
+ 

(
I +H(x)

)
H̃ ′(x)H ′(x). ()

It follows from (), () and () that the series in () converges absolutely anduniformly
for x ∈ [,T], Hn,i;k,j(x) ∈ C[,T], and

∣∣H ′′
n,i;k,j(x)

∣∣ ≤ Cξk(n + k). ()
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Solving the main equation (), we infer

φn,i(x) = φ̃n,i(x) +
∑
k,j

Hn,i;k,j(x)φ̃k,j(x), x ∈ [,T], (n, i), (k, j) ∈ w. ()

According to () and (), the series in () converges absolutely and uniformly for x ∈
[,T]. Further, using (), we calculate

�̃φn,i(x) = �̃φ̃n,i(x) +
∑
k,j

Hn,i;k,j(x)�̃φ̃k,j(x) – 
∑
k,j

H ′
n,i;k,j(x)φ̃

′
k,j(x) –

∑
k,j

H ′′
n,i;k,j(x)φ̃k,j(x),

where according to (), (), () and (), the series converges absolutely and uniformly
for x ∈ [,T] and

�̃φn,i(x) ∈ C[,T],
∣∣�̃φn,i(x)

∣∣ ≤ Cn, (n, i) ∈ w.

On the other hand, it follows from the proof of Lemma  and from () that q(x) – q̃(x) ∈
C[,T]; hence

�φn,i(x) ∈ C[,T],
∣∣�φn,i(x)

∣∣ ≤ Cn, (n, i) ∈ w.

Together with () this implies that

�Sn,i(x) ∈ C[,T],
∣∣�Sn,i(x)∣∣ ≤ Cn,

∣∣�Sn,(x) – �Sn,(x)
∣∣ ≤ Cnξn, (n, i) ∈ w.

Using (), () and (), we get

�̃S̃n,i(x) = �Sn,i(x) –
∞∑
k=

(
P̃n,i;k,(x)�Sk,(x) – P̃n,i;k,(x)�Sk,(x)

)

–
∞∑
k=

(〈
S̃n,i(x), B̃k,(x)

〉
Sk,(x) –

〈
S̃n,i(x), B̃k,(x)

〉
Sk,(x)

)
, (n, i) ∈ w. ()

Similarly, using () and (), we calculate

�̃S̃(x,λ) = �S(x,λ) –
∞∑
k=

(
Ãk,(x,λ)�Sk,(x) – Ãk,(x,λ)�Sk,(x)

)

–
∞∑
k=

(〈
S̃(x,λ), B̃k,(x)

〉
Sk,(x) –

〈
S̃(x,λ), B̃k,(x)

〉
Sk,(x)

)
, ()

�̃�̃(x,λ) = ��(x,λ) –
∞∑
k=

(
F̃k,(x,λ)�Sk,(x) – F̃k,(x,λ)�Sk,(x)

)

–
∞∑
k=

(〈
�̃(x,λ), B̃k,(x)

〉
Sk,(x) –

〈
�̃(x,λ), B̃k,(x)

〉
Sk,(x)

)
. ()
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For n ∈ Si and i = , , it follows from () that

λn,iS̃n,i(x) = �Sn,i(x) –
∞∑
k=

(
P̃n,i;k,(x)�Sk,(x) – P̃n,i;k,(x)�Sk,(x)

)

–
∞∑
k=

(
(λn,i – λk,)P̃n,i;k,(x)Sk,(x) – (λn,i – λk,)P̃n,i;k,(x)Sk,(x)

)

+
∑
j=

(–)j
∑
mk,j>

mk,j–∑
s=

P̃n,i;k+s+,j(x)Sk+s,j(x),

λn,iS̃n+ν,i(x) + S̃n+ν–,i(x) = �Sn+ν,i(x) –
∞∑
k=

(
P̃n+ν,i;k,(x)�Sk,(x) – P̃n+ν,i;k,(x)�Sk,(x)

)

–
∞∑
k=

((
(λn,i – λk,)P̃n+ν,i;k,(x) + P̃n+ν–,i;k,(x)

)
Sk,(x)

–
(
(λn,i – λk,)P̃n+ν,i;k,(x) + P̃n+ν–,i;k,(x)

)
Sk,(x)

)

+
∑
j=

(–)j
∑
mk,j>

mk,j–∑
s=

P̃n+ν,i;k+s+,j(x)Sk+s,j(x), ν = ,mn,i – ,

and, consequently, we arrive at

γn,i(x) =
∞∑
k=

(
P̃n,i;k,(x)γk,(x) – P̃n,i;k,(x)γk,(x)

)
, (n, i) ∈ w, ()

where for l ∈ Si, ν = ,ml,i – 

γl,i(x) := �Sl,i(x) – λl,iSl,i(x), γl+ν,i(x) := �Sl+ν,i(x) – λl,iSl+ν,i(x) – Sl+ν–,i(x).

Using (), we get

βn,i(x) =
∑
k,j

H̃n,i;k,j(x)βk,j(x), (n, i), (k, j) ∈ w, ()

where

βn,(x) = nγn,(x), βn,(x) = nχn
(
γn,(x) – γn,(x)

)
.

Since |γn,i(x)| ≤ Cn, |γn,(x) – γn,(x)| ≤ Cnξn, we have

∣∣βn,i(x)
∣∣ ≤ Cn. ()

It follows from (), (), () and () that |βn,i(x)| ≤ C. Then, by virtue of Condition S
in Theorem , βn,i(x) = , and consequently γn,i(x) = . Thus, we obtain ().
Furthermore, since

〈
S̃(x,λ), B̃n+ν,i(x)

〉
=

⎧⎨
⎩(λ – λn,i)Ãn+mn,i–,i(x,λ), ν =mn,i – ,

(λ – λn,i)Ãn+ν,i(x,λ) – Ãn+ν+,i(x,λ), ν = ,mn,i – ,
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formula () gives

λS̃(x,λ) = �S(x,λ) – λ

∞∑
k=

(
Ãk,(x,λ)Sk,(x) – Ãk,(x,λ)Sk,(x)

)
.

From this, by virtue of (), it follows that �S(x,λ) = λS(x,λ). Analogously, using () we
obtain ��(x,λ) = λ�(x,λ). Thus, () and () are proved for the case when () is fulfilled.
Denote �(λ) := S(T ,λ). It follows from () and () for x = T that

�̃(λ) = �(λ) –
∞∑
k=

(
Ãk,(T ,λ)�k, – Ãk,(T ,λ)�k,

)
, ()

 =�(T ,λ) –
∞∑
k=

(
F̃k,(T ,λ)�k, – F̃k,(T ,λ)�k,

)
, ()

where �n+ν,i = �(ν)(λn,i)/ν!, n ∈ Si, ν = ,mn,i – . Differentiating () with respect to λ an
appropriate number of times and substituting λ = λn, we get

�n, =
∞∑
k=

(
P̃n,;k,(T)�k, – P̃n,;k,(T)�k,

)
. ()

Let us show that

P̃n,;k,(T) = –δn,k . ()

Indeed, for n,k ∈ S̃, ν = , m̃n – , s = , m̃k –  we have

P̃n+ν,;k+s,(T) =
m̃n––s∑
p=

M̃k+p+sD̃ν,p(T , λ̃n, λ̃k). ()

Moreover, according to (), we have 〈S̃ν(x, λ̃n), S̃(x, λ̃k)〉|x=T = , and hence

(λ̃n – λ̃k)D̃ν,p(T , λ̃n, λ̃k) + D̃ν–,p(T , λ̃n, λ̃k) – D̃ν,p–(T , λ̃n, λ̃k) = , ()

whereDα,β(T , λ̃n, λ̃k) =  for negative α or β . For λ̃n �= λ̃k solving the system (), we obtain
Dν,p(T , λ̃n, λ̃k) = , which togetherwith () gives Pn+ν,;k+s,(x) =  for n �= k. If λ̃n = λ̃k , then
() and () give

D̃ν,p(T , λ̃n, λ̃n) =

⎧⎨
⎩,  ≤ ν + p≤ m̃n – ,

α̃n+ν+p–m̃n+, m̃n –  ≤ ν + p≤ m̃n – .
()

According to () and (), we have P̃n+ν,;n+s,(T) = , ν < s. Moreover, using (), () and
(), we calculate

P̃n+ν,;n+s,(T) =
ν–s∑
p=

α̃n+ν–s–pM̃n+ν+p–m̃n+ = –δν–s,
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and arrive at (). Using () and (), we get

∞∑
k=

P̃n,;k,(T)�k, = .

Then, by virtue of Condition S, �k, = , k ≥ . Substituting this into () and using the
relation F̃k,(T ,λ) = , k ≥ , we obtain �(T ,λ) = .
() Let us now consider the general case when instead of () only () holds. Put

ρn,(l) :=

⎧⎨
⎩ρn, n < l,

ρ̃n, n ≥ l,
Mn,(l) :=

⎧⎨
⎩Mn, n < l,

M̃n, n≥ l.

We agree that if the symbol γ denotes an object constructed with the help of the numbers
{ρn,Mn}n≥, then the symbol γ(l) denotes the corresponding object, constructed with the
help of {ρn,(l),Mn,(l)}n≥. Then for all l ≥ , we have

�,(l) =

( ∞∑
n=

(
nξn,(l)

))/

=

( l–∑
n=

(
nξn

))/

< ∞.

For each fixed l ≥ , we solve the corresponding main equation

φ̃(l)(x) =
(
I – H̃(l)(x)

)
φ(l)(x),

and construct the functions S(l)(x,λ) and the boundary value problem L(q(l)(x),T). Using
Lemma .. in [], one can show that

lim
l→∞

‖q(l) – q‖L = , lim
l→∞

max
≤x≤T

∣∣S(l)(x,λ) – S(x,λ)
∣∣ = .

Denote by S(x,λ) the solution of equation () under the initial conditions S(,λ) = ,
S′
(,λ) = . According to Lemma .. in [], we obtain

lim
l→∞

max
≤x≤T

∣∣S(l)(x,λ) – S(x,λ)
∣∣ = .

Hence S(x,λ) = S(x,λ), i.e., �S(x,λ) = λS(x,λ). Similarly, we get ��(x,λ) = λ�(x,λ).
Notice that we additionally proved that �(ν)(λn) = , ν = ,mn – , n ∈ S, i.e., {λn}n≥ is

a spectrum of L. �

Proof of Theorem  According to () and (), the function �(x,λ) is the Weyl function
for the constructed boundary value problem L. Choose n∗ so that mn = m̃n = , n ≥ n∗,
and put. Differentiating () with respect to x and then substituting x = , we obtain

M(λ) = M̃(λ) +
∞∑

k=n∗

(
Mk

λ – λk
–

M̃k

λ – λ̃k

)

+
∑
k∈S
k<n∗

mk–∑
ν=

Mk+ν

(λ – λk)ν+
–

∑
k∈S̃
k<n∗

m̃k–∑
ν=

M̃k+ν

(λ – λ̃k)ν+
, ()
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where the series converges uniformly with respect to λ in bounded sets. From () and
(), it follows that for each n ∈ S, the number λn is a pole of the function M(λ) of or-
der mn. Thus, {λn}n≥ is the spectrum, and {Mn}n≥ is the Weyl sequence of L. Conse-
quently, {λn,αn}n≥ are the spectral data of L. �

7 Spacial cases and stability of the solution
The requirement that the main equation is uniquely solvable (Condition S in Theorem )
is essential and cannot be omitted (see Example .. in []). Condition S is difficult to
check in the general case. We point out three cases, for which the unique solvability of the
main equation can be proved or checked.
() The selfadjoint case. It is known that in the selfadjoint case, i.e., when the function

q(x) is real-valued, the spectral data {λn,αn}n≥ are real numbers, and

λn �= λm (n �=m), αn > . ()

Let real numbers {λn,αn}n≥ having the asymptotics () and () with {κn} ∈ l and satisfy-
ing () be given. Choose L̃, construct φ̃(x), H̃(x) and consider the equation (). Similarly
to Lemma .. in [], one can prove the following assertion.

Lemma For each fixed x ∈ [,T], the operator I–H̃(x), acting from B to B, has a bounded
inverse operator. Thus, the main equation () has a unique solution φ(x) ∈ B.

By virtue of Theorem  and Lemma , the following theorem holds.

Theorem  For real numbers {λn,αn}n≥ to be the spectral data of a certain selfadjoint
boundary value problem L(q(x),T) with q(x) ∈ L(,T), it is necessary and sufficient to
satisfy the asymptotics () and () with {κk} ∈ l and condition ().

() Finite-dimensional perturbations of the spectral data. Let a model boundary value
problem L̃ with the spectral data {λ̃n, α̃n}n≥ be given. We change a finite subset of these
numbers. In other words, we consider numbers {λn,αn}n≥ such that λn = λ̃n, αn = α̃n,
n >N for certain N +  ∈ S̃ and arbitrary in the rest. Then for such spectral data, the main
equation becomes the linear algebraic system (), and Condition S is equivalent to the
condition that the determinant of this system does not equal zero for each x ∈ [,T]. Such
perturbations are very popular in applications. We note that for the selfadjoint case the
determinant of the system () is always nonzero.
() Local solvability of the main equation. For small perturbations of the spectral data,

Condition S is fulfilled automatically. Let us for simplicity consider the case of simple spec-
tra, i.e., S̃ =N. The following theorem is valid.

Theorem  Let L̃ = L(q̃(x),T) be given. There exists δ >  (which depends on L̃) such that if
complex numbers {λn,αn}n≥ satisfy the condition � < δ, then there exists a unique bound-
ary value problem L(q(x),T) with q(x) ∈ L(,T), for which the numbers {λn,αn}n≥ are the
spectral data, and

‖q – q̃‖L(,T) < C�, ()

where C depends only on L̃.
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Proof Let C denote various constants, which depend only on L̃. Since � <∞, the asymp-
totical formulae () and () are fulfilled. Choose δ ∈ (, ) such that if � < δ then αn �= ,
n ∈ S. According to (), we have ‖H̃(x)‖ ≤ C�. Choose δ ≤ δ such that if � < δ, then
‖H̃(x)‖ ≤ / for x ∈ [,T]. In this case, there exists (I – H̃(x))–. Thus, all conditions of
Theorem are fulfilled, and hence there exists a unique q(x) ∈ L(,T), such that the num-
bers {λn,αn}n≥ are the spectral data of L(q(x),T). Moreover, () and () are valid. Using
(), one can get (). �

Theorem  gives the stability of Inverse Problem . Denote

�′ :=

( ∞∑
n=

(
nξ ′

n
)) 



,

where the numbers ξ ′
n, n≥  are determined by the formulae

ξ ′
k+ν :=

|λk – λ̃k|
k

+ k
mk––ν∑
p=

|αk+p – α̃k+p|

for k ∈ S∩ S̃,mk = m̃k , ν = ,mk – , and ξ ′
n :=  for other n. According to (), () and (),

we have C� ≤ �′ ≤ C�, C,C > , and hence () is equivalent to the estimate

‖q – q̃‖L(,T) < C�′.

Similarly to [], one can obtain the stability of the solution in the uniform norm and also
the necessary and sufficient conditions of the solvability for the inverse problem, when
q(x) is inWN

 [,T] or in L(,T).
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