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Abstract
This work aims to examine a Sturm-Liouville operator with a piece-wise continuous
coefficient and a spectral parameter in boundary condition. The orthogonality of the
eigenfunctions, realness and simplicity of the eigenvalues are investigated. The
asymptotic formula of the eigenvalues is found, and the resolvent operator is
constructed. It is shown that the eigenfunctions form a complete system and the
expansion formula with respect to eigenfunctions is obtained. Also, the evolution of
the Weyl solution and Weyl function is discussed. Uniqueness theorems for the
solution of the inverse problem with Weyl function and spectral data are proved.
MSC: 34L10; 34L40; 34A55

Keywords: Sturm-Liouville operator; expansion formula; inverse problem; Weyl
function

1 Introduction
In recent years, there has been a growing interest in physical applications of boundary
value problemswith a spectral parameter, contained in the boundary conditions. The rela-
tionship between diffusion processes and Sturm-Liouville problem with eigen-parameter
in the boundary conditions has been shown in []. Another example of this relationship
between the same problem and the wave equation has been examined in [, ]. Sturm-
Liouville problems with a discontinuous coefficient arise upon non-homogeneous mate-
rial properties.
In a finite interval, inverse problems for the Sturm-Liouville operator with spectral pa-

rameter, contained in the boundary conditions, have been investigated, and the unique-
ness of the solution of these problems has been shown in [–]. The inverse problem has
been analyzed by zeros of the eigenfunctions in [], by numerical methods in [] and by
two spectra, consisting of sequences of eigenvalues and the normed constants in []. In
[, ], eigenvalue-dependent inverse problemwith the discontinuities inside the interval
was examined by the Weyl function. In a finite interval, discontinuous and no eigenvalue
parameter containing direct problem and inverse problem with the Weyl function were
discussed in [, ]. The similar problem was investigated in the half line by scattering
data in [, ].
We consider the boundary value problem

–y′′ + q(x)y = λρ(x)y, ()
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U(y) := y() = , ()

U(y) := λ[βy′(π ) + βy(π )
]
+ αy(π ) + αy′(π ) = , ()

where q(x) ∈ L(,π ) is a real valued function, λ is a complex parameter, α, α, β, β are
real numbers and

ρ(x) =

⎧⎨
⎩, ≤ x < a,

α, a < x≤ π ,

where  < α �= .

2 Special solutions
Let ϕ(x,λ) and ψ(x,λ) be the solutions of equation () satisfying the initial conditions

ϕ(,λ) = , ϕ′(,λ) = , ()

ψ(π ,λ) = –λβ – α, ψ ′(π ,λ) = λβ + α. ()

For the solution of equation (), the following integral representation is obtained in []
for all λ:

e(x,λ) =



(
 +

√
ρ(x)

)
eiλμ+(x) +




(
 –

√
ρ(x)

)
eiλμ–(x)

+
∫ μ+(x)

–μ+(x)
K(x, t)eiλt dt,

where K(x, ·) ∈ L(–μ+(x),μ+(x)).
The kernel K(x, t) has the partial derivative K ′

x belonging to the space L(–μ+(x),μ+(x))
for every x ∈ [,π ], and the properties below hold:

d
dx

K
(
x,μ+(x)

)
=



√

ρ(x)

(
 +

√
ρ(x)

)
q(x),

d
dx

{
K

(
x,μ–(x) + 

)
–K

(
x,μ–(x) – 

)}
=



√

ρ(x)

(
 –

√
ρ(x)

)
q(x),

K
(
x, –μ+(x)

)
= .

Moreover, if q(x) is differentiable, then the following are valid

ρ(x)K ′′
tt –K ′′

xx + q(x)K = , |t| < μ+(x),∫ μ+(x)

–μ+(x)

∣∣K(x, t)dt
∣∣ ≤ C

(
exp

{∫ x



∣∣q(t)∣∣dt} – 
)
,  < C = const.

Using the representation of the solution e(x,λ) and formula

ϕ(x,λ) =
e(x,λ) – e(x, –λ)

iλ
,
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we obtain the integral representation of the solution ϕ(x,λ)

ϕ(x,λ) = ϕ(x,λ) +
∫ μ+(x)


A(x, t)

sinλt
λ

dt, ()

whereA(x, t) = K(x, t)–K(x, –t). The kernelA(x, t) can be representedwith the coefficients
ρ(x) and q(x)

d
dx

A
(
x,μ+(x)

)
=



√

ρ(x)

(
 +

√
ρ(x)

)
q(x),

d
dx

{
A

(
x,μ–(x) + 

)
–A

(
x,μ–(x) – 

)}
=



√

ρ(x)

(
 –

√
ρ(x)

)
q(x).

With the help of equation (), we have a representation for the function ψ(x,λ)

ψ(x,λ) = –



(
 +

α√
ρ(x)

)
sinλ(μ+(π ) –μ+(x))

αλ

–



(
 –

α√
ρ(x)

)
sinλ(μ+(π ) –μ–(x))

αλ

+
∫ μ+(π )–μ+(x)


Ã(x, t)

sinλt
λ

dt, ()

where Ã(x, t) is a real function.
Denote

	(λ) :=
〈
ϕ(x,λ),ψ(x,λ)

〉
= ϕ(x,λ)ψ ′(x,λ) – ϕ′(x,λ)ψ(x,λ), ()

which is independent of x ∈ [,π ]. Substituting x =  and x = π into (), we get

	(λ) =U(ϕ) = –U(ψ).

	(λ) is an entire function of λ and is called the characteristic function of the boundary
value problem ()-().

3 Some spectral properties
Lemma  The square values of the roots (λn)∞n= of the characteristic function coincide with
the eigenvalues of the boundary value problem ()-(), and for every λn, there exists a se-
quence (kn) such that

ψ(x,λn) = knϕ(x,λn) (kn �= ), ()

where ψ(x,λn) and ϕ(x,λn) are the eigenfunctions of the boundary value problem ()-(),
corresponding to the eigenvalue λn.

Proof The proof can be done in a similar way to []. Indeed, let us assume that λ is an
eigenvalue of the function 	(λ). Then

	(λ) =

∣∣∣∣∣ϕ(x,λ) ψ(x,λ)
ϕ′(x,λ) ψ ′(x,λ)

∣∣∣∣∣ = 
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holds, i.e., the functions ϕ(x,λ) and ψ(x,λ) are linearly dependent ψ(x,λ) = knϕ(x,λ)
(kn = const.), and they satisfy the boundary conditions (), (). Hence λ

 is an eigenvalue,
ψ(x,λ) and ϕ(x,λ) are eigenfunctions, related to this eigenvalue. Conversely, let λ

 be
an eigenvalue of the operator A, and let y(x,λ), y(x, –λ) be the corresponding eigen-
functions. Then the boundary conditions (), () hold both for the eigenfunctions y(x,λ)
and y(x, –λ). Additionally, if the functions y(x,λ) and y(x, –λ) satisfy the conditions
y′(,λ) = , y′(,–λ) = , then y(x,λ) ≡ ϕ(x,λ), y(x, –λ) ≡ ϕ(x, –λ). According to
boundary conditions (), (), we have

	(λ) =U
(
ϕ(π ,λ)

)
=U

(
y(π ,λ)

)
= ,

	(–λ) =U
(
ϕ(π , –λ)

)
=U

(
y(π , –λ)

)
= .

Similarly, if we assume that y′
(π ,λ) = λ

β +α, y′
(π , –λ) = λ

β +α, then y(x,λ) ≡
ψ(x,λ), y(x, –λ) ≡ ψ(x, –λ). Again from the boundary conditions (), (), it is obvious
that

	(λ) = –U
(
ψ(,λ)

)
= –U

(
y(,λ)

)
= ,

	(–λ) = –U
(
ψ(,–λ)

)
= –U

(
y(,–λ)

)
= .

Therefore, we have proved that for each eigenvalue λ
, there exists only one (up to a mul-

tiplicative constant) eigenfunction. �

In the Hilbert space Hρ = L,ρ(,π )⊕C an inner product defined by

(F ,G) :=
∫ π


F(x)G(x)ρ(x)dx +

FG

χ
,

where

F =

(
F(x)
F

)
∈Hρ , G =

(
G(x)
G

)
∈Hρ , χ := αβ – αβ > .

Let us define

A(F) :=

(
–F ′′

 (x) + q(x)F(x)
αF(π ) + αF ′

(π )

)

with

D(A) =

{
F ∈Hρ : F(x), F ′

(x) ∈ AC[,π ], lF ∈ L,ρ(,π )
F() = , F = βF ′

(π ) + βF(π )

}
,

where

l(F) =


ρ(x)
{
–F ′′

 + q(x)F
}
.

The boundary value problem ()-() is equivalent to the equation AY = λY .
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The eigenfunctions of operator A are in the form of

�(x,λn) = �n :=

(
ϕ(x,λn)

βϕ
′(π ,λn) + βϕ(π ,λn)

)
.

Lemma  The eigenfunctions � and �, corresponding to different eigenvalues λ �= λ,
are orthogonal.

Proof Since � and � are the solutions of the boundary value problem ()-(), the equa-
tions below are valid

–�′′(x,λ) + q(x)�(x,λ) = λ
ρ(x)�(x,λ),

–�′′(x,λ) + q(x)�(x,λ) = λ
ρ(x)�(x,λ).

Multiplying the first equation by�(x,λ) and the second equation by –�(x,λ) and adding
together, we have

d
dx

{
�(x,λ)�′(x,λ),�′(x,λ)�(x,λ)

}
=

(
λ
 – λ


)
ρ(x)�(x,λ)�(x,λ).

Integrating it from  to π , and using the boundary condition (), we obtain

(
λ
 – λ


)[∫ π


�(x,λ)�(x,λ)ρ(x)dx

]

+
(
λ
 – λ


)[ 

k
(
βϕ

′(x,λ) + βϕ(x,λ)
)(

βϕ
′(x,λ) + βϕ(x,λ)

)]
= .

Since λ �= λ, the lemma is proved. �

Corollary  The eigenvalues of the boundary value problem ()-() are real.

The values

γn =
∫ π


ϕ(x,λn)dx +

(βϕ
′(π ,λn) + βϕ(π ,λn))

χ
()

are called the norming constants of the boundary value problem ()-().
Now, let us agree to denote differentiation with respect to λ with a dot 	̇ = d

dλ
	 (	̇ �= ).

Lemma  The following equality holds

	̇(λn) = λnknγn. ()

Proof Since

–ϕ′′(x,λn) + q(x)ϕ(x,λn) = λ
nϕ(x,λn), –ψ ′′(x,λ) + q(x)ψ(x,λ) = λψ(x,λ),

we get

d
dx

	(λ) =
(
λ
n – λ)ϕ(x,λn)ψ(x,λ).

http://www.boundaryvalueproblems.com/content/2013/1/183


Mamedov and Cetinkaya Boundary Value Problems 2013, 2013:183 Page 6 of 16
http://www.boundaryvalueproblems.com/content/2013/1/183

With the help of () and (),

–	(λ) = (λn – λ)(λn + λ)kn
[∫ π


ϕ(x,λn)ρ(x)dx + χ

]
.

Taking into consideration () and (), for λ → λn, we arrive (). �

Corollary  All zeros of 	(λ) are simple, i.e., 	̇(λn) �= .

4 Asymptotic formulas of eigenvalues
Let ϕ(x,λ) be the solution of equation () satisfying the initial conditions () when q(x) ≡


ϕ(x,λ) =



(
 +

√
ρ(x)

)
sinλ(μ+(x))

λ
+



(
 –

√
ρ(x)

)
sinλ(μ–(x))

λ
. ()

The eigenvalues λ
n (n = ,±,±, . . .) of the boundary value problem ()-() when q(x) ≡

 can be found using the equation

	(λ) = λ[βϕ
′
(π ,λ) + βϕ(π ,λ)

]
+ αϕ(π ,λ) + αϕ

′
(π ,λ) = 

from [] (see also []) and can be represented in the following way

λ
n =

nπ

μ+(π )
+ hn, n = ,±,±, . . . , ()

where supn |hn| = h < +∞.

Lemma  Roots λ
n of the function 	(λ) are separated, i.e.,

inf
n�=k

∣∣λ
n – λ

k
∣∣ = τ > .

Proof Assume the contrary. Then there are sequences (λ′
k ), (λ

′′
k ) of zeros of functions

λ[βy′(π ) + βy(π )] + αy(π ) + αy′(π ) =  such that

λ′
k �= λ′′

k , λ′
k → ∞, λ′′

k → ∞,

lim
k→∞

(
λ′
k – λ′′

k
)
= .

Since the eigenfunctions ϕ(x,λ′
k ), ϕ(x,λ′′

k ) are orthogonal, we have

 = λ′
k λ′′

k

∫ π


ρ(x)ϕ

(
x,λ′

k
)
ϕ

(
x,λ′′

k
)
dx

=
∫ π


ρ(x)λ′

k ϕ
(
x,λ′

k
)[

λ′′
k ϕ

(
x,λ′′

k
)
– λ′

k ϕ
(
x,λ′

k
)]
dx

+
∫ π


ρ(x)

(
λ′
k ϕ

(
x,λ′

k
)) dx

= Ik +
∫ π


ρ(x)

(
λ′
k ϕ

(
x,λ′

k
)) dx

http://www.boundaryvalueproblems.com/content/2013/1/183
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≥ Ik +
∫ a


ρ(x)

(
λ′
k ϕ

(
x,λ′

k
)) dx = Ik +

∫ a


sin λ′

k xdx

= Ik +
a

–
sinλ

ka
λ

k
,

where

Ik =
∫ π


ρ(x)λ′

k ϕ
(
x,λ′

k
)[

λ′′
k ϕ

(
x,λ′′

k
)
– λ′

k ϕ
(
x,λ′

k
)]
dx.

Thus,

 ≥ Ik +
a

–
sinλ

ka
λ

k
. ()

Let us prove that Ik →  as k → ∞. In fact, () implies the following estimate

∣∣λ′
k ϕ

(
x,λ′

k
)
– λ′′

k ϕ
(
x,λ′′

k
)∣∣ ≤ C

∣∣λ′
k – λ′′

k
∣∣.

Consequently, limk→∞[λ′
k ϕ(x,λ′

k ) – λ′′
k ϕ(x,λ′′

k )] =  holds uniformly on x ∈ [,π ]. Now,
passing to the limit in equality (), as k → ∞, we have  ≥ a

 . This is a contradiction, and
it proves the validity of lemma’s statement. �

Lemma  The eigenvalues of the boundary value problem ()-() are in the form of

λn = λ
n +

dn
λ
n
+

ηn

n
, λn ≥ , ()

where dn is a bounded sequence

dn =


λ
n	̇(λ

n)

{
–

∫ π



√
ρ(t)

(
 –

√
ρ(t)

)
q(t) cos

(
λ
nμ

–(π )
)
dt

}

+


λ
n	̇(λ

n)

{∫ π



√
ρ(t)

(
 +

√
ρ(t)

)
q(t) cos

(
λ
nμ

+(π )
)
dt

}
,

and {ηn} ∈ l.

Proof From (), it follows that

	(λ) = 	(λ) +
∫ μ+(π )


A(π , t)

sinλt
λ

dt. ()

Lemma .. in [] and from [], we get

	(λ) –	(λ) =O
(


|λ|

)
e| Imλ|μ+(π ), |λ| → ∞. ()

Therefore, for sufficiently large n, on the contours

�n =
{
λ : |λ| = ∣∣λ

n
∣∣ + τ



}
,
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Mamedov and Cetinkaya Boundary Value Problems 2013, 2013:183 Page 8 of 16
http://www.boundaryvalueproblems.com/content/2013/1/183

we have

∣∣	(λ) –	(λ)
∣∣ < ∣∣	(λ)

∣∣.
By the Rouche theorem, we obtain that the number of zeros of the function {	(λ) –
	(λ)} + 	(λ) = 	(λ) inside the contour �n coincides with the number of zeros of the
function 	(λ). Furthermore, applying the Rouche theorem to the circle σn(δ) = {λ :
|λ–λ

n| ≤ δ}, we get that, for sufficiently large n there exists only one zero λn of the function
	(λ) in σn(δ). Owing to the arbitrariness of δ >  we have

λn = λ
n + εn, εn = o(),n→ ∞. ()

Substituting () into (), we get

	
(
λ
n + εn

)
= 	

(
λ
n + εn

)
+

∫ μ+(π )


A(π , t)

sin(λ
n + εn)

λ
n + εn

dt = .

Hence, as n→ ∞, taking into account the equality 	(λ
n) =  and relations sin εnμ

+(π ) ≈
εnμ

+(π ), cos εnμ+(π ) ≈ , integrating by parts and using the properties of the kernel
A(x, t), we have

εn ≈ 
λ
n	̇(λ

n)

{
A

(
π ,μ+(π )

)cos(λ
n + εn)

λ
n + εn

μ+(π )
}

–


λ
n	̇(λ

n)

{[
A

(
π ,μ–(π ) + 

)
–A

(
π ,μ–(π ) + 

)]cos(λ
n + εn)

λ
n + εn

μ–(π )
}

–


λ
n	̇(λ

n)

{∫ μ+(π )


At(π , t)

cos(λ
n + εn)

λ
n + εn

t dt
}

=
dn

λ
n + εn

+
η̃n

λ
n + εn

,

where

{η̃n} :=
{∫ μ+(π )


At(π , t) cos

(
λ
n + εn

)
t dt

}
.

Let us show that {η̃n} ∈ l. It is obvious that

∫ μ+(π )


At(π , t) cosλt dt

can be reduced to

∫ μ+(π )

–μ+(π )
R(t)eiλt dt,

where R(t) ∈ L(–μ+(π ),μ+(π )). Now, take

ζ (λ) :=
∫ μ+(π )

–μ+(π )
R(t)eiλt dt.

http://www.boundaryvalueproblems.com/content/2013/1/183
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It is clear from [] (p.) that {ζn} = {ζ (λn)} ∈ l. By virtue of this we have η̃n ∈ l (see [,
]). Therefore, as

ηn =
η̃n

λ
n + εn

,

the validity of ηn ∈ l can be seen directly. Lemma is proved. �

5 Expansion formula
Assume that λ is not a spectrumpoint of operatorA. Then, there exists resolvent operator
Rλ (A) = (A – λI)–. Let us find the expression of the operator Rλ (A).

Lemma  The resolvent Rλ (A) is the integral operator with the kernel

G(x, t;λ) = –


	(λ)

⎧⎨
⎩ϕ(t,λ)ψ(x,λ), t ≤ x,

ψ(t,λ)ϕ(x,λ), t ≥ x.
()

Proof To construct the resolvent operator ofA, we need to solve the boundary value prob-
lem

–y′′ + q(x)y = λρ(x)y + ρ(x)f (x), ()

y() = , ()

λ[βy′(π ) + βy(π )
]
+ αy(π ) + αy′(π ) = f, ()

where f (x) ∈D(A). By applying the method of variation of constants, we seek the solution
of the problem ()-() in the following form

y(x,λ) = c(x,λ)ψ(x,λ) + c(x,λ)ϕ(x,λ), ()

and we get the coefficients c(x,λ) and c(x,λ) as

c(x,λ) = c(,λ) –


	(λ)

∫ x


ϕ(t,λ)f (t)ρ(t)dt, ()

c(x,λ) = –


	(λ)

∫ π

x
ψ(t,λ)f (t)ρ(t)dt + c(π ,λ). ()

Substituting () and () into () and taking into account the boundary conditions ()
and (), we have

y(x,λ) =
∫ π


G(x, t;λ)f (t)ρ(t)dt –

f
	(λ)

ϕ(x,λ), ()

where G(x, t;λ) is as in (). �

Theorem  The eigenfunctions ϕ(x,λn)n≥ of the boundary value problem ()-() form a
complete system in L,ρ(,π )⊕C.

http://www.boundaryvalueproblems.com/content/2013/1/183
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Proof With the help of () and (), we can write

ψ(x,λn) =
	̇(λn)
λnγn

ϕ(x,λn). ()

Using () and (), we get

Resλ=λn y(x,λ) = –


λnγn
ϕ(x,λn)

{∫ π


ϕ(t,λn)f (t)ρ(t)dt +

f
kn

}
. ()

Now, let f (x) ∈ L,ρ(,π )⊕C and assume

(
ϕ(x,λn), f (x)

)
=

∫ π


ϕ(x,λn)f(x)ρ(x)dx +

f(βϕ
′(π ,λn) + βϕ(π ,λn))

χ
= . ()

Then from (), we have Resλ=λn y(x,λ) = . Consequently, for fixed x ∈ [,π ] the function
y(x,λ) is entire with respect to λ.
Let us denote that

Gδ :=
{
λ :

∣∣λ – λ
n
∣∣ ≥ δ,n = ,∓,∓, . . .

}
,

where δ is a sufficiently small positive number. () is valid from Theorem . in [] for
λ ∈Gδ .
On the other hand, we can say from Lemma .. in [] that for every f (x) ∈ L(,π ),

the following relation holds

lim|λ|→∞ max
≤x≤π

{
e–| Imλ|x

∣∣∣∣
∫ x


f (t) cosλt dt

∣∣∣∣
}

= lim|λ|→∞ max
≤x≤π

{
e–| Imλ|x

∣∣∣∣
∫ x


f (t) sinλt dt

∣∣∣∣
}
= . ()

Also, for |λ| → ∞, the relations below hold

ϕ(x,λ) =O
(


|λ|e

| Imλ|μ+(x)
)
, ()

ϕ′(x,λ) = ϕ′
(x,λ) +O

(


|λ|e
| Imλ|μ+(x)

)
=O

(
e| Imλ|μ+(x)), ()

ψ(x,λ) =O
(


|λ|e

| Imλ|(μ+(π )–μ+(x))
)
, ()

ψ ′(x,λ) = ψ ′
(x,λ)O

(


|λ|e
| Imλ|(μ+(π )–μ+(x))

)
=O

(
e| Imλ|(μ+(π )–μ+(x))). ()

From the estimates ()-(), it is obvious that

∣∣	(λ)
∣∣ ≥ Cδ


|λ|e

| Imλ|μ+(π ), λ ∈ Gδ . ()

From (), it follows that for fixed δ >  and sufficiently large λ* > , we have

∣∣y(x,λ)∣∣ ≤ Cδ

|λ| , λ ∈Gδ , |λ| ≥ λ*.

http://www.boundaryvalueproblems.com/content/2013/1/183
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Using maximum principle for module of analytic functions and Liouville theorem, we get
y(x,λ) ≡ . From this and the expression of the boundary value problem ()-(), we
obtain that f (x)≡  a.e. on [,π ]. Thus, we reach the completeness of the eigenfunctions
ϕ(x,λn) in L,ρ(,π )⊕C. �

Theorem  If f (x) ∈ D(A), then the expansion formula

f (x) =
∞∑
n=

anϕ(x,λn) ()

is valid, where

an =


γn

∫ π


ϕ(t,λn)f (t)ρ(t)dt,

and the series converges uniformly with respect to x ∈ [,π ]. For f (x) ∈ L,ρ(,π ), the series
converges in L,ρ(,π ),moreover, the Parseval equality holds

∫ π



∣∣f (x)∣∣ρ(x)dx = ∞∑
n=

γn|an|.

Proof Since ϕ(x,λ) andψ(x,λ) are the solutions of the boundary value problem ()-(), we
have

y(x,λ) = –


λ	(λ)

{
ψ(x,λ)

∫ x



[
–ϕ′′(t,λ) + q(t)ϕ(t,λ)

]
f (t)dt

}

–


λ	(λ)

{
ϕ(x,λ)

∫ π

x

[
–ψ ′′(t,λ) + q(t)ψ(t,λ)

]
f (t)dt

}

–
f

	(λ)
ϕ(x,λ). ()

Integrating by parts and taking into account the boundary conditions (), (), we obtain

y(x,λ) = –

λ f (x) –


λ

{
Z(x,λ) + Z(x,λ)

}
–

f
	(λ)

ϕ(x,λ), ()

where

Z(x,λ) =


	(λ)

{
ψ(x,λ)

∫ x


ϕ′(t,λ)g(t)dt + ϕ(x,λ)

∫ π

x
ψ ′(t,λ)g(t)dt

}
,

Z(x,λ) =


	(λ)

{
ψ(x,λ)

∫ x


ϕ(t,λ)q(t)f (t)dt

}

+


	(λ)

{
ϕ(x,λ)

∫ π

x
ψ(t,λ)q(t)f (t)dt + ϕ(x,λ)ψ ′(π ,λ)f (π )

}
,

as g(t) = f ′(t). Let us consider the following contour integral

In(x) =


π i

∮
�n

λy(x,λ)dλ,
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where �n = {λ : |λ| = |λ
n| + τ

 } is a contour oriented counter-clockwise, and n is a suffi-
ciently large natural number. With the help of Residue theorem, we get

In(x) = 
∞∑
n=

Resλ=λn

[
λy(x,λ)

]
=

∞∑
n=

anϕ(x,λn) +
∞∑
n=

λf
	̇(λn)

ϕ(x,λn), ()

where

an =

γn

∫ π


ϕ(t,λn)f (t)ρ(t)dt.

On the other hand, taking into account (), we have

In(x) = –f (x) +


π i

∮
�n

(
Z(x,λ) + Z(x,λ)

)
dλ. ()

Comparing () and (), we obtain

∞∑
n=

anϕ(x,λn) +
∞∑
n=

λf
	̇(λn)

ϕ(x,λn) = –f (x) + εn(x),

where

εn(x) = –


π i

∫
�n

(
Z(x,λ) + Z(x,λ)

)
dλ.

Thus, we obtain

f (x) =
∞∑
n=


γn

ϕ(x,λn)
{∫ π


ϕ(t,λn)f (t)ρ(t)dt

}
+ εn(x). ()

Now, let us show that

lim
n→∞ max

x∈[,π ]
∣∣εn(x)∣∣ = . ()

From estimates ()-() of solutions ϕ(x,λ), ψ(x,λ) and the inequality () for the func-
tion 	(λ), it follows, for fixed δ >  and sufficiently large λ* > 

max
x∈[,π ]

∣∣Z(x,λ)
∣∣ ≤ C

|λ| , λ ∈Gδ , |λ| ≥ λ*. ()

Let us show that lim|λ|→∞ max≤x≤π |Z(x,λ)| = . If we suppose that g(t) ∈ AC[,π ], and
by then integrate by parts the expression of Z(x,λ), we obtain

Z(x,λ) = –


	(λ)

{
ψ(x,λ)

∫ x


ϕ(t,λ)g ′(t)dt + ϕ(x,λ)

∫ π

x
ψ(t,λ)g ′(t)dt

}
.

Hence, similar to Z(x,λ), we have

max
x∈[,π ]

∣∣Z(x,λ)
∣∣ ≤ C

|λ| , λ ∈Gδ , |λ| ≥ λ*. ()
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In general case, let us take an arbitrary fixed number ε >  and assume that gε(t) ∈
AC[,π ], such that

∫ π

 |g(t) – gε(t)|dt < ε. Then we can find a λ** that for λ ∈ Gδ and
|λ| > λ**. Also, using the equation below,

Z(x,λ) =


	(λ)

{
ψ(x,λ)

∫ x



(
g(t) – gε(t)

)
ϕ′(t,λ)dt

}

+


	(λ)

{
ϕ(x,λ)

∫ π

x

(
g(t) – gε(t)

)
ψ ′(t,λ)dt

}

+


	(λ)

{
ψ(x,λ)

∫ x



(
gε(t)

)
ϕ′(t,λ)dt + ϕ(x,λ)

∫ π

x

(
gε(t)

)
ψ ′(t,λ)dt

}
,

and with the help of the estimates of functions ϕ(x,λ), ψ(x,λ) and 	(λ), we get

max
x∈[,π ]

∣∣Z(x,λ)
∣∣ ≤ C

∫ π



∣∣g(t) – gε(t)
∣∣dt + C̃(ε)

|λ| < C · ε + C̃(ε)
|λ| ,

as λ ∈Gδ , |λ| ≥ λ**. Hence we have

lim|λ→∞|max
∣∣Z(x,λ)

∣∣ ≤ C · ε (λ ∈Gδ).

From the arbitrariness of ε, we reach

lim|λ|→∞ max
x∈[,π ]

∣∣Z(x,λ)
∣∣ = , λ ∈Gδ . ()

The validity of () can be easily seen from () and (). Thus, we obtain

f (x) =
∞∑
n=


γn

ϕ(x,λn)
{∫ π


ϕ(t,λn)f (t)ρ(t)dt

}
.

If we take

an =

γn

∫ π


ϕ(t,λn)f (t)ρ(t)dt,

the last equation gives us the expansion formula

f (x) =
∞∑
n=

anϕ(x,λn).

Since the system of ϕ(x,λn)n≥ is complete and orthogonal in L,ρ(,π )⊕C, the Parseval
equality

∫ π



∣∣f (x)∣∣ρ(x)dx = ∞∑
n=

γn|an|

holds. Extension of the Parseval equality to an arbitrary vector-function of the class L(a,b)
can be carried out by usual methods. �
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6 Weyl solution, Weyl function
Let �(x,λ) be the solution of equation () that satisfies the conditions

�(,λ) = ,

λ[β�
′(π ,λ) + β�(π ,λ)

]
+ α�(π ,λ) + α�

′(π ,λ) = .

Denote by c(x,λ) the solution of equation (), which satisfies the initial conditions
c(,λ) = , c′(,λ) = . Then the solution ψ(x,λ) can be represented as follows

ψ(x,λ) = ψ ′(,λ)ϕ(x,λ) –	(λ)c(x,λ)

or

–
ψ(x,λ)
	(λ)

= c(x,λ) –
ψ ′(,λ)
	(λ)

ϕ(x,λ). ()

Denote

M(λ) := –
ψ(,λ)
	(λ)

. ()

It is clear that

�(x,λ) = c(x,λ) +M(λ)ϕ(x,λ). ()

The functions �(x,λ) andM(λ) = �′(,λ) are respectively called the Weyl solution and
the Weyl function of the boundary value problem ()-(). The Weyl function is a mero-
morphic function having simple poles at points λn eigenvalues of boundary value problem
()-(). Relations (), () yield

�(x,λ) = –
ψ(x,λ)
	(λ)

. ()

It can be shown that

〈
�(x,λ),ϕ(x,λ)

〉 ≡ . ()

Let us take into consideration a boundary value problemwith the coefficient q̃(x) similar
to ()-() and assume that if an element α belongs to boundary value problem ()-(), then
α̃ belongs to one with q̃(x).
Validity of the equation below can be shown analogously to []

M(λ) =M() +
∞∑
n=

λ

γnλ
n(λ – λ

n)
. ()

Theorem  The boundary value problem ()-() is identically denoted by the Weyl func-
tion M(λ). (If M(λ) = M̃(λ), then q(x) = q̃(x).)
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Proof Let us identify the matrix P(x,λ) = [Pjk(x,λ)]j,k=, as

P(x,λ)

(
ϕ̃(x,λ) �̃(x,λ)
ϕ̃′(x,λ) �̃′(x,λ)

)
=

(
ϕ(x,λ) �(x,λ)
ϕ′(x,λ) �′(x,λ)

)
. ()

From () and (), we have

ϕ(x,λ) = P(x,λ)ϕ̃(x,λ) + P(x,λ)ϕ̃′(x,λ),

�(x,λ) = P(x,λ)�̃(x,λ) + P(x,λ)�̃′(x,λ),
()

or

P(x,λ) = ϕ̃′(x,λ)�(x,λ) – ϕ′(x,λ)�̃′(x,λ),

P(x,λ) = ϕ(x,λ)�̃′(x,λ) – ϕ̃(x,λ)�(x,λ).
()

Taking equation () into consideration in (), we get

P(x,λ) =  +


	(λ)
ψ(x,λ)

(
ϕ′(x,λ) – ϕ̃(x,λ)

)
+


	(λ)

ϕ(x,λ)
(
ψ̃ ′(x,λ) –ψ(x,λ)

)
,

P(x,λ) =


	(λ)
(
–ϕ(x,λ)ψ̃(x,λ) + ϕ̃(x,λ)ψ(x,λ)

)
.

()

Now, from the estimates

∣∣ϕ′(x,λ) – ϕ̃(x,λ)
∣∣ =O

(


|λ|e
| Imλ|μ+(x)

)
, |λ| → ∞,

and

∣∣ψ ′(x,λ) – ψ̃(x,λ)
∣∣ =O

(


|λ|e
| Imλ|(μ+(π )–μ+(x))

)
, |λ| → ∞,

we have from equation ()

lim|λ|→∞ max
≤x≤π

∣∣P(x,λ) – 
∣∣ = lim|λ|→∞ max

≤x≤π

∣∣P(x,λ)
∣∣ =  ()

for λ ∈Gδ . Now, if we take consideration equation () into (), we get

P(x,λ) = ϕ̃′(x,λ)c(x,λ) – ϕ(x,λ)c̃′(x,λ) + ϕ̃′(x,λ)ϕ(x,λ)
[
M(λ) – M̃(λ)

]
,

P(x,λ) = ϕ(x,λ) – c̃(x,λ) – ϕ̃(x,λ)c′(x,λ) + ϕ(x,λ)ϕ̃(x,λ)
[
M̃(λ) –M(λ)

]
.

Therefore, ifM(λ) = M̃(λ), then P(x,λ) and P(x,λ) are entire functions for every fixed x.
It can easily be seen from equation () that P(x,λ) =  and P(x,λ) = . Consequently,
we get ϕ(x,λ)≡ ϕ̃(x,λ) and �(x,λ)≡ �̃(x,λ) for every x and λ. Hence, we arrive at q(x) ≡
q̃(x). �

Theorem  The spectral data identically define the boundary value problem ()-().
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Proof From (), it is clear that the functionM(λ) can be constructed by λn. Since λn = λ̃n

for every n ∈ N, from Theorem , we can say that M(λ) = M̃(λ). Then from Theorem ,
it is obvious that A = Ã. �
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