RESEARCH

Open Access

Positive solutions for a sixth-order boundary value problem with four parameters

Ravi P Agarwal^{1*}, B Kovacs² and D O'Regan³

*Correspondence: Agarwal@tamuk.edu ¹Department of Mathematics, Texas A&M University-Kingsville, 700 University Blvd., Kingsville, 78363-8202, USA Full list of author information is available at the end of the article

Abstract

This paper investigates the existence and multiplicity of positive solutions of a sixth-order differential system with four variable parameters using a monotone iterative technique and an operator spectral theorem. **MSC:** 34B15; 34B18

Keywords: positive solutions; variable parameters; fixed point theorem; operator spectral theorem

1 Introduction

It is well known that boundary value problems for ordinary differential equations can be used to describe a large number of physical, biological and chemical phenomena. In recent years, boundary value problems for sixth-order ordinary differential equations, which arise naturally, for example, in sandwich beam deflection under transverse shear have been studied extensively, see [1–4] and the references therein. The deformation of the equilibrium state of an elastic circular ring segment with its two ends simply supported can be described by a boundary value problem involving a sixth-order ordinary differential equation

$$u^{(6)} + 2u^{(4)} + u'' = f(t, u), \quad 0 < t < 1,$$

$$u(0) = u(1) = u''(0) = u''(1) = u^{(4)}(0) = u^{(4)}(1) = 0.$$
(1)

Liu and Li [5] studied the existence and nonexistence of positive solutions of the nonlinear fourth-order beam equation

$$u^{(4)}(t) + \beta u''(t) - \alpha u(t) = \lambda f(t, u(t)), \quad 0 < t < 1,$$

$$u(0) = u(1) = u''(0) = u''(1) = 0.$$
(2)

They showed that there exists a $\lambda^* > 0$ such that the above boundary value problem has at least two, one, and no positive solutions for $0 < \lambda < \lambda^*$, $\lambda = \lambda^*$ and $\lambda > \lambda^*$, respectively.

In this paper, we discuss the existence of positive solutions for the sixth-order boundary value problem

$$-u^{(6)} + A(t)u^{(4)} + B(t)u'' + C(t)u = (D(t) + u)\varphi + \lambda f(t, u), \quad 0 < t < 1,$$

$$-\varphi'' + \varkappa\varphi = \mu u, \quad 0 < t < 1,$$
 (3)

© 2013 Agarwal et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

$$u(0) = u(1) = u''(0) = u''(1) = u^{(4)}(0) = u^{(4)}(1) = 0,$$

$$\varphi(0) = \varphi(1) = 0.$$

For this, we shall assume the following conditions throughout

(H1) $f(t, u): [0,1] \times [0,\infty) \longrightarrow [0,\infty)$ is continuous; (H2) $a, b, c \in R, a = \lambda_1 + \lambda_2 + \lambda_3 > -\pi^2, b = -\lambda_1\lambda_2 - \lambda_2\lambda_3 - \lambda_1\lambda_3 > 0, c = \lambda_1\lambda_2\lambda_3 < 0$ where $\lambda_1 \ge 0 \ge \lambda_2 \ge -\pi^2, 0 \le \lambda_3 < -\lambda_2$ and $\pi^6 + a\pi^4 - b\pi^2 + c > 0$, and $A, B, C, D \in C[0,1]$ with $a = \sup_{t \in [0,1]} A(t), b = \inf_{t \in [0,1]} B(t)$ and $c = \sup_{t \in [0,1]} C(t)$.

Let $K = \max_{0 \le t \le 1} [-A(t) + B(t) - C(t) - (-a + b - c)]$ and $\Gamma = \pi^6 + a\pi^4 - b\pi^2 + c$. Assumption (H2) involves a three-parameter nonresonance condition.

More recently Li [6] studied the existence and multiplicity of positive solutions for a sixth-order boundary value problem with three variable coefficients. The main difference between our work and [6] is that we consider boundary value problem not only with three variable coefficients, but also with two positive parameters λ and μ , and the existence of the positive solution depends on these parameters. In this paper, we shall apply the monotone iterative technique [7] to boundary value problem (3) and then obtain several new existence and multiplicity results. In the special case, in [8] by using the fixed point theorem and the operator spectral theorem, we establish a theorem on the existence of positive solutions for the sixth-order boundary value problem (3) with $\lambda = 1$.

2 Preliminaries

Let Y = C[0,1] and $Y_+ = \{u \in Y : u(t) \ge 0, t \in [0,1]\}$. It is well known that *Y* is a Banach space equipped with the norm $||u||_0 = \sup_{t \in [0,1]} |u(t)|$. Set $X = \{u \in C^4[0,1] : u(0) = u(1) = u''(0) = u''(1) = 0\}$. For given $\chi \ge 0$ and $\nu \ge 0$, we denote the norm $||\cdot||_{\chi,\nu}$ by

$$\|\cdot\|_{\chi,\nu} = \sup_{t\in[0,1]} \left\{ \left| u^{(4)}(t) \right| + \chi \left| u^{\prime\prime}(t) \right| + \nu \left| u(t) \right| \right\}, \quad u \in X.$$

We also need the space *X*, equipped with the norm

$$||u||_2 = \max\{||u||_0, ||u''||_0, ||u^{(4)}||_0\}.$$

In [8], it is shown that *X* is complete with the norm $\|\cdot\|_{\chi,\nu}$ and $\|u\|_2$, and moreover $\forall u \in X$, $\|u\|_0 \le \|u''\|_0 \le \|u^{(4)}\|_0$.

For $h \in Y$, consider the linear boundary value problem

$$-u^{(6)} + au^{(4)} + bu'' + cu = h(t), \quad 0 < t < 1,$$

$$u(0) = u(1) = u''(0) = u''(1) = u^{(4)}(0) = u^{(4)}(1) = 0,$$
(4)

where *a*, *b*, *c* satisfy the assumption

$$\pi^{6} + a\pi^{4} - b\pi^{2} + c > 0, \tag{5}$$

and let $\Gamma = \pi^6 + a\pi^4 - b\pi^2 + c$. Inequality (5) follows immediately from the fact that $\Gamma = \pi^6 + a\pi^4 - b\pi^2 + c$ is the first eigenvalue of the problem $-u^{(6)} + au^{(4)} + bu'' + cu = \lambda u, u(0) = u(1) = u''(0) = u''(1) = u^{(4)}(0) = u^{(4)}(1) = 0$, and $\phi_1(t) = \sin \pi t$ is the first eigenfunction, *i.e.*,

 $\Gamma > 0$. Since the line $l_1 = \{(a, b, c) : \pi^6 + a\pi^4 - b\pi^2 + c = 0\}$ is the first eigenvalue line of the three-parameter boundary value problem $-u^{(6)} + au^{(4)} + bu'' + cu = 0$, $u(0) = u(1) = u''(0) = u''(1) = u^{(4)}(0) = u^{(4)}(1) = 0$, if (a, b, c) lies in l_1 , then by the Fredholm alternative, the existence of a solution of the boundary value problem (4) cannot be guaranteed.

Let $P(\lambda) = \lambda^2 + \beta \lambda - \alpha$, where $\beta < 2\pi^2$, $\alpha \ge 0$. It is easy to see that the equation $P(\lambda) = 0$ has two real roots $\lambda_1, \lambda_2 = \frac{-\beta \pm \sqrt{\beta^2 + 4\alpha}}{2}$ with $\lambda_1 \ge 0 \ge \lambda_2 > -\pi^2$. Let λ_3 be a number such that $0 \le \lambda_3 < -\lambda_2$. In this case, (4) satisfies the decomposition form

$$-u^{(6)} + au^{(4)} + bu'' + cu = \left(-\frac{d^2}{dt^2} + \lambda_1\right) \left(-\frac{d^2}{dt^2} + \lambda_2\right) \left(-\frac{d^2}{dt^2} + \lambda_3\right) u, \quad 0 < t < 1.$$
(6)

Suppose that $G_i(t,s)$ (*i* = 1, 2, 3) is the Green's function associated with

$$-u'' + \lambda_i u = 0, \qquad u(0) = u(1) = 0. \tag{7}$$

We need the following lemmas.

Lemma 1 [5, 9] Let $\omega_i = \sqrt{|\lambda_i|}$, then $G_i(t, s)$ (i = 1, 2, 3) can be expressed as (i) when $\lambda_i > 0$,

$$G_i(t,s) = \left\{ \begin{aligned} \frac{\sinh \omega_i t \sinh \omega_i (1-s)}{\omega_i \sinh \omega_i}, & 0 \le t \le s \le 1, \\ \frac{\sinh \omega_i s \sinh \omega_i (1-t)}{\omega_i \sinh \omega_i}, & 0 \le s \le t \le 1 \end{aligned} \right\};$$

(ii) when $\lambda_i = 0$,

$$G_i(t,s) = \begin{cases} t(1-s), \ 0 \le t \le s \le 1, \\ s(1-t), \ 0 \le s \le t \le 1 \end{cases};$$

(iii) when $-\pi^2 < \lambda_i < 0$,

$$G_i(t,s) = \left\{ \frac{\frac{\sin \omega_i t \sin \omega_i (1-s)}{\omega_i \sin \omega_i}, \ 0 \le t \le s \le 1,}{\frac{\sin \omega_i s \sin \omega_i (1-t)}{\omega_i \sin \omega_i}, \ 0 \le s \le t \le 1} \right\}.$$

Lemma 2 [5] $G_i(t,s)$ (i = 1, 2, 3) has the following properties

- (i) $G_i(t,s) > 0, \forall t,s \in (0,1);$
- (ii) $G_i(t,s) \le C_i G_i(s,s), \forall t,s \in [0,1];$
- (iii) $G_i(t,s) \ge \delta_i G_i(t,t) G_i(s,s), \forall t,s \in [0,1],$

where $C_i = 1$, $\delta_i = \frac{\omega_i}{\sinh \omega_i}$, if $\lambda_i > 0$; $C_i = 1$, $\delta_i = 1$, if $\lambda_i = 0$; $C_i = \frac{1}{\sin \omega_i}$, $\delta_i = \omega_i \sin \omega_i$, if $-\pi^2 < \lambda_i < 0$.

In what follows, we let $D_i = \max_{t \in [0,1]} \int_0^1 G_i(t,s) ds$.

Lemma 3 [10] Let X be a Banach space, K a cone and Ω a bounded open subset of X. Let $\theta \in \Omega$ and $T: K \cap \overline{\Omega} \to K$ be condensing. Suppose that $Tx \neq \upsilon x$ for all $x \in K \cap \partial \Omega$ and $\upsilon \geq 1$. Then $i(T, K \cap \Omega, K) = 1$.

Lemma 4 [10] Let X be a Banach space, let K be a cone of X. Assume that $T : \overline{K}_r \to K$ (here $K_r = \{x \in K \mid ||x|| < r\}, r > 0$) is a compact map such that $Tx \neq x$ for all $x \in \partial K_r$. If $||x|| \le ||Tx||$ for $x \in \partial K_r$, then $i(T, K_r, K) = 0$.

Now, since

$$-u^{(6)} + au^{(4)} + bu'' + cu = \left(-\frac{d^2}{dt^2} + \lambda_1\right) \left(-\frac{d^2}{dt^2} + \lambda_2\right) \left(-\frac{d^2}{dt^2} + \lambda_3\right) u$$
$$= \left(-\frac{d^2}{dt^2} + \lambda_2\right) \left(-\frac{d^2}{dt^2} + \lambda_1\right) \left(-\frac{d^2}{dt^2} + \lambda_3\right) u = h(t), \tag{8}$$

the solution of boundary value problem (4) can be expressed as

$$u(t) = \int_0^1 \int_0^1 \int_0^1 G_1(t, \nu) G_2(\nu, s) G_3(s, \tau) h(\tau) \, d\tau \, ds \, d\nu, \quad t \in [0, 1].$$
(9)

Thus, for every given $h \in Y$, the boundary value problem (4) has a unique solution $u \in C^{6}[0,1]$, which is given by (9).

We now define a mapping $T : C[0,1] \rightarrow C[0,1]$ by

$$(Th)(t) = \int_0^1 \int_0^1 \int_0^1 G_1(t, \nu) G_2(\nu, s) G_3(s, \tau) h(\tau) \, d\tau \, ds \, d\nu, \quad t \in [0, 1]. \tag{10}$$

Throughout this article, we shall denote Th = u the unique solution of the linear boundary value problem (4).

Lemma 5 [8] $T: Y \longrightarrow (X, \|\cdot\|_{\chi,\nu})$ is linear completely continuous, where $\chi = \lambda_1 + \lambda_3$, $\nu = \lambda_1 \lambda_3$ and $\|T\| \le D_2$. Moreover, $\forall h \in Y_+$, if u = Th, then $u \in X \cap Y_+$, and $u'' \le 0$, $u^{(4)} \ge 0$.

We list the following conditions for convenience

- (H3) f(t, u) is nondecreasing in u for $t \in [0, 1]$;
- (H4) $f(t, 0) > \hat{c} > 0$ for all $t \in [0, 1]$;
- (H5) $f_{\infty} = \lim_{u \to \infty} \frac{f(t,u)}{u} = \infty$ uniformly for $t \in [0,1]$;
- (H6) $f(t, \rho u) \ge \rho^{\alpha} f(t, u)$ for $\rho \in (0, 1)$ and $t \in [0, 1]$, where $\alpha \in (0, 1)$ is independent of ρ and u.

Suppose that G(t, s) is the Green's function of the linear boundary value problem

$$-u'' + \varkappa u = 0, \qquad u(0) = u(1) = 0. \tag{11}$$

Then, the boundary value problem

$$-\varphi'' + \varkappa \varphi = \mu u, \qquad \varphi(0) = \varphi(1) = 0,$$

can be solved by using Green's function, namely,

$$\varphi(t) = \mu \int_0^1 G(t, s) u(s) \, ds, \quad 0 < t < 1, \tag{12}$$

where $\varkappa > -\pi^2$. Thus, inserting (12) into the first equation in (3), yields

$$-u^{(6)} + A(t)u^{(4)} + B(t)u'' + C(t)u = \mu(D(t) + u(t)) \int_0^1 G(t,s)u(s) \, ds + \lambda f(t,u),$$

$$u(0) = u(1) = u''(0) = u''(1) = u^{(4)}(0) = u^{(4)}(1) = 0.$$
(13)

Let us consider the boundary value problem

$$-u^{(6)} + A(t)u^{(4)} + B(t)u'' + C(t)u = h(t), \quad 0 < t < 1,$$

$$u(0) = u(1) = u''(0) = u''(1) = u^{(4)}(0) = u^{(4)}(1) = 0.$$
 (14)

Now, we consider the existence of a positive solution of (14). The function $u \in C^6(0,1) \cap C^4[0,1]$ is a positive solution of (14), if $u \ge 0$, $t \in [0,1]$, and $u \ne 0$.

Let us rewrite equation (13) in the following form

$$-u^{(6)} + au^{(4)} + bu'' + cu = -(A(t) - a)u^{(4)} - (B(t) - b)u'' - (C(t) - c)u + \mu(D(t) + u(t)) \int_0^1 G(t,s)u(s) \, ds + h(t).$$
(15)

For any $u \in X$, let

$$Gu = -(A(t) - a)u^{(4)} - (B(t) - b)u^{\prime\prime} - (C(t) - c)u + \mu D(t) \int_0^1 G(t,s)u(s) \, ds.$$

The operator $G: X \to Y$ is linear. By Lemmas 2 and 3 in [8], $\forall u \in X, t \in [0,1]$, we have

$$|(Gu)(t)| \le [-A(t) + B(t) - C(t) - (-a + b - c)] ||u||_2 + \mu C d_1 ||u||_0$$

$$\le (K + \mu C d_1) ||u||_2 \le (K + \mu C d_1) ||u||_{\chi, \nu},$$

where $C = \max_{t \in [0,1]} D(t)$, $K = \max_{t \in [0,1]} [-A(t) + B(t) - C(t) - (-a + b - c)]$, $d_1 = \max_{t \in [0,1]} \int_0^1 G(t,s) \, ds$, $\chi = \lambda_1 + \lambda_3 \ge 0$, $\nu = \lambda_1 \lambda_3 \ge 0$. Hence $||Gu||_0 \le (K + \mu C d_1) ||u||_{\chi,\nu}$, and so $||G|| \le (K + \mu C d_1)$. Also $u \in C^4[0,1] \cap C^6(0,1)$ is a solution of (13) if $u \in X$ satisfies $u = T(Gu + h_1)$, where $h_1(t) = \mu u(t) \int_0^1 G(t,s)u(s) \, ds + h(t)$, *i.e.*,

$$u \in X, \quad (I - TG)u = Th_1. \tag{16}$$

The operator I - TG maps X into X. From $||T|| \le D_2$ together with $||G|| \le (K + \mu Cd_1)$ and the condition $D_2(K + \mu Cd_1) < 1$, and applying the operator spectral theorem, we find that $(I - TG)^{-1}$ exists and is bounded. Let $\mu \in (0, \frac{1-D_2K}{D_2Cd_1})$, where $1 - D_2K > 0$, then the condition $D_2(K + \mu Cd_1) < 1$ is fulfilled. Let $L = D_2(K + \mu Cd_1)$, and let $\mu^{**} = \frac{1-D_2K}{D_2Cd_1}$.

Let $H = (I - TG)^{-1}T$. Then (16) is equivalent to $u = Hh_1$. By the Neumann expansion formula, H can be expressed by

$$H = (I + TG + \dots + (TG)^{n} + \dots)T = T + (TG)T + \dots + (TG)^{n}T + \dots$$
(17)

The complete continuity of *T* with the continuity of $(I - TG)^{-1}$ guarantees that the operator $H: Y \to X$ is completely continuous.

Now $\forall h \in Y_+$, let u = Th, then $u \in X \cap Y_+$, and $u'' \leq 0$, $u^{(4)} \geq 0$. Thus, we have

$$(Gu)(t) = -(A(t) - a)u^{(4)} - (B(t) - b)u'' - (C(t) - c)u + \mu D(t) \int_0^1 G(t,s)u(s) \, ds \ge 0, \quad t \in [0,1].$$

Hence

$$\forall h \in Y_+, \quad (GTh)(t) \ge 0, \quad t \in [0,1],$$
(18)

and so, $(TG)(Th)(t) = T(GTh)(t) \ge 0, t \in [0,1].$

It is easy to see [11] that the following inequalities hold: $\forall h \in Y_+$,

$$\frac{1}{1-L}(Th)(t) \ge (Hh)(t) \ge (Th)(t), \quad t \in [0,1],$$
(19)

and, moreover,

$$\|(Hh)\|_{0} \leq \frac{1}{1-L} \|(Th)\|_{0}.$$
 (20)

Lemma 6 [8] $H: Y \longrightarrow (X, \|\cdot\|_{\varkappa, \nu})$ is completely continuous, where $\chi = \lambda_1 + \lambda_3$, $\nu = \lambda_1 \lambda_3$ and $\forall h \in Y_+$, $\frac{1}{1-L}(Th)(t) \ge (Hh)(t) \ge (Th)(t)$, $t \in [0,1]$, and, moreover, $\|Th\|_0 \ge (1-L)\|Hh\|_0$.

For any $u \in Y_+$, define $Fu = \mu u(t) \int_0^1 G(t, s)u(s) ds + \lambda f(t, u)$. From (H1), we have that $F : Y_+ \to Y_+$ is continuous. It is easy to see that $u \in C^4[0, 1] \cap C^6(0, 1)$, being a positive solution of (13), is equivalent to $u \in Y_+$, being a nonzero solution of

$$u = HFu. \tag{21}$$

Let us introduce the following notations

$$T_{\lambda,\mu}u(t) := TFu(t) = \int_0^1 \int_0^1 \int_0^1 G_1(t,\nu)G_2(\nu,s)G_3(s,\tau)$$

× $\left(\mu u(\tau) \int_0^1 G(\tau,s)u(s) \, ds + \lambda f(\tau,u(\tau))\right) d\tau \, ds \, d\nu,$
 $Q_{\lambda,\mu}u := HFu = TFu + (TG)TFu + (TG)^2 TFu + \dots + (TG)^n TFu + \dots$
 $= T_{\lambda,\mu}u + (TG)T_{\lambda,\mu}u + (TG)^2 T_{\lambda,\mu}u + \dots + (TG)^n T_{\lambda,\mu}u + \dots,$

i.e., $Q_{\lambda,\mu}u = HFu$. Obviously, $Q_{\lambda,\mu} : Y_+ \to Y_+$ is completely continuous. We next show that the operator $Q_{\lambda,\mu}$ has a nonzero fixed point in Y_+ .

Let $P = \{u \in Y_+ : u(t) \ge \delta_1(1-L)g_1(t) || u(t) ||_0, t \in [\frac{1}{4}, \frac{3}{4}]\}$, where $g_1(t) = \frac{1}{C_1}G_1(t, t)$. It is easy to see that P is a cone in Y, and now, we show $Q_{\lambda,\mu}(P) \subset P$.

Lemma 7 $Q_{\lambda,\mu}(P) \subset P$ and $Q_{\lambda,\mu}: P \to P$ is completely continuous.

$$(TFu)(t) \leq C_1 \int_0^1 \int_0^1 \int_0^1 G_1(v,v) G_2(v,s) G_3(s,\tau)(Fu)(\tau) \, d\tau \, ds \, dv, \quad \forall t \in [0,1].$$

Thus,

$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(\nu,\nu) G_{2}(\nu,s) G_{3}(s,\tau) (Fu)(\tau) \, d\tau \, ds \, d\nu \ge \frac{1}{C_{1}} \| TFu \|_{0}.$$
(22)

On the other hand, by Lemma 6 and (22), we have

$$(TFu)(t) \ge \delta_1 G_1(t,t) \int_0^1 \int_0^1 \int_0^1 G_1(v,v) G_2(v,s) G_3(s,\tau)(Fu)(\tau) \, d\tau \, ds \, dv$$

$$\ge \delta_1 G_1(t,t) \frac{1}{C_1} \| TFu \|_0 \ge \delta_1 G_1(t,t) \frac{1}{C_1} (1-L) \| Qu \|_0, \quad \forall t \in [0,1].$$

Thus, $Q_{\lambda,\mu}(P) \subset P$.

3 Main results

Lemma 8 Let f(t, u) be nondecreasing in u for $t \in [0, 1]$ and $f(t, 0) > \hat{c} > 0$ for all $t \in [0, 1]$, where \hat{c} is a constant and L < 1. Then there exists $\lambda^* > 0$ and $\mu^* > 0$ such that the operator $Q_{\lambda,\mu}$ has a fixed point u^* at (λ^*, μ^*) with $u^* \in P \setminus \{\theta\}$.

Proof Set $\widehat{u}_1(t) = (Q_{\lambda *, \mu *} u_*)(t)$, where

$$u_{\star}(t) = \frac{2}{1-L} \int_0^1 \int_0^1 \int_0^1 G_1(t,v) G_2(v,\tau) G_3(\tau,s) \, ds \, d\tau \, dv.$$

It is easy to see that $u_{\star}(t) \in P$. Let $\lambda^{*} = M_{fu}^{-1}$ and $\mu^{*} = \min(N_{fu}^{-1}; \mu^{**})$, where $M_{fu} = \max_{t \in [0,1]} f(t, u_{\star}(t))$ and $N_{fu} = \max_{t \in [0,1]} u_{\star}(t) \int_{0}^{1} G(t, s) u_{\star}(s) ds$, respectively. Then $M_{fu} > 0$ and $N_{fu} > 0$, and from Lemma 6, we obtain

$$\begin{aligned} \widehat{u}_{0}(t) &= u_{\star}(t) = \frac{2}{1-L} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t,v) G_{2}(v,\tau) G_{3}(\tau,s) \, ds \, d\tau \, dv \\ &\geq \frac{1}{1-L} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t,v) G_{2}(v,\tau) G_{3}(\tau,s) \\ &\quad \times \left(\lambda^{*}f(s,u_{\star}(s)) + \mu^{*}u_{\star}(t) \int_{0}^{1} G(t,s)u_{\star}(s) \, ds\right) ds \, d\tau \, dv \\ &= \frac{1}{1-L} (T_{\lambda^{*},\mu^{*}} u_{\star})(t) \geq (Q_{\lambda^{*},\mu^{*}} u_{\star})(t) = \widehat{u}_{1}(t). \end{aligned}$$

It is easy to see that

$$\begin{aligned} \widehat{u}_n(t) &= (Q_{\lambda *,\mu} * \widehat{u}_{n-1})(t) \\ &= (T_{\lambda *,\mu} * \widehat{u}_{n-1} + (TG)T_{\lambda *,\mu} * \widehat{u}_{n-1} + (TG)^2 T_{\lambda *,\mu} * \widehat{u}_{n-1} + \cdots \end{aligned}$$

Indeed, for $h_1, h_2 \in Y_+$, let $h_1(t) \ge h_2(t)$, then from (10), we have $u_1(t) = Th_1 \ge Th_2 = u_2(t)$. Using equation (4) and (6), we obtain

$$-u'' + \lambda_2 u = \int_0^1 \int_0^1 G_1(t, \nu) G_3(\nu, \tau) h(\tau) \, d\tau \, d\nu, \quad t \in [0, 1]$$
(23)

and

$$u^{(4)} - (\lambda_2 + \lambda_3)u'' + \lambda_2\lambda_3u = \int_0^1 G_1(t, v)h(v) \, dv, \quad t \in [0, 1].$$
(24)

Then by (23), we have for $t \in [0, 1]$

$$u_1''(t) - u_2''(t) = \lambda_2 (u_1(t) - u_2(t)) - \int_0^1 \int_0^1 G_1(t, \nu) G_3(\nu, \tau) (h_1(t) - h_2(t)) d\tau d\nu \le 0,$$

because $\lambda_2 < 0$, and finally, from (24), we have

$$\begin{split} u_1^{(4)}(t) - u_2^{(4)}(t) &= (\lambda_2 + \lambda_3) \big(u_1''(t) - u_2''(t) \big) - \lambda_2 \lambda_3 \big(u_1(t) - u_2(t) \big) \\ &+ \int_0^1 \int_0^1 G_1(t, \nu) \big(h_1(t) - h_2(t) \big) \, d\tau \, d\nu \ge 0, \quad t \in [0, 1] \end{split}$$

because $\lambda_2+\lambda_3\leq 0$ and $\lambda_2\lambda_3\leq 0.$ From the equation

$$(Gu)(t) = -(A(t) - a)u^{(4)} - (B(t) - b)u'' - (C(t) - c)u + \mu D(t) \int_0^1 G(t, s)u(s) \, ds \ge 0,$$

$$t \in [0, 1]$$

we have

$$(Gu_{1})(t) - (Gu_{2})(t)$$

$$= -(A(t) - a)(u_{1}^{(4)}(t) - u_{2}^{(4)}(t)) - (B(t) - b)(u_{1}^{"}(t) - u_{2}^{"}(t))$$

$$- (C(t) - c)(u_{1}(t) - u_{2}(t)) + \mu D(t) \int_{0}^{1} G(t,s)(u_{1}(t) - u_{2}(t)) ds \ge 0,$$

$$t \in [0,1]$$
(25)

i.e., $(Gu_1)(t) \ge (Gu_2)(t)$ for all $t \in [0,1]$. Finally, if $h_1 = Fu_1$ and $h_2 = Fu_2$, then

$$(Hh_1)(t) = T(h_1) + (TG)(Th_1) + (TG)^2(Th_1) + \dots + (TG)^n(Th_1) + \dots$$

$$\geq (Hh_2)(t) = T(h_2) + (TG)(Th_2) + (TG)^2(Th_2) + \dots + (TG)^n(Th_2) + \dots$$

i.e.,

$$Q_{\lambda *,\mu} * u_1$$

$$= (HFu_1)(t) = T(Fu_1) + (TG)(TFu_1) + (TG)^2(TFu_1) + \dots + (TG)^n(TFu_1) + \dots$$

$$\geq (HFu_2)(t) = T(Fu_2) + (TG)(TFu_2) + (TG)^2(TFu_2) + \dots + (TG)^n(TFu_2) + \dots$$

$$= Q_{\lambda *,\mu} * u_2,$$
(26)

and from (26), it follows that for $u_1, u_2 \in Y_+$, if $u_1(t) \ge u_2(t)$ then, we have

$$Q_{\lambda^{*},\mu^{*}}u_{1} \ge Q_{\lambda^{*},\mu^{*}}u_{2}.$$
(27)

Set $\widehat{u}_0(t) = u_{\star}(t)$ and $\widehat{u}_n(t) = (Q_{\lambda^{\star},\mu^{\star}}\widehat{u}_{n-1})(t)$, $n = 1, 2, \dots, t \in [0, 1]$. Then

$$\widehat{u}_0(t) = u_\star(t) \ge \widehat{u}_1(t) \ge \cdots \ge \widehat{u}_n(t) \ge \cdots \ge L_1 G_1(t, t),$$

where

$$L_1 = \lambda^* \delta_1 \delta_2 \delta_3 \widehat{c} C_{23} C_{12} C_3.$$

Indeed, by Lemma 6, we have

$$\begin{aligned} \widehat{u}_{n}(t) &= Q_{\lambda^{*},\mu^{*}} \widehat{u}_{n-1} = (HF)(\widehat{u}_{n-1}) \geq (TF)(\widehat{u}_{n-1}) \\ &\geq \lambda^{*} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t,\nu) G_{2}(\nu,\tau) G_{3}(\tau,s) f\left(s,\widehat{u}_{n-1}(s)\right) ds \, d\tau \, d\nu \\ &\geq \lambda^{*} \widehat{c} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t,\nu) G_{2}(\nu,\tau) G_{3}(\tau,s) \, ds \, d\tau \, d\nu \\ &\geq \lambda^{*} \widehat{c} \delta_{1} \delta_{2} \delta_{3} C_{12} C_{23} C_{3} G_{1}(t,t). \end{aligned}$$

Now, f(t, u) nondecreasing in u for $t \in [0, 1]$, Lemma 2, and the Lebesgue convergence theorem guarantee that $\{u_n\}_{n=0}^{\infty} = \{Q_{\lambda *, \mu *} \hat{u}_0\}_{n=0}^{\infty}$ decreases to a fixed point $u^* \in P \setminus \{\theta\}$ of the operator $Q_{\lambda *, \mu *}$.

Lemma 9 Suppose that (H3)-(H5) hold, and L < 1. Set

 $S_{\lambda,\mu} = \left\{ u \in P : Q_{\lambda,\mu} u = u, (\lambda, \mu) \in A \right\},\$

where $A \subset [a, \infty) \times [b, \infty)$ for some constants a > 0, b > 0. Then there exists a constant C_A such that $||u||_0 < C_A$ for all $u \in S_{\lambda,\mu}$.

Proof Suppose, to the contrary, that there exists a sequence $\{u_n\}_{n=1}^{\infty}$ such that $\lim_{n\to\infty} \|u_n\|_0 = +\infty$, where $u_n \in P$ is a fixed point of the operator $Q_{\lambda,\mu}$ at $(\lambda_n, \mu_n) \in A$ (n = 1, 2, ...). Then

$$u_n(t) \ge k \|u_n\|_0 \quad \text{for } t \in \left[\frac{1}{4}, \frac{3}{4}\right],$$

where $k = \frac{\delta_1}{C_1}(1-L)\min_{t \in [\frac{1}{4}, \frac{3}{4}]} G_1(t, t)$.

$$J_1 a \delta_1 \delta_2 \delta_3 C_{12} C_{23} m_1 m_2 k > 2,$$

and $l_1 > 0$ such that

$$f(t, u) \ge J_1 u$$
 for $u > l_1$ and $t \in \left[\frac{1}{4}, \frac{3}{4}\right]$,

and N_0 , so that $||u_{N_0}|| > \frac{l_1}{k}$. Now,

$$\begin{aligned} (Q_{\lambda_{N_0},\mu_{N_0}}u_{N_0})\left(\frac{1}{2}\right) &\geq (TFu_{N_0})\left(\frac{1}{2}\right) \\ &\geq \lambda_{N_0} \int_0^1 \int_0^1 \int_0^1 G_1\left(\frac{1}{2},\nu\right) G_2(\nu,\tau) G_3(\tau,s) f\left(s,u_{N_0}(s)\right) ds \, d\tau \, d\nu \\ &\geq \lambda_{N_0} \delta_1 \delta_2 \delta_3 C_{12} C_{23} G_1\left(\frac{1}{2},\frac{1}{2}\right) \int_0^1 G_3(s,s) f\left(s,u_{N_0}(s)\right) ds \\ &\geq \lambda_{N_0} \delta_1 \delta_2 \delta_3 C_{12} C_{23} G_1\left(\frac{1}{2},\frac{1}{2}\right) \int_{\frac{1}{4}}^{\frac{3}{4}} G_3(s,s) f\left(s,u_{N_0}(s)\right) ds \\ &\geq \frac{1}{2} a \delta_1 \delta_2 \delta_3 C_{12} C_{23} m_1 m_2 J_1 u_{N_0}(t) \\ &\geq \frac{1}{2} a \delta_1 \delta_2 \delta_3 C_{12} C_{23} m_1 m_2 J_1 k \|u_{N_0}\|_0 > \|u_{N_0}\|_0, \end{aligned}$$

and so,

$$\|u_{N_0}\|_0 = \|Q_{\lambda_{N_0},\mu_{N_0}}u_{N_0}\|_0 \ge \|(TF)u_{N_0}\|_0 \ge (TFu_{N_0})\left(\frac{1}{2}\right) > \|u_{N_0}\|_0,$$

which is a contradiction.

Lemma 10 Suppose that L < 1, (H3) and (H4) hold and that the operator $Q_{\lambda,\mu}$ has a positive fixed point in P at $\widehat{\lambda} > 0$ and $\widehat{\mu} > 0$. Then for every $(\lambda_{\star}, \mu_{\star}) \in (0, \widehat{\lambda}) \times (0, \widehat{\mu})$ there exists a function $u_{\star} \in P \setminus \{\theta\}$ such that $Q_{\lambda_{\star},\mu_{\star}}u_{\star} = u_{\star}$.

Proof Let $\hat{u}(t)$ be a fixed point of the operator $Q_{\lambda,\mu}$ at $(\hat{\lambda}, \hat{\mu})$. Then

$$\widehat{u}(t) = Q_{\widehat{\lambda},\widehat{\mu}}\widehat{u}(t) \ge Q_{\lambda_{\star},\mu_{\star}}\widehat{u}(t),$$

where $0 < \lambda_{\star} < \widehat{\lambda}$, $0 < \mu_{\star} < \widehat{\mu}$. Hence

$$\begin{split} &\int_0^1 \int_0^1 \int_0^1 G_1(t,\nu) G_2(\nu,\tau) G_3(\tau,s) \left(\widehat{\lambda} f\left(s,\widehat{u}(s)\right) + \widehat{\mu} \widehat{u}(s) \int_0^1 G(s,p) \widehat{u}(p) \, dp \right) ds \, d\tau \, d\nu \\ &\geq \int_0^1 \int_0^1 \int_0^1 G_1(t,\nu) G_2(\nu,\tau) G_3(\tau,s) \\ & \times \left(\lambda_\star f\left(s,\widehat{u}(s)\right) + \mu_\star \widehat{u}(s) \int_0^1 G(s,p) \widehat{u}(p) \, dp \right) ds \, d\tau \, d\nu. \end{split}$$

Set

$$(T_{\lambda_{\star},\mu_{\star}}u)(t) = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t,\nu)G_{2}(\nu,\tau)G_{3}(\tau,s)$$
$$\times \left(\lambda_{\star}f(s,u(s)) + \mu_{\star}u(s)\int_{0}^{1} G(s,p)u(p)\,dp\right)ds\,d\tau\,d\nu$$

and

$$(Q_{\lambda_{\star},\mu_{\star}}u)(t) = T_{\lambda_{\star},\mu_{\star}}u + (TG)T_{\lambda_{\star},\mu_{\star}}u + (TG)^{2}T_{\lambda_{\star},\mu_{\star}}u + \dots + (TG)^{n}T_{\lambda_{\star},\mu_{\star}}u + \dots$$

 $u_0(t) = \widehat{u}(t)$ and $u_n(t) = Q_{\lambda_*,\mu_*} u_{n-1}$. Then

$$u_0(t) = \widehat{u}(t) = T_{\widehat{\lambda},\widehat{\mu}}\widehat{u} + (TG)T_{\widehat{\lambda},\widehat{\mu}}\widehat{u} + (TG)^2 T_{\widehat{\lambda},\widehat{\mu}}\widehat{u} + \dots + (TG)^n T_{\widehat{\lambda},\widehat{\mu}}\widehat{u} + \dots$$
$$\geq T_{\lambda_\star,\mu_\star}\widehat{u} + (TG)T_{\lambda_\star,\mu_\star}\widehat{u} + (TG)^2 T_{\lambda_\star,\mu_\star}\widehat{u} + \dots + (TG)^n T_{\lambda_\star,\mu_\star}\widehat{u} + \dots = u_1(t)$$

and

$$u_{n}(t) = Q_{\lambda_{\star},\mu_{\star}}u_{n-1} = T_{\lambda_{\star},\mu_{\star}}u_{n-1} + (TG)T_{\lambda_{\star},\mu_{\star}}u_{n-1} + (TG)^{2}T_{\lambda_{\star},\mu_{\star}}u_{n-1} + \cdots + (TG)^{n}T_{\lambda_{\star},\mu_{\star}}u_{n-1} + \cdots \geq T_{\lambda_{\star},\mu_{\star}}u_{n-2} + (TG)T_{\lambda_{\star},\mu_{\star}}u_{n-2} + (TG)^{2}T_{\lambda_{\star},\mu_{\star}}u_{n-2} + \cdots + (TG)^{n}T_{\lambda_{\star},\mu_{\star}}u_{n-2} + \cdots = u_{n-1}(t)$$

because f(t, u) is nondecreasing in u for $t \in [0, 1]$ and $T_{\lambda_{\star}, \mu_{\star}}u$ is also nondecreasing in u. Thus

$$u_0(t) \ge u_1(t) \ge \dots \ge u_n(t) \ge u_{n+1}(t) \ge \dots \ge L_2 G_1(t, t),$$
 (28)

where

$$L_2 = \lambda_* \widehat{c} \delta_1 \delta_2 \delta_3 C_{12} C_{23} C_3.$$

Indeed, by Lemma 6, we have

$$\begin{split} u_{n}(t) &= Q_{\lambda_{\star},\mu_{\star}} u_{n-1} = (HF)(u_{n-1}) \geq T_{\lambda_{\star},\mu_{\star}}(u_{n-1}) \\ &\geq \lambda_{\star} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t,\nu) G_{2}(\nu,\tau) G_{3}(\tau,s) f(s,u_{n-1}(s)) \, ds \, d\tau \, d\nu \\ &\geq \lambda_{\star} \widehat{c} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t,\nu) G_{2}(\nu,\tau) G_{3}(\tau,s) \, ds \, d\tau \, d\nu \geq \lambda_{\star} \widehat{c} \delta_{1} \delta_{2} \delta_{3} C_{12} C_{23} C_{3} G_{1}(t,t). \end{split}$$

Lemma 2 implies that $\{Q_{\lambda^{\star}}^{n}u\}_{n=1}^{\infty}$ decreases to a fixed point $u_{\star} \in P \setminus \{\theta\}$.

Lemma 11 Suppose that L < 1, (H3)-(H5) hold. Let

 $\Lambda = \big\{ \lambda > 0, \mu > 0 : Q_{\lambda,\mu} \text{ have at least one fixed point at } (\lambda, \mu) \text{ in } P \big\}.$

Then Λ is bounded.

Proof Suppose, to the contrary, that there exists a fixed point sequence $\{u_n\}_{n=0}^{\infty} \subset P$ of $Q_{\lambda,\mu}$ at (λ_n,μ_n) such that $\lim_{n\to\infty} \lambda_n = \infty$ and $0 < \mu_n < \mu^{**}$. Then there are two cases to be considered: (i) there exists a subsequence $\{u_n\}_{n=0}^{\infty}$ such that $\lim_{i\to\infty} \|u_{n_i}\|_0 = \infty$, which is impossible by Lemma 9, so we only consider the next case: (ii) there exists a constant H > 0 such that $\|u_n\|_0 \leq H, n = 0, 1, 2, 3, \ldots$. In view of (H3) and (H4), we can choose $l_0 > 0$ such that $f(t, 0) > l_0H$, and further, $f(t, u_n) > l_0H$ for $t \in [0, 1]$. We know that

$$u_n = Q_{\lambda_n,\mu_n} u_n \ge T_{\lambda_n,\mu_n} u_n.$$

Let $v_n(t) = T_{\lambda_n, \mu_n} u_n$, *i.e.*, $u_n(t) \ge v_n(t)$. Then it follows that

$$-\nu_n^{(6)} + a\nu_n^{(4)} + b\nu_n^{\prime\prime} + c\nu_n = \lambda_n f(t, u_n) + \mu_n u_n(t) \int_0^1 G(t, p) u_n(p) \, dp, \quad 0 < t < 1.$$
(29)

Multiplying (29) by $\sin \pi t$ and integrating over [0,1], and then using integration by parts on the left side of (29), we have

$$\Gamma \int_0^1 v_n(t) \sin \pi t \, dt = \lambda_n \int_0^1 f(t, u_n) \sin \pi t \, dt + \mu_n \int_0^1 u_n(t) \sin \pi t \int_0^1 G(t, p) u_n(p) \, dp \, dt.$$

Next, assume that (ii) holds. Then

$$\Gamma \int_{0}^{1} u_{n}(t) \sin \pi t \, dt \ge \Gamma \int_{0}^{1} v_{n}(t) \sin \pi t \, dt$$
$$= \lambda_{n} \int_{0}^{1} f(t, u_{n}) \sin \pi t \, dt + \mu_{n} \int_{0}^{1} u_{n}(t) \sin \pi t \int_{0}^{1} G(t, p) u_{n}(p) \, dp \, dt$$

and

$$\Gamma H \int_{0}^{1} \sin \pi t \, dt \ge \Gamma \|u_{n}\|_{0} \int_{0}^{1} \sin \pi t \, dt \ge \Gamma \int_{0}^{1} u_{n}(t) \sin \pi t \, dt \ge \Gamma \int_{0}^{1} v_{n}(t) \sin \pi t \, dt$$
$$= \lambda_{n} \int_{0}^{1} f(t, u_{n}) \sin \pi t \, dt + \mu_{n} \int_{0}^{1} u_{n}(t) \sin \pi t \int_{0}^{1} G(t, p) u_{n}(p) \, dp \, dt$$
$$\ge \lambda_{n} l_{0} H \int_{0}^{1} \sin \pi t \, dt$$

lead to $\Gamma \geq \lambda_n l_0$, which is a contradiction. The proof is complete.

Lemma 12 Suppose that L < 1, (H3)-(H4) hold. Let

 $\Lambda_{\mu} = \{\lambda > 0 : (\lambda, \mu) \in \Lambda \text{ and } \mu \text{ is fixed}\},\$

and let $\widetilde{\lambda}_{\mu} = \sup \Lambda_{\mu}$. Then $\Lambda_{\mu} = (0, \widetilde{\lambda}_{\mu}]$, where Λ is defined in Lemma 11.

Proof By Lemma 10, it follows that $(0, \tilde{\lambda}) \times (0, \mu) \subset \Lambda$. We only need to prove $(\tilde{\lambda}_{\mu}, \mu) \in \Lambda$. We may choose a distinct nondecreasing sequence $\{\lambda_n\}_{n=1}^{\infty} \subset \Lambda$ such that $\lim_{n\to\infty} \lambda_n = \tilde{\lambda}_{\mu}$. Set $u_n \in P$ as a fixed point of $Q_{\lambda,\mu}$ at (λ_n, μ) , n = 1, 2, ..., i.e., $u_n = Q_{\lambda_n,\mu}u_n$. By Lemma 9, $\{u_n\}_{n=1}^{\infty}$ is uniformly bounded, so it has a subsequence, denoted by $\{u_{n_k}\}_{k=1}^{\infty}$, converging to $\widetilde{u} \in P$. Note that

$$u_{n} = T_{\lambda_{n},\mu}u_{n} + (TG)T_{\lambda_{n},\mu}u_{n} + (TG)^{2}T_{\lambda_{n},\mu}u_{n} + \dots + (TG)^{n}T_{\lambda_{n},\mu}u_{n} + \dots$$

= $Q_{\lambda_{n},\mu}u_{n}$. (30)

Taking the limit as $n \to \infty$ on both sides of (30), and using the Lebesgue convergence theorem, we have

$$\widetilde{u} = T_{\widetilde{\lambda},\mu}\widetilde{u} + (TG)T_{\widetilde{\lambda},\mu}\widetilde{u}_n + (TG)^2T_{\widetilde{\lambda},\mu}\widetilde{u} + \dots + (TG)^nT_{\widetilde{\lambda},\mu}\widetilde{u} + \dots$$

which shows that $Q_{\lambda,\mu}$ has a positive fixed point \widetilde{u} at $(\widetilde{\lambda}, \mu)$.

Theorem 1 Suppose that (H3)-(H5) hold, and L < 1. For fixed $\mu^* \in (0, \mu^{**})$, then there exists at $\lambda^* > 0$ such that (3) has at least two, one and has no positive solutions for $0 < \lambda < \lambda^*$, $\lambda = \lambda^*$ for $\lambda > \lambda^*$, respectively.

Proof Suppose that (H3) and (H4) hold. Then there exists $\lambda^* > 0$ and $\mu^* > 0$ such that $Q_{\lambda,\mu}$ has a fixed point $u_{\lambda^*,\mu^*} \in P \setminus \{\theta\}$ at $\lambda = \lambda^*$ and $\mu = \mu^*$. In view of Lemma 12, $Q_{\lambda,\mu}$ also has a fixed point $u_{\underline{\lambda},\underline{\mu}} < u_{\lambda^*,\mu^*}$, $u_{\underline{\lambda},\underline{\mu}} \in P \setminus \{\theta\}$, and $0 < \underline{\lambda} < \lambda^*$, $0 < \underline{\mu} < \mu^*$, $\mu^* \in (0, \mu^{**})$. For $0 < \underline{\lambda} < \lambda^* \setminus$, there exists $\delta_0 > 0$ such that

$$f(t, u_{\lambda^{\star}, \mu^{\star}} + \delta) - f(t, u_{\lambda^{\star}, \mu^{\star}}) \leq f(t, 0) \left(\frac{\lambda^{\star}}{\underline{\lambda}} - 1\right)$$

for $t \in [0,1]$, $0 < \delta \le \delta_0$. In this case, it is easy to see that

$$\begin{split} T_{\underline{\lambda},\underline{\mu}}(u_{\lambda^{\star},\mu^{\star},}+\delta) &= \underline{\lambda} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t,\nu)G_{2}(\nu,\tau)G_{3}(\tau,s)f\left(s,u_{\lambda^{\star},\mu^{\star}}(s)+\delta\right) ds \, d\tau \, d\nu \\ &+ \underline{\mu} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t,\nu)G_{2}(\nu,\tau)G_{3}(\tau,s)\left(u_{\lambda^{\star},\mu^{\star}}(s)+\delta\right) \\ &\times \int_{0}^{1} G(s,p)\left(u_{\lambda^{\star},\mu^{\star}}(p)+\delta\right) dp \, ds \, d\tau \, d\nu \\ &\leq \lambda^{\star} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t,\nu)G_{2}(\nu,\tau)G_{3}(\tau,s)f\left(s,u_{\lambda^{\star}}(s)\right) ds \, d\tau \, d\nu \\ &+ \mu^{\star} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t,\nu)G_{2}(\nu,\tau)G_{3}(\tau,s)u_{\lambda^{\star},\mu^{\star}}(s) \\ &\times \int_{0}^{1} G(s,p)u_{\lambda^{\star},\mu^{\star}}(p) \, dp \, ds \, d\tau \, d\nu = T_{\lambda^{\star},\mu^{\star}}u_{\lambda^{\star},\mu^{\star}}. \end{split}$$

Indeed, we have

$$\frac{\lambda}{0} \int_0^1 \int_0^1 \int_0^1 G_1(t, v) G_2(v, \tau) G_3(\tau, s) f(s, u_{\lambda^*}(s) + \delta) \, ds \, d\tau \, dv$$
$$-\lambda^* \int_0^1 \int_0^1 \int_0^1 G_1(t, v) G_2(v, \tau) G_3(\tau, s) f(s, u_{\lambda^*}(s)) \, ds \, d\tau \, dv$$

$$\begin{split} &= \underline{\lambda} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t, v) G_{2}(v, \tau) G_{3}(\tau, s) \{f(s, u_{\lambda^{\star}}(s) + \delta) - f(s, u_{\lambda^{\star}}(s))\} \, ds \, d\tau \, dv \\ &- (\lambda^{\star} - \underline{\lambda}) \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t, v) G_{2}(v, \tau) G_{3}(\tau, s) f(s, u_{\lambda^{\star}}(s)) \, ds \, d\tau \, dv \\ &\leq (\lambda^{\star} - \underline{\lambda}) \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t, v) G_{2}(v, \tau) G_{3}(\tau, s) f(s, 0) \, ds \, d\tau \, dv \\ &- (\lambda^{\star} - \underline{\lambda}) \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t, v) G_{2}(v, \tau) G_{3}(\tau, s) f(s, u_{\lambda^{\star}}(s)) \, ds \, d\tau \, dv \\ &= (\lambda^{\star} - \underline{\lambda}) \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t, v) G_{2}(v, \tau) G_{3}(\tau, s) \{f(s, 0) - f(s, u_{\lambda^{\star}}(s))\} \, ds \, d\tau \, dv \leq 0. \end{split}$$

Similarly, it is easy to see that

$$\frac{\mu}{\int_{0}^{1}\int_{0}^{1}\int_{0}^{1}G_{1}(t,\nu)G_{2}(\nu,\tau)G_{3}(\tau,s)(u_{\lambda^{\star},\mu^{\star}}(s)+\delta)\int_{0}^{1}G(s,p)(u_{\lambda^{\star},\mu^{\star}}(p)+\delta)dp\,ds\,d\tau\,d\nu}{-\mu^{\star}\int_{0}^{1}\int_{0}^{1}\int_{0}^{1}G_{1}(t,\nu)G_{2}(\nu,\tau)G_{3}(\tau,s)u_{\lambda^{\star},\mu^{\star}}(s)\int_{0}^{1}G(s,p)u_{\lambda^{\star},\mu^{\star}}(p)\,dp\,ds\,d\tau\,d\nu\leq0.$$

Moreover, from (25), it follows that for $T_{\underline{\lambda},\underline{\mu}}(u_{\lambda^{\star},\mu^{\star}} + \delta) \leq T_{\lambda^{\star},\mu^{\star}}u_{\lambda^{\star},\mu^{\star}}$ we have

$$G(T_{\underline{\lambda},\mu}(u_{\lambda^{\star},\mu^{\star}}+\delta)) \leq G(T_{\lambda^{\star},\mu^{\star}}u_{\lambda^{\star},\mu^{\star}}).$$

Finally, we have

$$(TG)T_{\underline{\lambda},\underline{\mu}}(u_{\lambda^{\star},\mu^{\star}}+\delta) \leq (TG)T_{\lambda^{\star},\mu^{\star}}u_{\lambda^{\star},\mu^{\star}}.$$

By induction, it is easy to see that

$$(TG)^{n}T_{\underline{\lambda},\underline{\mu}}(u_{\lambda^{\star},\mu^{\star}}+\delta) \leq (TG)^{n}T_{\lambda^{\star},\mu^{\star}}u_{\lambda^{\star},\mu^{\star}}, \quad n=1,2,\dots.$$
(31)

Hence, using (31), we have

$$Q_{\underline{\lambda},\underline{\mu}}(u_{\lambda^{\star},\mu^{\star}}+\delta) = T_{\underline{\lambda},\underline{\mu}}(u_{\lambda^{\star},\mu^{\star}}+\delta) + (TG)T_{\underline{\lambda},\underline{\mu}}(u_{\lambda^{\star},\mu^{\star}}+\delta) + (TG)^{2}T_{\underline{\lambda},\underline{\mu}}(u_{\lambda^{\star},\mu^{\star}}+\delta) + \dots + (TG)^{n}T_{\underline{\lambda},\underline{\mu}}(u_{\lambda^{\star},\mu^{\star}}+\delta) + \dots \leq T_{\lambda^{\star},\mu^{\star}}u_{\lambda^{\star},\mu^{\star}} + (TG)T_{\lambda^{\star},\mu^{\star}}u_{\lambda^{\star},\mu^{\star}} + (TG)^{2}T_{\lambda^{\star},\mu^{\star}}u_{\lambda^{\star},\mu^{\star}} + \dots + (TG)^{n}T_{\lambda^{\star},\mu^{\star}}u_{\lambda^{\star},\mu^{\star}} + \dots = Q_{\lambda^{\star},\mu^{\star}}(u_{\lambda^{\star},\mu^{\star}})$$

i.e.,

$$Q_{\underline{\lambda},\mu}(u_{\lambda^{\star},\mu^{\star}}+\delta)-Q_{\lambda^{\star},\mu^{\star}}(u_{\lambda^{\star},\mu^{\star}})\leq 0$$
 ,

so that

$$Q_{\underline{\lambda},\underline{\mu}}(u_{\lambda^{\star},\mu^{\star}}+\delta) \leq Q_{\lambda^{\star},\mu^{\star}}(u_{\lambda^{\star},\mu^{\star}}) = u_{\lambda^{\star},\mu^{\star}} < u_{\lambda^{\star},\mu^{\star}}+\delta.$$

Set $D_{u_{\lambda^{\star},\mu^{\star}}} = \{u \in C[0,1] : -\delta < u(t) < u_{\lambda^{\star},\mu^{\star}} + \delta\}$. Then $Q_{\underline{\lambda},\underline{\mu}} : P \cap D_{u_{\lambda^{\star},\mu^{\star}}} \to P$ is completely continuous. Furthermore, $Q_{\underline{\lambda},\underline{\mu}} u \neq \upsilon u$ for $\upsilon \ge 1$ and $u \in P \cap \partial D_{u_{\lambda^{\star},\mu^{\star}}}$. Indeed set $u \in P \cap \partial D_{u_{\lambda^{\star},\mu^{\star}}}$. Then there exists $t_0 \in [0,1]$ such that $u(t_0) = ||u||_0 = ||u_{\lambda^{\star},\mu^{\star}} + \delta||_0$ and

$$\begin{aligned} (Q_{\underline{\lambda},\underline{\mu}}u)(t_0) &= \left(T_{\underline{\lambda},\underline{\mu}}(u) + (TG)T_{\underline{\lambda},\underline{\mu}}(u) + (TG)^2T_{\underline{\lambda},\underline{\mu}}(u) + \dots + (TG)^nT_{\underline{\lambda},\underline{\mu}}(u) + \dots\right)(t_0) \\ &\leq \left(T_{\underline{\lambda},\underline{\mu}}(u_{\lambda^\star,\mu^\star} + \delta) + (TG)T_{\underline{\lambda},\underline{\mu}}(u_{\lambda^\star,\mu^\star} + \delta) + (TG)^2T_{\underline{\lambda},\underline{\mu}}(u_{\lambda^\star,\mu^\star} + \delta) + \dots + (TG)^nT_{\underline{\lambda},\underline{\mu}}(u_{\lambda^\star,\mu^\star} + \delta) + \dots\right)(t_0) = Q_{\underline{\lambda},\underline{\mu}}(u_{\lambda^\star,\mu^\star} + \delta)(t_0) \\ &< u_{\lambda^\star,\mu^\star}(t_0) + \delta = u(t_0) \leq \upsilon u(t_0), \quad \upsilon \geq 1. \end{aligned}$$

By Lemma 3, $i(Q_{\underline{\lambda},\underline{\mu}}, P \cap \partial D_{u_{\lambda^{\star},\mu^{\star}}}, P) = 1$. Let k be such that

$$u(t) \ge k \|u\|_0 \quad \text{for } t \in \left[\frac{1}{4}, \frac{3}{4}\right].$$

We know that $\lim_{u\to\infty} \frac{f(t,u)}{u} = \infty$ uniformly for $t \in [0,1]$, so we may choose $J_3 > 0$, so that

$$\underline{\lambda}J_3\delta_1\delta_2\delta_3C_{12}C_{23}m_1C_3k>2,$$

 $l_3 > \|u_{\lambda^{\star},\mu^{\star}} + \delta\|_0 > 0$, so that

$$f(t, u) \ge J_3 u$$
 for $u > l_3$ and $t \in \left[\frac{1}{4}, \frac{3}{4}\right]$.

Set $R_1 = \frac{l_3}{k}$ and $P_{R_1} = \{u \in P : ||u||_0 < R_1\}$. Then $Q_{\underline{\lambda},\underline{\mu}} : \overline{P}_{R_1} \to P$ is completely continuous. It is easy to obtain

$$\begin{aligned} (Q_{\underline{\lambda},\underline{\mu}}u)(t) &\geq (T_{\underline{\lambda},\underline{\mu}}u)(t) \geq \underline{\lambda} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t,\nu)G_{2}(\nu,\tau)G_{3}(\tau,s)f(s,u(s)) \, ds \, d\tau \, d\nu \\ &\geq \underline{\lambda}\delta_{1}\delta_{2}\delta_{3}C_{12}C_{23}G_{1}(t,t) \int_{0}^{1} G_{3}(s,s)f(s,u(s)) \, ds \\ &\geq \underline{\lambda}\delta_{1}\delta_{2}\delta_{3}C_{12}C_{23}G_{1}(t,t) \int_{\frac{1}{4}}^{\frac{3}{4}} G_{3}(s,s)f(s,u(s)) \, ds \\ &\geq \frac{1}{2}\underline{\lambda}\delta_{1}\delta_{2}\delta_{3}C_{12}C_{23}m_{1}C_{3}J_{3}u(t) \geq \frac{1}{2}\underline{\lambda}\delta_{1}\delta_{2}\delta_{3}C_{12}C_{23}m_{1}C_{3}J_{3}k\|u\|_{0} > \|u\|_{0} \end{aligned}$$

for $t \in [0,1]$ and $u \in \partial P_{R_1}$. Now $u(t) \ge k ||u||_0 = kR_1 = l_3$, and so

$$||Q_{\underline{\lambda},\mu}u||_0 > ||u||_0.$$

In view of Lemma 4, $i(Q_{\underline{\lambda},\mu}, P_{R_1}, P) = 0$. By the additivity of the fixed point index,

$$i(Q_{\underline{\lambda},\underline{\mu}}, P_{R_1} \setminus \overline{P \cap D}_{u_{\lambda^{\star},\mu^{\star}}}, P) = i(Q_{\underline{\lambda},\underline{\mu}}, P_{R_1}, P) - i(Q_{\underline{\lambda},\underline{\mu}}, P \cap D_{u_{\lambda^{\star},\mu^{\star}}}, P) = -1.$$

Thus $Q_{\underline{\lambda},\underline{\mu}}$ has a fixed point in $\{P \cap D_{u_{\lambda^{\star},\mu^{\star}}}\} \setminus \{\theta\}$ and has another fixed point in $P_{R_1} \setminus P \cap D_{u_{\lambda^{\star},\mu^{\star}}}$ by choosing $\lambda^{\star} = \widetilde{\lambda}$.

Let us introduce the notation μ = 0 in the equation of (13), then we have

$$-u^{(6)} + A(t)u^{(4)} + B(t)u'' + C(t)u = \lambda f(t, u),$$

$$u(0) = u(1) = u''(0) = u''(1) = u^{(4)}(0) = u^{(4)}(1) = 0.$$
(32)

In this case, we can prove the following theorem, which is similar to Theorem 1.

Theorem 2 Suppose that (H3)-(H5) hold, and L < 1. Then there exists at $\lambda^* > 0$ such that (32) has at least two, one and has no positive solutions for $0 < \lambda < \lambda^*$, $\lambda = \lambda^*$ for $\lambda > \lambda^*$, respectively.

We follow exactly the same procedure, described in detail in the proof of Theorem 1 for μ = 0.

Let us introduce the following notations for $\mu = 0$ and $\lambda = 1$

$$TFu(t) = \int_0^1 \int_0^1 \int_0^1 G_1(t, v) G_2(v, s) G_3(s, \tau) f(\tau, u(\tau)) d\tau \, ds \, dv,$$

$$Qu := HFu = TFu + (TG)TFu + (TG)^2 TFu + \dots + (TG)^n TFu + \dots,$$
(33)

i.e., $Qu = Q_{1,0}u = HFu$.

Lemma 13 Suppose that (H3), (H4) and (H6) hold, and L < 1. Then for any $u \in C^{+}[0,1] \setminus \{\theta\}$, there exist real numbers $S_{u} \ge s_{u} > 0$ such that

$$s_u g(t) \leq (Qu)(t) \leq S_u g(t), \quad for \ t \in [0,1],$$

where $g(t) = \int_0^1 \int_0^1 G_1(t, \tau) G_2(\tau, \nu) G_3(\nu, \nu) d\nu d\tau$.

Proof For any $u \in C^+[0,1] \setminus \{\theta\}$ from Lemma 6, we have

$$\begin{aligned} (Qu)(t) &= (HFu)(t) \le \frac{1}{1-L} \int_0^1 \int_0^1 \int_0^1 G_1(t,v) G_2(v,\tau) G_3(\tau,s) f(s,u(s)) \, ds \, d\tau \, dv \\ &\le \frac{C_3}{1-L} \max_{s \in [0,1]} f(s,u(s)) \int_0^1 \int_0^1 G_1(t,\tau) G_2(\tau,v) G_3(v,v) \, dv \, d\tau \\ &= \frac{C_3}{1-L} \max_{s \in [0,1]} f(s,u(s)) g(t) = S_u g(t) \quad \text{for } t \in [0,1]. \end{aligned}$$

Note that for any $u \in C^+[0,1] \setminus \{\theta\}$, there exists an interval $[a_1, b_1] \subset (0,1)$ and a number p > 0 such that $u(t) \ge p$ for $t \in [a_1, b_1]$. In addition, by (H6), there exists $s_0 > 0$ and $u^0 \in (0,\infty)$ such that $f(t, u^0) \ge s_0$ for $t \in [a_1, b_1]$. If $p \ge u^0$, then $f(t, u) \ge f(t, p) \ge f(t, u^0) \ge s_0$; if $p < u^0$, then $f(t, u) \ge f(t, p) \ge f(t, \frac{p}{u^0}p) \ge (\frac{p}{u^0})^{\alpha}s_0$. Hence

$$(Qu)(t) \ge (TFu)(t)$$

= $\int_0^1 \int_0^1 \int_0^1 G_1(t, v) G_2(v, \tau) G_3(\tau, s) f(s, u(s)) ds d\tau dv$
 $\ge \delta_3 \int_0^1 \int_0^1 \int_0^1 G_1(t, v) G_2(v, \tau) G_3(\tau, \tau) G_3(s, s) f(s, u(s)) ds d\tau dv$

where $m_G = \min_{s \in [a_1, b_1]} G_3(s, s), g(t) = \int_0^1 \int_0^1 G_1(t, v) G_2(v, \tau) G_3(\tau, \tau) d\tau dv, s_u = (b_1 - a_1) \times \delta_3 m_G(\frac{p}{\mu^0})^{\alpha}$.

Theorem 3 Suppose that (H3), (H4) and (H6) hold, L < 1 and $\lambda = 1$. Then

(i) (32) has a unique positive solution $u^* \in C^+[0,1] \setminus \{\theta\}$ satisfying

$$m_u g(t) \le u^*(t) \le M_u g(t) \quad for \ t \in [0,1],$$

where $0 < m_u < M_u$ are constants. (ii) For any $u_0(t) \in C^+[0,1] \setminus \{\theta\}$, the sequence

> $u_n(t) = (Qu_{n-1})(t) = (HFu_{n-1})(t)$ = $TFu_{n-1} + (TG)TFu_{n-1} + (TG)^2 TFu_{n-1} + \dots + (TG)^n TFu_{n-1} + \dots$

(n = 1, 2, ...) converges uniformly to the unique solution u^* , and the rate of convergence is determined by

$$\left\|u_n(t)-u^{\star}(t)\right\|=O(1-d^{\alpha^n}),$$

where 0 < d < 1 is a positive number.

Proof In view of (H3), (H4) and (H6), $Q: C^+[0,1] \to C^+[0,1]$ is a nondecreasing operator and satisfies $Q(\rho u) \ge \rho^{\alpha} Q(u)$ for $t \in [0,1]$ and $u \in C^+[0,1]$. Indeed, let $u_{\star}(t) \le u_{\star\star}(t)$, $u_{\star,\star} u_{\star\star} \in C^+[0,1]$, since f(s, u) is nondecreasing in u, then by using $f(s, u_{\star}(s)) \le f(s, u_{\star\star}(s))$, for $t \in [0,1]$, it follows that

$$TFu_{\star}(t) = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t, v) G_{2}(v, \tau) G_{3}(\tau, s) f(s, u_{\star}(s)) ds d\tau dv$$

$$\leq \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t, v) G_{2}(v, \tau) G_{3}(\tau, s) f(s, u_{\star\star}(s)) ds d\tau dv = TFu_{\star\star}(t).$$

Moreover, from (25), it follows that for $TFu_{\star}(t) \leq TFu_{\star\star}(t)$

$$G(TFu_{\star})(t) \le G(TFu_{\star\star})(t) \quad \text{for } t \in [0,1].$$
(34)

Finally, since f(s, u) is nondecreasing in u, then by using form (34), $f(s, G(TFu_*)(t)) \le f(s, G(TFu_{**})(t))$, for $t \in [0, 1]$, we have

$$(TG)TF(u_{\star}) = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t,v)G_{2}(v,\tau)G_{3}(\tau,s)f(s,G(TFu_{\star})(s)) ds d\tau dv$$

$$\leq \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t,v)G_{2}(v,\tau)G_{3}(\tau,s)f(s,G(TFu_{\star\star})(s)) ds d\tau dv$$

$$= (TG)TFu_{\star\star},$$

i.e.,

$$(TG)TF(u_{\star}) \leq (TG)TFu_{\star\star}.$$

By induction, it is easy to see that

$$(TG)^n TF(u_*) \le (TG)^n TFu_{**}, \quad n = 1, 2, \dots$$
 (35)

Hence, using (35), we have

$$Q(u_{\star}) = TF(u_{\star}) + (TG)TF(u_{\star}) + (TG)^{2}TF(u_{\star}) + \dots + (TG)^{n}TF(u_{\star}) + \dots$$

$$\leq TF(u_{\star\star}) + (TG)TF(u_{\star\star}) + (TG)^{2}TF(u_{\star\star}) + \dots + (TG)^{n}TF(u_{\star\star}) + \dots$$

$$= Q(u_{\star\star}).$$
(36)

Now, we show that $Q: C^+[0,1] \to C^+[0,1]$ satisfies $Q(\rho u) \ge \rho^{\alpha}Q(u)$ for $t \in [0,1]$ and $u \in C^+[0,1]$. Note that

$$TF(\rho u) = \int_0^1 \int_0^1 \int_0^1 G_1(t, v) G_2(v, \tau) G_3(\tau, s) f(s, \rho u(s)) ds d\tau dv$$

$$\geq \rho^{\alpha} \int_0^1 \int_0^1 \int_0^1 G_1(t, v) G_2(v, \tau) G_3(\tau, s) f(s, u(s)) ds d\tau dv$$

$$= \rho^{\alpha} TF(u).$$

Moreover, from (25), it follows that for $TF(\rho u) \ge \rho^{\alpha} TF(u)$,

$$G(TF\rho u)(t) \ge G(\rho^{\alpha} TF(u))(t)$$

= $\rho^{\alpha} G(TF(u))(t)$ for $t \in [0,1].$

Finally, we have

$$(TG)TF(\rho u)(t) = \int_0^1 \int_0^1 \int_0^1 G_1(t, v)G_2(v, \tau)G_3(\tau, s)f(s, G(TF\rho u)(s)) ds d\tau dv$$

$$\geq \int_0^1 \int_0^1 \int_0^1 G_1(t, v)G_2(v, \tau)G_3(\tau, s)f(s, \rho^{\alpha}G(TF(u))(s)) ds d\tau dv$$

$$\geq \rho^{\alpha^2} \int_0^1 \int_0^1 \int_0^1 G_1(t, v)G_2(v, \tau)G_3(\tau, s)f(s, G(TF(u))(s)) ds d\tau dv$$

$$= \rho^{\alpha^2}(TG)TF(u)(t),$$

i.e.,

$$(TG)(TF\rho u)(t) \ge \rho^{\alpha^2}(TG)TF(u)(t).$$

By induction, it is easy to see that

$$(TG)^{n}(TF\rho u)(t) \ge \rho^{\alpha^{n+1}}(TG)TF(\rho u)(t), \quad n = 1, 2, \dots$$
 (37)

Hence, using (35) and $\rho \in (0,1)$, $\alpha \in (0,1)$, we have

$$Q(\rho u) = TF(\rho u) + (TG)TF(\rho u) + (TG)^{2}TF(\rho u) + \dots + (TG)^{n}TF(\rho u) + \dots$$

$$\geq \rho^{\alpha}TF(u) + \rho^{\alpha^{2}}(TG)TF(u) + \rho^{\alpha^{3}}(TG)^{2}TF(u) + \dots + \rho^{\alpha^{n+1}}(TG)^{n}TF(u) + \dots$$

$$\geq \rho^{\alpha}TF(u) + \rho^{\alpha}(TG)TF(u) + \rho^{\alpha}(TG)^{2}TF(u) + \dots + \rho^{\alpha}(TG)^{n}TF(u) + \dots$$

$$= \rho^{\alpha}(TF(u) + (TG)TF(u) + (TG)^{2}TF(u) + \dots + (TG)^{n}TF(u) + \dots)$$

$$= \rho^{\alpha}Q(u).$$
(38)

By Lemma 13, there exists $0 < s_g \leq S_g$ such that

$$s_u g(t) \leq Q g(t) \leq S_u g(t).$$

Let

$$s = \sup \{ s_g : s_u g(t) \le Qg(t) \}, \qquad S = \inf \{ S_g : Qg(t) \le S_u g(t) \}.$$

Pick m_s and M_s such that

$$0 < m_s < \min\left\{1, s^{\frac{1}{1-\alpha}}\right\} \tag{39}$$

and

$$\max\left\{1, S^{\frac{1}{1-\alpha}}\right\} = M_s < \infty.$$

$$\tag{40}$$

Set $u_0(t) = m_s g(t)$, $v_0(t) = M_s g(t)$, $u_n = Q u_{n-1}$, and $v_n = Q v_{n-1}$, n = 1, 2, ... From (36) and (38), we have

$$m_{s}g(t) = u_{0}(t) \le u_{1}(t) \le \dots \le u_{n}(t) \le \dots \le v_{n}(t) \le \dots \le v_{1}(t) \le v_{0}(t) = M_{s}g(t).$$
 (41)

Indeed, from (39) $m_s < 1$, and $m_s^{\alpha-1}s > 1$, we have

$$u_{1}(t) = Q(u_{0}) = Q(m_{s}g(t)) \ge m_{s}^{\alpha}Q(g(t)) \ge m_{s}^{\alpha}sg(t)$$
$$= m_{s}^{\alpha-1}sm_{s}g(t) = m_{s}^{\alpha-1}su_{0}(t) \ge u_{0}(t),$$

and by induction

$$u_{n+1}(t) = Q(u_n) \ge Q(u_{n-1}) = u_n(t).$$

From (40), $M_s > 1$, and $M_s^{\alpha - 1}S < 1$, we have

$$\begin{split} v_1(t) &= Q(v_0) \le M_s^{\alpha} Q\big(g(t)\big) = M_s^{\alpha} Q\bigg(\frac{1}{M_s}v_0\bigg) = M_s^{\alpha} Q(g) \\ &\le M_s^{\alpha} Sg \le SM_s^{\alpha-1} M_s g = SM_s^{\alpha-1} v_0(t) \le v_0(t), \end{split}$$

and by induction

$$v_{n+1}(t) = Q(v_n) \le Q(v_{n-1}) = v_n(t).$$

Let $d = \frac{m_s}{M_s}$. Then
 $u_n \ge d^{\alpha^n} v_n.$ (42)

In fact $u_0 = dv_0$ is clear. Assume that (42) holds with n = k (k is a positive integer), *i.e.*, $u_k \ge d^{\alpha^k} v_k$. Then

$$u_{k+1} = Q(u_k) \ge Q(d^{\alpha^k}v_k) \ge (d^{\alpha^k})^{\alpha}Q(v_k) = d^{\alpha^{k+1}}Q(v_k) = d^{\alpha^{k+1}}v_{k+1}.$$

By induction, it is easy to see that (42) holds. Furthermore, in view of (38), (41) and (42), we have

$$0 \le u_{n+z} - u_n \le v_n - u_n \le (1 - d^{\alpha^n})v_0 = (1 - d^{\alpha^n})M_s g(t)$$

and

$$||u_{n+z}-u_n|| \le ||v_n-u_n|| \le (1-d^{\alpha^n})M_s||g||,$$

where z is a nonnegative integer. Thus, there exists $u^* \in C^+[0,1]$ such that

$$\lim_{n \to \infty} u_n(t) = \lim_{n \to \infty} v_n(t) = u^*(t) \quad \text{for } t \in [0, 1]$$

and $u^{\star}(t)$ is a fixed point of Q and satisfies

$$m_g g(t) \le u^*(t) \le M_g g(t).$$

This means that $u^* \in C^+_*[0,1]$, where $C^+_*[0,1] = \{u \in C^+[0,1], u(t) > 0 \text{ for } t \in (0,1)\}$.

Next we show that u^* is the unique fixed point of Q in $C^+_*[0,1]$. Suppose, to the contrary, that there exists another $\overline{u} \in C^+_*[0,1]$ such that $Q\overline{u} = \overline{u}$. We can suppose that

$$u^{\star}(t) \leq \overline{u}(t), \qquad u^{\star}(t) \neq \overline{u}(t) \quad \text{for } t \in [0,1].$$

Let $\hat{\tau} = \sup\{0 < \tau < 1 : \tau u^* \le \overline{u} \le \tau^{-1}u^*\}$. Then $0 < \hat{\tau} \le 1$ and $\hat{\tau}u^* \le \overline{u} \le \hat{\tau}^{-1}u^*$. We assert $\hat{\tau} = 1$. Otherwise, $0 < \hat{\tau} < 1$, and then

$$\overline{u} = Q\overline{u} \ge Q(\widehat{\tau}u^{\star}) \ge \widehat{\tau}^{\alpha}Q(u^{\star}) = \widehat{\tau}^{\alpha}u^{\star},$$
$$u^{\star} = Qu^{\star} \ge Q(\widehat{\tau}\overline{u}) \ge \widehat{\tau}^{\alpha}Q(\overline{u}) = \widehat{\tau}^{\alpha}\overline{u}.$$

This means that $\hat{\tau}^{\alpha} u^{\star} \leq \overline{u} \leq (\hat{\tau}^{\alpha})^{-1} u^{\star}$, which is a contradiction of the definition of $\hat{\tau}$, because $\hat{\tau} < \hat{\tau}^{\alpha}$.

Let us introduce the following notations for $\mu = 0$

$$T_{\lambda}u(t) := TFu(t) = \lambda \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{1}(t, v)G_{2}(v, s)G_{3}(s, \tau)f(\tau, u(\tau)) d\tau ds dv,$$

$$Q_{\lambda}u := HFu = TFu + (TG)TFu + (TG)^{2}TFu + \dots + (TG)^{n}TFu + \dots$$

$$= T_{\lambda}u + (TG)T_{\lambda}u + (TG)^{2}T_{\lambda}u + \dots + (TG)^{n}T_{\lambda}u + \dots,$$

i.e., $Q_{\lambda}u = \lambda Qu$, where *Q* is given by (33).

Theorem 4 Suppose that (H3), (H4), (H6) and L < 1 hold. Then (32) has a unique positive solution $u_{\lambda}(t)$ for any $0 < \lambda \le 1$.

Proof Theorem 3 implies that for $\lambda = 1$, the operator Q_{λ} has a unique fixed point $u_1 \in C^+[0,1]$, that is $Q_1u_1 = u_1$. Then from Lemma 10, for every $\lambda_{\star} \in (0,1)$, there exists a function $u_{\star} \in P \setminus \{\theta\}$ such that $Q_{\lambda_{\star}}u_{\star} = u_{\star}$.

Thus, u_{λ} is a unique positive solution of (32) for every $0 < \lambda \le 1$.

4 Application

As an application of Theorem 1, consider the sixth-order boundary value problem

$$-u^{(6)} + (1 - 0.5t^{2})u^{(4)} + (4.5 - 0.5\sin \pi t)u'' + C(-5 + \cos 0.5\pi t)u$$

$$= (0.5t(1 - t) + u)\varphi + \lambda(1 + \sin \pi t + u^{2}), \quad 0 < t < 1,$$

$$-\varphi'' + 2\varphi = \mu u, \quad 0 < t < 1,$$

$$u(0) = u(1) = u''(0) = u''(1) = u^{(4)}(0) = u^{(4)}(1) = 0,$$

$$\varphi(0) = \varphi(1) = 0,$$

(43)

for a fixed $\lambda_1 = 2$, $\lambda_2 = -2$, $\lambda_3 = 1$ and $\varkappa = 2$. In this case, $a = \lambda_1 + \lambda_2 + \lambda_3 = 1$, $b = -\lambda_1\lambda_2 - \lambda_2\lambda_3 - \lambda_1\lambda_3 = 4$, and $c = \lambda_1\lambda_2\lambda_3 = -4$. We have $A(t) = 1 - 0.5t^2$, $B(t) = 4.5 - 0.5\sin \pi t$, $C(t) = -5 + \cos 0.5\pi t$, D(t) = 0.5t(1-t) and $f(t, u) = 1 + \sin \pi t + u^2$. It is easy to see that $\pi^6 + a\pi^4 - b\pi^2 + c = 1,015.3 > 0$, $a = \sup_{t \in [0,1]} A(t)$, $b = \inf_{t \in [0,1]} B(t)$ and $c = \sup_{t \in [0,1]} C(t)$. Note also that $K = \max_{0 \le t \le 1} [-A(t) + B(t) - C(t) - (-a + b - c)] = 2$, $D_2 = \max_{t \in [0,1]} \int_0^1 G_2(t, v) dv = 0.15768$, $C = \max_{t \in [0,1]} D(t) = 0.125$, $d_1 = \max_{t \in [0,1]} \int_0^1 G(t, s) ds = 0.10336$, $\mu^{**} = \frac{1 - D_2 K}{D_2 C d_1} = 336.1$ and $D_2 K = 0.3153 < 1$. Thus, if $0 < \mu < 336.1$, then the conditions of Theorem 1 (note $L = D_2(K + \mu C d_1) < 1$) are fulfilled (in particular, (H3)-(H5) are satisfied). As a result, Theorem 1 can be applied to (43).

Competing interests

The authors did not provide this information.

Authors' contributions

The authors did not provide this information.

Author details

¹Department of Mathematics, Texas A&M University-Kingsville, 700 University Blvd., Kingsville, 78363-8202, USA. ²Department of Analysis, University of Miskolc, Egyetemvaros, 3515, Hungary. ³School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland.

Received: 20 May 2013 Accepted: 30 July 2013 Published: 14 August 2013

References

- 1. Evans, JD, Galactionov, VA, King, JR: Unstable sixth-order thin film equation: II. Global similarity patterns. Nonlinearity 20, 1843-1881 (2007)
- Yude, J, Yanping, G, Yukun, Y, Yingjie, F: Nodal solutions for sixth-order *m*-point boundary-value problems using bifurcation methods. Electron. J. Differ. Equ. 2012, Article ID 217 (2012)
- Liu, C, Liu, A, Tang, H: Time-periodic solutions for a driven sixth-order Cahn-Hilliard type equation. Bound. Value Probl. 2013, Article ID 73 (2013)
- 4. Alvelid, M: Sixth order differential equation for sandwich beam deflection including transverse shear. Compos. Struct. **102**, 29-37 (2013)
- 5. Liu, X, Li, W: Positive solutions for the nonlinear fourth-order beam equation with three parameters. J. Math. Anal. Appl. **303**, 150-163 (2005)
- Li, W: The existence and multiplicity of positive solutions of nonlinear sixth-order boundary value problem with three variable coefficients. Bound. Value Probl. 2012, Article ID 22 (2012)
- El-Gebeily, MA, O'Regan, D, Nieto, JJ: A monotone iterative technique for stationary and time dependent problems in Banach apaces. J. Comput. Appl. Math. 233, 2395-2404 (2010)
- 8. Agarwal, RP, Kovacs, B, O'Regan, D: Existence of positive solution for a sixth-order differential system with variable parameters. J. Appl. Math. Comput. (2013). doi:10.1007/s12190-013-0701-1
- 9. Nieto, JJ: Generalized quasilinearization method for a second order ordinary differential equation with Dirichlet boundary conditions. Proc. Am. Math. Soc. **125**, 2599-2604 (1997)
- 10. Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988)
- 11. Chai, G: Existence of positive solutions for fourth-order boundary value problem with variable parameters. Nonlinear Anal. 66, 870-880 (2007)

doi:10.1186/1687-2770-2013-184

Cite this article as: Agarwal et al.: Positive solutions for a sixth-order boundary value problem with four parameters. Boundary Value Problems 2013 2013:184.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com