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Abstract
In this short note, we consider a nonlocal quasilinear parabolic equation in a
bounded domain with the Neumann-Robin boundary condition. We establish a
blow-up result for a certain solution with positive initial energy.

1 Introduction
We consider the initial boundary value problem for a nonlocal quasilinear parabolic equa-
tion

ut = �pu + |u|q–u –


m(�)

∫
�

|u|q–udx, x ∈ �, t > , (.)

with Neumann-Robin boundary and initial conditions

|∇u|p– ∂u
∂n

= , x ∈ ∂�, t > , (.)

u(x, ) = u(x), x ∈ �, (.)

where � ⊂ RN (N ≥ ) is a bounded domain with a smooth boundary, m(�) denotes the
Lebesgue measure of the domain �, �pu = div(|∇u|p–∇u) with p ≥ , q > p – , u(x) ∈
L∞(�)∩W ,p(�), u(x) �≡ , and

∫
�
u dx = . It is easy to check that the integral of u over

� is conserved. Meanwhile, since u(x, t) is not required to be nonnegative, we use |u|q–u
instead of uq in equation (.).
Equation (.) arises naturally from the fluid mechanics, biology, and population dy-

namics. In particular, it is a possible model for the diffusion system of some biological
species with a human-controlled distribution, in which u(x, t), div(|∇u|p–∇u), |u|q–u,
and – 

m(�)
∫
�

|u|q–udx represent the density of the species, the mutation, which we may
view as the spread of the characteristic, the growth source of the species, and the human-
controlled distribution at position x and time t, respectively. The arising of a nonlocal
term denotes the evolution of the species at a point of space, which depends not only on
nearby density, but also on the mean value of the total amount of species due to the effects
of spatial inhomogeneity, see [–]. This equation can be also used to describe the slow
diffusion of concentration of non-Newton flow in a porous medium or the temperature of
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some combustible substance (cf. [–]). In addition, when p = q =  in (.), equation (.)
becomes

ut = �u + u –


m(�)

∫
�

u dx, x ∈ �, t > ,

which is one of the simplest equations with nonlocal terms and a homogeneous Neumann
boundary condition, and the quantity

∫
�
u(x, t)dx is conserved. This equation is also re-

lated to the Navier-Stokes equation on an infinite slab, which is explained in [].
In recent years, blow-up theory for solutions of the initial boundary value problem of

parabolic equations with local or nonlocal term has been rapidly developed, and there
have been many delicate results. Especially, for the relations between initial energy and
blow-up solution, see [–]. As for researches on the initial boundary value problem of
semilinear parabolic equations, we refer the readers to [–]. For instances, Hu and Yin
[] considered the nonlocal semilinear equation

ut = �u + |u|q–u –


m(�)

∫
�

|u|q–udx, x ∈ �, t >  (.)

with a homogeneous Neumann boundary condition

∂u
∂n

= , x ∈ ∂�, t >  (.)

and established a result of local existence for the negative initial energy by using a convex-
ity argument. Soufi [] investigated a similar problem and established a relation between
the finite time blow-up of solutions and the negativity of initial energy for  < q ≤  by us-
ing a gamma-convergence argument. They also conjectured that the relation might hold
for all q > , and a positive answer to which was given by Jazar in []. Lately, by using
the energy method, Gao [] established a relation between the finite time blow-up of so-
lutions and the positivity of initial energy of problem (.)-(.). In addition, Niculescu
and Rovenţa [] considered a more general initial boundary value problem of nonlocal
semilinear parabolic equation given by

ut = �u + f
(|u|) – 

m(�)

∫
�

f
(|u|)dx, x ∈ �, t > ,

with homogeneous Neumann boundary condition (.), and established a blow-up re-
sult, when f (|u|) belongs to a large class of nonlinearities and the initial energy was non-
positive by using the convexity method. For the initial boundary value problem of quasi-
linear parabolic equations, Liu and Wang [] studied the local p-Laplacian equation

ut = �pu + f (u), x ∈ �, t > ,

with homogeneous Dirichlet boundary condition, and built a relation between the finite
time blow-up of solutions and the positivity of initial energy. Recently, Niculescu and
Rovenţa [] considered the nonlocal quasilinear equation

ut = �pu + f
(|u|) – 

m(�)

∫
�

f
(|u|)dx, x ∈ �, t > ,
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with theNeumann-Robin boundary condition (.), and established a relation between the
finite time blow-up solutions and the negative initial energy, when p≥  and f belongs to
a large class of nonlinearities by virtue of a convexity argument.
In those works mentioned above, most problems assumed that the initial energy was

negative or non-positive to ensure the occurrence of blow-up. But, to the best of our
knowledge, the positive initial energy can also ensure the occurrence of blow-up in lo-
cal or nonlocal problems. It is difficult to determine whether the solutions of the initial
boundary value problem of nonlocal equation (.) will blow up in finite time, since the
comparison principle, which is the most effective tool to show blow-up of solutions, is in-
valid. The aim of our work is to find a relation between the finite time blow-up of solutions
and the positive initial energy of problem (.)-(.) by the improved convexity method.

2 Preliminaries and themain result
Since p > , equation (.) is degenerate on {(x, t)|∇u = }, there is no classical solution in
general. Hence, it is reasonable to find a weak solution of problem (.)-(.). To this end,
we first give the following definition of the weak solution of problem (.)-(.).

Definition  If a function u(x, t) satisfies the following conditions:

() u ∈ L∞(QT )∩ Lp
(
,T ;W ,p(�)

)
, ut ∈ L(QT ),

()
∫ ∫

QT

[
uφt – |∇u|p–∇u · ∇φ +

(
|u|q–u –


m(�)

∫
�

|u|q–udx
)

φ

]
dxdt

=
∫

�

u(x, t)φ(x, t)dx –
∫

�

u(x, )φ(x, )dx for every t ∈ (,T),

where φ ∈ C(�̄ × [,T]) and QT = � × (,T), then u(x, t) is called a weak solution of
problem (.)-(.).

Remark  The existence of local nonnegative solutions in time to problem (.)-(.) can
be obtained by using a fixed point theorem or a parabolic regular theory to get a suitable
estimate in a standard limiting process, see [, , ]. The proof is standard, and so it
is omitted here. Moreover, for convenience, we may assume that the appropriate weak
solution is smooth, and no longer consider approximation problem.

Let W (�) denote a subspace of W ,p(�), and we assume that the functions u in W (�)
satisfy

∫
�
udx = . We also define a norm onW (�) by

‖u‖ =
(∫

�

|∇u|p dx
) 

p
.

It is easy to see that this norm is equivalent to the classical norm onW ,p(�) by using the
Poincaré inequality. Set B be the optimal constant of the embedding inequality

‖u‖q+ ≤ B‖∇u‖p, u ∈W (�), (.)
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which is equivalent to

B– = inf
u∈W (�),u�=

‖∇u‖p
‖u‖q+ ,

where

 < q ≤ +∞, when N ≤ p;  < q ≤ (p – )N + p
N – p

, when N > p.

We also define α, E, and E(t) as

α = B– q+
q–p+ , E =

(

p
–


q + 

)
B– p(q+)

q–p+ for q > p –  (.)

and

E(t) =
∫

�

[

p
|∇u|p – 

q + 
|u|q+

]
dx. (.)

We now introduce our main result on the blow-up solutions with the positive initial
energy below.

Theorem  (Sufficient condition for blow-up) Set p≥ , p–  < q ≤ +∞, when N ≤ p and
p–  < q ≤ (p–)N+p

N–p , when N > p. Suppose that u(·, t) ∈W (�) is a solution of (.)-(.), and
the initial datum u(x) ∈ W (�) is chosen to ensure that E() < E and ‖∇u‖p > α. Then
the solution u(x, t) blows up in a finite time.

Remark  Choose � = (–π
 ,

π
 ), p =  and q = ; one can easily verify that u(x) = sinx

satisfies u(x) ∈W (�), E() < E and ‖∇u‖p > α, therefore, conditions in Theorem  are
valid.

Remark  Our result improves the results of Gao [] and Niculescu and Rovenţa [].

3 The proof of Theorem 1
To prove our main result, we first establish the following three lemmas obtained by apply-
ing the idea of Liu and Wang in [], where a different type of problem was discussed.

Lemma  E(t) defined in (.) is non-increasing in t.

Proof A direct computation with the integration by parts yields

d
dt

E(t) = –
∫

�

ut
(
�pu + |u|q–u)

dx

= –
∫

�

ut dx –


m(�)

∫
�

|u|q–udx ·
∫

�

ut dx = –
∫

�

ut dx ≤ ,

and hence, E(t) is non-increasing in t. �

The following second lemma gives a lower bound estimate for the solution u(x, t) in the
Lp-norm:
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Lemma  Let u(x, t) be a solution of (.)-(.) with initial data satisfying

E() < E and ‖∇u‖p > α.

Then there exists a positive constant α > α such that

‖∇u‖p > α, ∀t ≥  (.)

and

‖u‖q+ ≥ Bα, ∀t ≥ . (.)

Proof By (.) and (.), we notice that

E(t) ≥ 
p
‖∇u‖pp –


q + 

Bq+‖∇u‖q+p

=

p
αp –


q + 

Bq+αq+ .= g(α), (.)

where α = ‖∇u‖p. It can be easily seen that g is increasing for  < α < α, and decreas-
ing for α > α, g(α) → –∞ as α → +∞, and g(α) = E, where α and E are constants
defined in (.). Therefore, there exists a constant α > α such that E() = g(α), since
E() < E.
Setting α = ‖∇u‖p, we have g(α) ≤ E() = g(α) by (.), which implies that α ≥ α,

since α and α ≥ α.
To establish (.), we assume that there exists a constant t >  such that ‖∇u(·, t)‖p < α.

Because of the continuity of ‖∇u(·, t)‖p, we can choose t such that ‖∇u(·, t)‖p > α. From
(.), we deduce that

E() = g(α) < g
(∥∥∇u(·, t)

∥∥
p

) ≤ E(t),

which is impossible by Lemma , and hence, inequality (.) is established.
It also follows from (.) that


p
‖∇u‖pp ≤ E() +


q + 

∫
�

|u|q+ dx.

We then obtain that


q + 

∫
�

|u|q+ dx ≥ 
p
‖∇u‖pp – E()

≥ 
p
α
p
 – E() =


p
α
p
 – g(α)

=


q + 
Bq+α

q+
 ,

from which inequality (.) follows. �
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Setting

H(t) = E – E(t), ∀t ≥ , (.)

we have the following lemma.

Lemma  For all t ≥ , we have the inequalities

 <H()≤ H(t) ≤ 
q + 

∫
�

|u|q+ dx. (.)

Proof By Lemma , we have

H ′(t) = –E′(t) ≥ ,

and so

H(t) ≥ H() > , t ≥ .

From (.) and (.), we get

H(t) = E –

p
‖∇u‖pp +


q + 

∫
�

|u|q+ dx.

It then follows from (.) and (.) that

E –

p
‖∇u‖pp ≤ E –


p
α
p
 ≤ –


q + 

Bq+α
q+
 ≤ , t ≥ ,

which guarantees (.). �

Proof of Theorem  Setting G(t) = 

∫
�
u(x, t)dx and differentiating it, we obtain that

G′(t) =
∫

�

uut dx

=
∫

�

u
(

�pu + |u|q–u –


m(�)

∫
�

|u|q–udx
)
dx

=
∫

�

|u|q+ dx –
∫

�

|∇u|p dx

=
∫

�

|u|q+ dx – pE(t) –
p

q + 

∫
�

|u|q+ dx

=
q – p + 
q + 

∫
�

|u|q+ dx – pE + pH(t). (.)

From (.) and (.), we deduce that

pE = p
(

p
–


q + 

)
B– p(q+)

q–p+

=
q – p + 
q + 

α
q+


α
q+


Bq+α
q+
 ≤ q – p + 

q + 
α
q+


α
q+


∫
�

|u|q+ dx. (.)
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Substituting (.) into (.), we obtain

G′(t) ≥
(
 –

α
q+


α
q+


)
q – p + 
q + 

∫
�

|u|q+ dx + pH(t)

= C

∫
�

|u|q+ dx + pH(t), (.)

where C = ( – α
q+


α
q+


) q–p+q+ .
By Hölder’s inequality, we get

G
q+
 (t) =

(



∫
�

|u|(x, t)dx
) q+

 ≤ C
∫

�

|u|q+ dx, (.)

where C = C(|�|,q) > . Combining (.) and (.) with Lemma , we have

G′(t) ≥ γG
q+
 (t), where γ =

C

C
> . (.)

Integrating (.) over (, t), we obtain

G
q–
 (t)≥ 

G
–q
 () – q–

 γ t
,

which implies that G(t) blows up at a finite time T∗ ≤ G
–q
 ()

q–
 γ

, and so does u(x, t). The
proof is completed. �

Remark  Due to the restriction of our method, we cannot get the blow-up result for
q > (p–)N+p

N–p , when N > p. We conjecture that Theorem  will hold for all q > p –  ≥ .
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