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1 Introduction
It is well known that boundary value problems for ordinary differential equations can be
used to describe a large number of physical, biological and chemical phenomena. In re-
cent years, boundary value problems for sixth-order ordinary differential equations, which
arise naturally, for example, in sandwich beamdeflection under transverse shear have been
studied extensively, see [–] and the references therein. The deformation of the equilib-
rium state of an elastic circular ring segment with its two ends simply supported can be
described by a boundary value problem involving a sixth-order ordinary differential equa-
tion

u() + u() + u′′ = f (t,u),  < t < ,

u() = u() = u′′() = u′′() = u()() = u()() = .
()

Liu and Li [] studied the existence and nonexistence of positive solutions of the non-
linear fourth-order beam equation

u()(t) + βu′′(t) – αu(t) = λf
(
t,u(t)

)
,  < t < ,

u() = u() = u′′() = u′′() = .
()

They showed that there exists a λ� >  such that the above boundary value problem has at
least two, one, and no positive solutions for  < λ < λ�, λ = λ� and λ > λ�, respectively.
In this paper, we discuss the existence of positive solutions for the sixth-order boundary

value problem

– u() +A(t)u() + B(t)u′′ +C(t)u =
(
D(t) + u

)
ϕ + λf (t,u),  < t < ,

– ϕ′′ +κϕ = μu,  < t < , ()
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u() = u() = u′′() = u′′() = u()() = u()() = ,

ϕ() = ϕ() = .

For this, we shall assume the following conditions throughout
(H) f (t,u) : [, ]× [,∞)−→ [,∞) is continuous;
(H) a,b, c ∈ R, a = λ + λ + λ > –π, b = –λλ – λλ – λλ > , c = λλλ < 

where λ ≥ ≥ λ ≥ –π,  ≤ λ < –λ and π + aπ – bπ + c > , and
A,B,C,D ∈ C[, ] with a = supt∈[,]A(t), b = inft∈[,] B(t) and c = supt∈[,]C(t).

Let K =max≤t≤[–A(t) + B(t) –C(t) – (–a + b – c)] and � = π + aπ – bπ + c.
Assumption (H) involves a three-parameter nonresonance condition.
More recently Li [] studied the existence and multiplicity of positive solutions for a

sixth-order boundary value problem with three variable coefficients. The main difference
between our work and [] is that we consider boundary value problem not only with three
variable coefficients, but also with two positive parameters λ and μ, and the existence
of the positive solution depends on these parameters. In this paper, we shall apply the
monotone iterative technique [] to boundary value problem () and then obtain several
new existence and multiplicity results. In the special case, in [] by using the fixed point
theorem and the operator spectral theorem, we establish a theorem on the existence of
positive solutions for the sixth-order boundary value problem () with λ = .

2 Preliminaries
Let Y = C[, ] and Y+ = {u ∈ Y : u(t) ≥ , t ∈ [, ]}. It is well known that Y is a Banach
space equipped with the norm ‖u‖ = supt∈[,] |u(t)|. Set X = {u ∈ C[, ] : u() = u() =
u′′() = u′′() = }. For given χ ≥  and ν ≥ , we denote the norm ‖ · ‖χ ,ν by

‖ · ‖χ ,ν = sup
t∈[,]

{∣∣u()(t)∣∣ + χ
∣∣u′′(t)

∣∣ + ν
∣∣u(t)∣∣}, u ∈ X.

We also need the space X, equipped with the norm

‖u‖ =max
{‖u‖,

∥∥u′′∥∥
,

∥∥u()∥∥

}
.

In [], it is shown thatX is complete with the norm ‖ ·‖χ ,ν and ‖u‖, andmoreover ∀u ∈ X,
‖u‖ ≤ ‖u′′‖ ≤ ‖u()‖.
For h ∈ Y , consider the linear boundary value problem

– u() + au() + bu′′ + cu = h(t),  < t < ,

u() = u() = u′′() = u′′() = u()() = u()() = ,
()

where a, b, c satisfy the assumption

π + aπ – bπ + c > , ()

and let � = π + aπ – bπ + c. Inequality () follows immediately from the fact that � =
π +aπ –bπ + c is the first eigenvalue of the problem –u() +au() +bu′′ + cu = λu, u() =
u() = u′′() = u′′() = u()() = u()() = , and φ(t) = sinπ t is the first eigenfunction, i.e.,
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� > . Since the line l = {(a,b, c) : π + aπ – bπ + c = } is the first eigenvalue line of
the three-parameter boundary value problem –u() + au() + bu′′ + cu = , u() = u() =
u′′() = u′′() = u()() = u()() = , if (a,b, c) lies in l, then by the Fredholm alternative,
the existence of a solution of the boundary value problem () cannot be guaranteed.
Let P(λ) = λ + βλ – α, where β < π, α ≥ . It is easy to see that the equation P(λ) = 

has two real roots λ,λ =
–β±

√
β+α

 with λ ≥  ≥ λ > –π. Let λ be a number such
that  ≤ λ < –λ. In this case, () satisfies the decomposition form

–u() + au() + bu′′ + cu =
(
–
d

dt
+ λ

)(
–
d

dt
+ λ

)(
–
d

dt
+ λ

)
u,  < t < . ()

Suppose that Gi(t, s) (i = , , ) is the Green’s function associated with

–u′′ + λiu = , u() = u() = . ()

We need the following lemmas.

Lemma  [, ] Let ωi =
√|λi|, then Gi(t, s) (i = , , ) can be expressed as

(i) when λi > ,

Gi(t, s) =

⎧⎪⎪⎨⎪⎪⎩
sinhωit sinhωi( – s)

ωi sinhωi
,  ≤ t ≤ s≤ ,

sinhωis sinhωi( – t)
ωi sinhωi

,  ≤ s ≤ t ≤ 

⎫⎪⎪⎬⎪⎪⎭ ;

(ii) when λi = ,

Gi(t, s) =

{
t( – s),  ≤ t ≤ s ≤ ,

s( – t),  ≤ s ≤ t ≤ 

}
;

(iii) when –π < λi < ,

Gi(t, s) =

⎧⎪⎪⎨⎪⎪⎩
sinωit sinωi( – s)

ωi sinωi
,  ≤ t ≤ s ≤ ,

sinωis sinωi( – t)
ωi sinωi

,  ≤ s≤ t ≤ 

⎫⎪⎪⎬⎪⎪⎭ .

Lemma  [] Gi(t, s) (i = , , ) has the following properties
(i) Gi(t, s) > , ∀t, s ∈ (, );
(ii) Gi(t, s)≤ CiGi(s, s), ∀t, s ∈ [, ];
(iii) Gi(t, s)≥ δiGi(t, t)Gi(s, s), ∀t, s ∈ [, ],

where Ci = , δi = ωi
sinhωi

, if λi > ; Ci = , δi = , if λi = ; Ci = 
sinωi

, δi = ωi sinωi, if
–π < λi < .

In what follows, we let Di =maxt∈[,]
∫ 
 Gi(t, s)ds.

Lemma  [] Let X be a Banach space, K a cone and � a bounded open subset of X. Let
θ ∈ � and T : K ∩ �̄ → K be condensing. Suppose that Tx �= υx for all x ∈ K ∩ ∂� and
υ ≥ . Then i(T ,K ∩ �,K) = .

http://www.boundaryvalueproblems.com/content/2013/1/184
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Lemma  [] Let X be a Banach space, let K be a cone of X. Assume that T : K̄r → K
(here Kr = {x ∈ K | ‖x‖ < r}, r > ) is a compact map such that Tx �= x for all x ∈ ∂Kr . If
‖x‖ ≤ ‖Tx‖ for x ∈ ∂Kr , then i(T ,Kr ,K) = .

Now, since

–u() + au() + bu′′ + cu =
(
–
d

dt
+ λ

)(
–
d

dt
+ λ

)(
–
d

dt
+ λ

)
u

=
(
–
d

dt
+ λ

)(
–
d

dt
+ λ

)(
–
d

dt
+ λ

)
u = h(t), ()

the solution of boundary value problem () can be expressed as

u(t) =
∫ 



∫ 



∫ 


G(t, v)G(v, s)G(s, τ )h(τ )dτ dsdv, t ∈ [, ]. ()

Thus, for every given h ∈ Y , the boundary value problem () has a unique solution u ∈
C[, ], which is given by ().
We now define a mapping T : C[, ] → C[, ] by

(Th)(t) =
∫ 



∫ 



∫ 


G(t, v)G(v, s)G(s, τ )h(τ )dτ dsdv, t ∈ [, ]. ()

Throughout this article, we shall denote Th = u the unique solution of the linear bound-
ary value problem ().

Lemma  [] T : Y −→ (X,‖ · ‖χ ,ν) is linear completely continuous, where χ = λ + λ,
ν = λλ and ‖T‖ ≤ D.Moreover, ∀h ∈ Y+, if u = Th, then u ∈ X∩Y+, and u′′ ≤ , u() ≥ .

We list the following conditions for convenience
(H) f (t,u) is nondecreasing in u for t ∈ [, ];
(H) f (t, ) > ĉ >  for all t ∈ [, ];
(H) f∞ = limu→∞ f (t,u)

u = ∞ uniformly for t ∈ [, ];
(H) f (t,ρu)≥ ραf (t,u) for ρ ∈ (, ) and t ∈ [, ], where α ∈ (, ) is independent of ρ

and u.
Suppose that G(t, s) is the Green’s function of the linear boundary value problem

–u′′ +κu = , u() = u() = . ()

Then, the boundary value problem

–ϕ′′ +κϕ = μu, ϕ() = ϕ() = ,

can be solved by using Green’s function, namely,

ϕ(t) = μ

∫ 


G(t, s)u(s)ds,  < t < , ()

http://www.boundaryvalueproblems.com/content/2013/1/184
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where κ > –π. Thus, inserting () into the first equation in (), yields

– u() +A(t)u() + B(t)u′′ +C(t)u = μ
(
D(t) + u(t)

)∫ 


G(t, s)u(s)ds + λf (t,u),

u() = u() = u′′() = u′′() = u()() = u()() = .
()

Let us consider the boundary value problem

– u() +A(t)u() + B(t)u′′ +C(t)u = h(t),  < t < ,

u() = u() = u′′() = u′′() = u()() = u()() = .
()

Now, we consider the existence of a positive solution of (). The function u ∈ C(, )∩
C[, ] is a positive solution of (), if u≥ , t ∈ [, ], and u �= .
Let us rewrite equation () in the following form

–u() + au() + bu′′ + cu = –
(
A(t) – a

)
u() –

(
B(t) – b

)
u′′ –

(
C(t) – c

)
u

+μ
(
D(t) + u(t)

)∫ 


G(t, s)u(s)ds + h(t). ()

For any u ∈ X, let

Gu = –
(
A(t) – a

)
u() –

(
B(t) – b

)
u′′ –

(
C(t) – c

)
u +μD(t)

∫ 


G(t, s)u(s)ds.

The operator G : X → Y is linear. By Lemmas  and  in [], ∀u ∈ X, t ∈ [, ], we have

∣∣(Gu)(t)∣∣ ≤ [
–A(t) + B(t) –C(t) – (–a + b – c)

]‖u‖ +μCd‖u‖
≤ (K +μCd)‖u‖ ≤ (K +μCd)‖u‖χ ,ν ,

where C = maxt∈[,]D(t), K = maxt∈[,][–A(t) + B(t) – C(t) – (–a + b – c)], d =
maxt∈[,]

∫ 
 G(t, s)ds, χ = λ + λ ≥ , ν = λλ ≥ . Hence ‖Gu‖ ≤ (K + μCd)‖u‖χ ,ν ,

and so ‖G‖ ≤ (K +μCd). Also u ∈ C[, ]∩C(, ) is a solution of () if u ∈ X satisfies
u = T(Gu + h), where h(t) = μu(t)

∫ 
 G(t, s)u(s)ds + h(t), i.e.,

u ∈ X, (I – TG)u = Th. ()

The operator I –TGmaps X into X. From ‖T‖ ≤ D together with ‖G‖ ≤ (K +μCd) and
the condition D(K +μCd) < , and applying the operator spectral theorem, we find that
(I –TG)– exists and is bounded. Let μ ∈ (, –DK

DCd
), where –DK > , then the condition

D(K +μCd) <  is fulfilled. Let L =D(K +μCd), and let μ∗∗ = –DK
DCd

.
Let H = (I – TG)–T . Then () is equivalent to u = Hh. By the Neumann expansion

formula, H can be expressed by

H =
(
I + TG + · · · + (TG)n + · · · )T = T + (TG)T + · · · + (TG)nT + · · · . ()

The complete continuity ofT with the continuity of (I–TG)– guarantees that the operator
H : Y → X is completely continuous.

http://www.boundaryvalueproblems.com/content/2013/1/184
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Now ∀h ∈ Y+, let u = Th, then u ∈ X ∩ Y+, and u′′ ≤ , u() ≥ . Thus, we have

(Gu)(t) = –
(
A(t) – a

)
u() –

(
B(t) – b

)
u′′ –

(
C(t) – c

)
u

+μD(t)
∫ 


G(t, s)u(s)ds≥ , t ∈ [, ].

Hence

∀h ∈ Y+, (GTh)(t) ≥ , t ∈ [, ], ()

and so, (TG)(Th)(t) = T(GTh)(t) ≥ , t ∈ [, ].
It is easy to see [] that the following inequalities hold: ∀h ∈ Y+,


 – L

(Th)(t)≥ (Hh)(t)≥ (Th)(t), t ∈ [, ], ()

and, moreover,

∥∥(Hh)∥∥ ≤ 
 – L

∥∥(Th)∥∥. ()

Lemma  [] H : Y −→ (X,‖ · ‖κ,ν) is completely continuous, where χ = λ + λ, ν =
λλ and ∀h ∈ Y+, 

–L (Th)(t) ≥ (Hh)(t) ≥ (Th)(t), t ∈ [, ], and, moreover, ‖Th‖ ≥
( – L)‖Hh‖.

For any u ∈ Y+, define Fu = μu(t)
∫ 
 G(t, s)u(s)ds + λf (t,u). From (H), we have that F :

Y+ → Y+ is continuous. It is easy to see that u ∈ C[, ]∩C(, ), being a positive solution
of (), is equivalent to u ∈ Y+, being a nonzero solution of

u =HFu. ()

Let us introduce the following notations

Tλ,μu(t) := TFu(t) =
∫ 



∫ 



∫ 


G(t, v)G(v, s)G(s, τ )

×
(

μu(τ )
∫ 


G(τ , s)u(s)ds + λf

(
τ ,u(τ )

))
dτ dsdv,

Qλ,μu :=HFu = TFu + (TG)TFu + (TG)TFu + · · · + (TG)nTFu + · · ·
= Tλ,μu + (TG)Tλ,μu + (TG)Tλ,μu + · · · + (TG)nTλ,μu + · · · ,

i.e., Qλ,μu =HFu. Obviously, Qλ,μ : Y+ → Y+ is completely continuous. We next show that
the operator Qλ,μ has a nonzero fixed point in Y+.
Let P = {u ∈ Y+ : u(t)≥ δ( – L)g(t)‖u(t)‖, t ∈ [  ,


 ]}, where g(t) = 

C
G(t, t). It is easy

to see that P is a cone in Y , and now, we show Qλ,μ(P) ⊂ P.

Lemma  Qλ,μ(P) ⊂ P and Qλ,μ : P → P is completely continuous.

http://www.boundaryvalueproblems.com/content/2013/1/184
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Proof It is clear that Qλ,μ : P → P is completely continuous. Now ∀u ∈ P, let h = Fu, then
h ∈ Y+. Using Lemma , i.e., (Qλ,μu)(t) = (HFu)(t) ≥ (TFu)(t), t ∈ [, ] and by Lemma ,
for all u ∈ P, we have

(TFu)(t)≤ C

∫ 



∫ 



∫ 


G(v, v)G(v, s)G(s, τ )(Fu)(τ )dτ dsdv, ∀t ∈ [, ].

Thus,∫ 



∫ 



∫ 


G(v, v)G(v, s)G(s, τ )(Fu)(τ )dτ dsdv≥ 

C
‖TFu‖. ()

On the other hand, by Lemma  and (), we have

(TFu)(t)≥ δG(t, t)
∫ 



∫ 



∫ 


G(v, v)G(v, s)G(s, τ )(Fu)(τ )dτ dsdv

≥ δG(t, t)

C

‖TFu‖ ≥ δG(t, t)

C

( – L)‖Qu‖, ∀t ∈ [, ].

Thus, Qλ,μ(P) ⊂ P. �

3 Main results
Lemma  Let f (t,u) be nondecreasing in u for t ∈ [, ] and f (t, ) > ĉ >  for all t ∈ [, ],
where ĉ is a constant and L < . Then there exists λ� >  and μ� >  such that the operator
Qλ,μ has a fixed point u� at (λ�,μ�) with u� ∈ P\{θ}.

Proof Set û(t) = (Qλ� ,μ�u�)(t), where

u�(t) =


 – L

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)dsdτ dv.

It is easy to see that u�(t) ∈ P. Let λ� = M–
fu and μ� = min(N–

fu ;μ∗∗), where Mfu =
maxt∈[,] f (t,u�(t)) and Nfu = maxt∈[,] u�(t)

∫ 
 G(t, s)u�(s)ds, respectively. Then Mfu > 

and Nfu > , and from Lemma , we obtain

û(t) = u�(t) =


 – L

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)dsdτ dv

≥ 
 – L

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)

×
(

λ�f
(
s,u�(s)

)
+μ�u�(t)

∫ 


G(t, s)u�(s)ds

)
dsdτ dv

=


 – L
(Tλ� ,μ�u�)(t)≥ (Qλ� ,μ�u�)(t) = û(t).

It is easy to see that

ûn(t) = (Qλ� ,μ� ûn–)(t)

=
(
Tλ� ,μ� ûn– + (TG)Tλ� ,μ� ûn– + (TG)Tλ� ,μ� ûn– + · · ·

http://www.boundaryvalueproblems.com/content/2013/1/184
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+ (TG)nTλ� ,μ� ûn– + · · · )
≥ (

Tλ� ,μ� ûn– + (TG)Tλ� ,μ� ûn– + (TG)Tλ� ,μ� ûn– + · · ·
+ (TG)nTλ� ,μ� ûn– + · · · ) = ûn–(t).

Indeed, for h,h ∈ Y+, let h(t) ≥ h(t), then from (), we have u(t) = Th ≥ Th = u(t).
Using equation () and (), we obtain

–u′′ + λu =
∫ 



∫ 


G(t, v)G(v, τ )h(τ )dτ dv, t ∈ [, ] ()

and

u() – (λ + λ)u′′ + λλu =
∫ 


G(t, v)h(v)dv, t ∈ [, ]. ()

Then by (), we have for t ∈ [, ]

u′′
 (t) – u′′

(t) = λ
(
u(t) – u(t)

)
–

∫ 



∫ 


G(t, v)G(v, τ )

(
h(t) – h(t)

)
dτ dv≤ ,

because λ < , and finally, from (), we have

u() (t) – u() (t) = (λ + λ)
(
u′′
 (t) – u′′

(t)
)
– λλ

(
u(t) – u(t)

)
+

∫ 



∫ 


G(t, v)

(
h(t) – h(t)

)
dτ dv ≥ , t ∈ [, ]

because λ + λ ≤  and λλ ≤ . From the equation

(Gu)(t) = –
(
A(t) – a

)
u() –

(
B(t) – b

)
u′′ –

(
C(t) – c

)
u +μD(t)

∫ 


G(t, s)u(s)ds≥ ,

t ∈ [, ]

we have

(Gu)(t) – (Gu)(t)

= –
(
A(t) – a

)(
u() (t) – u() (t)

)
–

(
B(t) – b

)(
u′′
 (t) – u′′

(t)
)

–
(
C(t) – c

)(
u(t) – u(t)

)
+μD(t)

∫ 


G(t, s)

(
u(t) – u(t)

)
ds≥ ,

t ∈ [, ] ()

i.e., (Gu)(t) ≥ (Gu)(t) for all t ∈ [, ]. Finally, if h = Fu and h = Fu, then

(Hh)(t) = T(h) + (TG)(Th) + (TG)(Th) + · · · + (TG)n(Th) + · · ·
≥ (Hh)(t) = T(h) + (TG)(Th) + (TG)(Th) + · · · + (TG)n(Th) + · · ·

http://www.boundaryvalueproblems.com/content/2013/1/184
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i.e.,

Qλ� ,μ�u

= (HFu)(t) = T(Fu) + (TG)(TFu) + (TG)(TFu) + · · · + (TG)n(TFu) + · · ·
≥ (HFu)(t) = T(Fu) + (TG)(TFu) + (TG)(TFu) + · · · + (TG)n(TFu) + · · ·
=Qλ� ,μ�u, ()

and from (), it follows that for u,u ∈ Y+, if u(t) ≥ u(t) then, we have

Qλ� ,μ�u ≥ Qλ� ,μ�u. ()

Set û(t) = u�(t) and ûn(t) = (Qλ� ,μ� ûn–)(t), n = , , . . . , t ∈ [, ]. Then

û(t) = u�(t)≥ û(t) ≥ · · · ≥ ûn(t) ≥ · · · ≥ LG(t, t),

where

L = λ�δδδ̂cCCC. �

Indeed, by Lemma , we have

ûn(t) =Qλ� ,μ� ûn– = (HF)(̂un–) ≥ (TF)(̂un–)

≥ λ�

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s, ûn–(s)

)
dsdτ dv

≥ λ�ĉ
∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)dsdτ dv

≥ λ�ĉδδδCCCG(t, t).

Now, f (t,u) nondecreasing in u for t ∈ [, ], Lemma , and the Lebesgue convergence
theorem guarantee that {un}∞n= = {Qλ� ,μ� û}∞n= decreases to a fixed point u� ∈ P\{θ} of
the operator Qλ� ,μ� .

Lemma  Suppose that (H)-(H) hold, and L < . Set

Sλ,μ =
{
u ∈ P :Qλ,μu = u, (λ,μ) ∈ A

}
,

where A⊂ [a,∞)× [b,∞) for some constants a > , b > . Then there exists a constant CA

such that ‖u‖ < CA for all u ∈ Sλ,μ.

Proof Suppose, to the contrary, that there exists a sequence {un}∞n= such that
limn→∞ ‖un‖ = +∞, where un ∈ P is a fixed point of the operator Qλ,μ at (λn,μn) ∈ A
(n = , , . . .). Then

un(t) ≥ k‖un‖ for t ∈
[


,



]
,

where k = δ
C
( – L)mint∈[  ,  ]G(t, t).
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Choose J > , so that

JaδδδCCmmk > ,

and l >  such that

f (t,u) ≥ Ju for u > l and t ∈
[


,



]
,

and N, so that ‖uN‖ > l
k . Now,

(QλN ,μN
uN )

(



)
≥ (TFuN )

(



)
≥ λN

∫ 



∫ 



∫ 


G

(


, v

)
G(v, τ )G(τ , s)f

(
s,uN (s)

)
dsdτ dv

≥ λNδδδCCG

(


,



)∫ 


G(s, s)f

(
s,uN (s)

)
ds

≥ λNδδδCCG

(


,



)∫ 





G(s, s)f
(
s,uN (s)

)
ds

≥ 

aδδδCCmmJuN (t)

≥ 

aδδδCCmmJk‖uN‖ > ‖uN‖,

and so,

‖uN‖ = ‖QλN ,μN
uN‖ ≥ ∥∥(TF)uN

∥∥
 ≥ (TFuN )

(



)
> ‖uN‖,

which is a contradiction. �

Lemma  Suppose that L < , (H) and (H) hold and that the operator Qλ,μ has a posi-
tive fixed point in P at λ̂ >  and μ̂ > . Then for every (λ�,μ�) ∈ (, λ̂)× (, μ̂) there exists
a function u� ∈ P\{θ} such that Qλ� ,μ�u� = u�.

Proof Let û(t) be a fixed point of the operator Qλ,μ at (̂λ, μ̂). Then

û(t) =Qλ̂,μ̂û(t) ≥ Qλ� ,μ� û(t),

where  < λ� < λ̂,  < μ� < μ̂. Hence

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)

(̂
λf

(
s, û(s)

)
+ μ̂û(s)

∫ 


G(s,p)̂u(p)dp

)
dsdτ dv

≥
∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)

×
(

λ�f
(
s, û(s)

)
+μ�û(s)

∫ 


G(s,p)̂u(p)dp

)
dsdτ dv.
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Set

(Tλ� ,μ�u)(t) =
∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)

×
(

λ�f
(
s,u(s)

)
+μ�u(s)

∫ 


G(s,p)u(p)dp

)
dsdτ dv

and

(Qλ� ,μ�u)(t) = Tλ� ,μ�u + (TG)Tλ� ,μ�u + (TG)Tλ� ,μ�u + · · · + (TG)nTλ� ,μ�u + · · ·

u(t) = û(t) and un(t) =Qλ� ,μ�un–. Then

u(t) = û(t) = Tλ̂,μ̂û + (TG)Tλ̂,μ̂û + (TG)Tλ̂,μ̂û + · · · + (TG)nTλ̂,μ̂û + · · ·
≥ Tλ� ,μ� û + (TG)Tλ� ,μ� û + (TG)Tλ� ,μ� û + · · · + (TG)nTλ� ,μ� û + · · · = u(t)

and

un(t) =Qλ� ,μ�un– = Tλ� ,μ�un– + (TG)Tλ� ,μ�un– + (TG)Tλ� ,μ�un– + · · ·
+ (TG)nTλ� ,μ�un– + · · ·

≥ Tλ� ,μ�un– + (TG)Tλ� ,μ�un– + (TG)Tλ� ,μ�un– + · · ·
+ (TG)nTλ� ,μ�un– + · · · = un–(t)

because f (t,u) is nondecreasing in u for t ∈ [, ] and Tλ� ,μ�u is also nondecreasing in u.
Thus

u(t) ≥ u(t)≥ · · · ≥ un(t) ≥ un+(t) ≥ · · · ≥ LG(t, t), ()

where

L = λ�̂cδδδCCC. �

Indeed, by Lemma , we have

un(t) =Qλ� ,μ�un– = (HF)(un–) ≥ T
λ� ,μ�

(un–)

≥ λ�

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,un–(s)

)
dsdτ dv

≥ λ�̂c
∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)dsdτ dv≥ λ�̂cδδδCCCG(t, t).

Lemma  implies that {Qn
λ�u}∞n= decreases to a fixed point u� ∈ P\{θ}.

Lemma  Suppose that L < , (H)-(H) hold. Let

� =
{
λ > ,μ >  :Qλ,μ have at least one fixed point at (λ,μ) in P

}
.

Then � is bounded.
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Proof Suppose, to the contrary, that there exists a fixed point sequence {un}∞n= ⊂ P of
Qλ,μ at (λn,μn) such that limn→∞ λn = ∞ and  < μn < μ∗∗. Then there are two cases to
be considered: (i) there exists a subsequence {uni}∞n= such that limi→∞ ‖uni‖ = ∞, which
is impossible by Lemma , so we only consider the next case: (ii) there exists a constant
H >  such that ‖un‖ ≤ H , n = , , , , . . . . In view of (H) and (H), we can choose l > 
such that f (t, ) > lH , and further, f (t,un) > lH for t ∈ [, ]. We know that

un =Qλn ,μnun ≥ Tλn ,μnun.

Let vn(t) = Tλn ,μnun, i.e., un(t)≥ vn(t). Then it follows that

–v()n + av()n + bv′′
n + cvn = λnf (t,un) +μnun(t)

∫ 


G(t,p)un(p)dp,  < t < . ()

Multiplying () by sinπ t and integrating over [, ], and then using integration by parts
on the left side of (), we have

�

∫ 


vn(t) sinπ t dt = λn

∫ 


f (t,un) sinπ t dt +μn

∫ 


un(t) sinπ t

∫ 


G(t,p)un(p)dpdt.

Next, assume that (ii) holds. Then

�

∫ 


un(t) sinπ t dt ≥ �

∫ 


vn(t) sinπ t dt

= λn

∫ 


f (t,un) sinπ t dt +μn

∫ 


un(t) sinπ t

∫ 


G(t,p)un(p)dpdt

and

�H
∫ 


sinπ t dt ≥ �‖un‖

∫ 


sinπ t dt ≥ �

∫ 


un(t) sinπ t dt ≥ �

∫ 


vn(t) sinπ t dt

= λn

∫ 


f (t,un) sinπ t dt +μn

∫ 


un(t) sinπ t

∫ 


G(t,p)un(p)dpdt

≥ λnlH
∫ 


sinπ t dt

lead to � ≥ λnl, which is a contradiction. The proof is complete. �

Lemma  Suppose that L < , (H)-(H) hold. Let

�μ =
{
λ >  : (λ,μ) ∈ � and μ is fixed

}
,

and let λ̃μ = sup�μ. Then �μ = (, λ̃μ], where � is defined in Lemma .

Proof By Lemma , it follows that (, λ̃)× (,μ) ⊂ �. We only need to prove (̃λμ,μ) ∈ �.
We may choose a distinct nondecreasing sequence {λn}∞n= ⊂ � such that limn→∞ λn = λ̃μ.
Set un ∈ P as a fixed point of Qλ,μ at (λn,μ), n = , , . . . , i.e., un = Qλn ,μun. By Lemma ,
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Agarwal et al. Boundary Value Problems 2013, 2013:184 Page 13 of 22
http://www.boundaryvalueproblems.com/content/2013/1/184

{un}∞n=, is uniformly bounded, so it has a subsequence, denoted by {unk }∞k=, converging to
ũ ∈ P. Note that

un = Tλn ,μun + (TG)Tλn ,μun + (TG)Tλn ,μun + · · · + (TG)nTλn ,μun + · · ·
=Qλn ,μun. ()

Taking the limit as n → ∞ on both sides of (), and using the Lebesgue convergence
theorem, we have

ũ = Tλ̃,μũ + (TG)Tλ̃,μũn + (TG)Tλ̃,μũ + · · · + (TG)nTλ̃,μũ + · · ·

which shows that Qλ,μ has a positive fixed point ũ at (̃λ,μ). �

Theorem  Suppose that (H)-(H) hold, and L < . For fixed μ� ∈ (,μ��), then there
exists at λ� >  such that () has at least two, one and has no positive solutions for  < λ < λ�,
λ = λ� for λ > λ�, respectively.

Proof Suppose that (H) and (H) hold. Then there exists λ� >  and μ� >  such that
Qλ,μ has a fixed point uλ� ,μ� ∈ P\{θ} at λ = λ� and μ = μ�. In view of Lemma , Qλ,μ also
has a fixed point uλ,μ < uλ� ,μ� , uλ,μ ∈ P\{θ}, and  < λ < λ�,  < μ < μ�, μ� ∈ (,μ��). For
 < λ < λ�\, there exists δ >  such that

f (t,uλ� ,μ� + δ) – f (t,uλ� ,μ� ) ≤ f (t, )
(

λ�

λ
– 

)

for t ∈ [, ],  < δ ≤ δ. In this case, it is easy to see that

Tλ,μ(uλ� ,μ� , + δ) = λ

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,uλ� ,μ� (s) + δ

)
dsdτ dv

+μ

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)

(
uλ� ,μ� (s) + δ

)
×

∫ 


G(s,p)

(
uλ� ,μ� (p) + δ

)
dpdsdτ dv

≤ λ�

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,uλ� (s)

)
dsdτ dv

+μ�

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)uλ� ,μ� (s)

×
∫ 


G(s,p)uλ� ,μ� (p)dpdsdτ dv = Tλ� ,μ�uλ� ,μ� .

Indeed, we have

λ

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,uλ� (s) + δ

)
dsdτ dv

– λ�

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,uλ� (s)

)
dsdτ dv
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= λ

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)

{
f
(
s,uλ� (s) + δ

)
– f

(
s,uλ� (s)

)}
dsdτ dv

–
(
λ� – λ

)∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,uλ� (s)

)
dsdτ dv

≤ (
λ� – λ

)∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f (s, )dsdτ dv

–
(
λ� – λ

)∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,uλ� (s)

)
dsdτ dv

=
(
λ� – λ

)∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)

{
f (s, ) – f

(
s,uλ� (s)

)}
dsdτ dv ≤ .

Similarly, it is easy to see that

μ

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)

(
uλ� ,μ� (s) + δ

)∫ 


G(s,p)

(
uλ� ,μ� (p) + δ

)
dpdsdτ dv

–μ�

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)uλ� ,μ� (s)

∫ 


G(s,p)uλ� ,μ� (p)dpdsdτ dv≤ .

Moreover, from (), it follows that for Tλ,μ(uλ� ,μ� + δ) ≤ Tλ� ,μ�uλ� ,μ� we have

G
(
Tλ,μ(uλ� ,μ� + δ)

) ≤ G(Tλ� ,μ�uλ� ,μ� ).

Finally, we have

(TG)Tλ,μ(uλ� ,μ� + δ) ≤ (TG)Tλ� ,μ�uλ� ,μ� .

By induction, it is easy to see that

(TG)nTλ,μ(uλ� ,μ� + δ) ≤ (TG)nTλ� ,μ�uλ� ,μ� , n = , , . . . . ()

Hence, using (), we have

Qλ,μ(uλ� ,μ� + δ) = Tλ,μ(uλ� ,μ� + δ) + (TG)Tλ,μ(uλ� ,μ� + δ)

+ (TG)Tλ,μ(uλ� ,μ� + δ) + · · · + (TG)nTλ,μ(uλ� ,μ� + δ) + · · ·
≤ T

λ� ,μ�uλ� ,μ� + (TG)Tλ� ,μ�uλ� ,μ� + (TG)Tλ� ,μ�uλ� ,μ� + · · ·
+ (TG)nTλ� ,μ�uλ� ,μ� + · · ·

=Qλ� ,μ� (uλ� ,μ� )

i.e.,

Qλ,μ(uλ� ,μ� + δ) –Qλ� ,μ� (uλ� ,μ� ) ≤ ,

so that

Qλ,μ(uλ� ,μ� + δ) ≤ Qλ� ,μ� (uλ� ,μ� ) = uλ� ,μ� < uλ� ,μ� + δ.

http://www.boundaryvalueproblems.com/content/2013/1/184


Agarwal et al. Boundary Value Problems 2013, 2013:184 Page 15 of 22
http://www.boundaryvalueproblems.com/content/2013/1/184

Set Duλ� ,μ� = {u ∈ C[, ] : –δ < u(t) < uλ� ,μ� + δ}. Then Qλ,μ : P ∩ Duλ� ,μ� → P is com-
pletely continuous. Furthermore, Qλ,μu �= υu for υ ≥  and u ∈ P ∩ ∂Duλ� ,μ� . Indeed set
u ∈ P ∩ ∂Duλ� ,μ� . Then there exists t ∈ [, ] such that u(t) = ‖u‖ = ‖uλ� ,μ� + δ‖ and

(Qλ,μu)(t) =
(
Tλ,μ(u) + (TG)Tλ,μ(u) + (TG)Tλ,μ(u) + · · · + (TG)nTλ,μ(u) + · · · )(t)

≤ (
Tλ,μ(uλ� ,μ� + δ) + (TG)Tλ,μ(uλ� ,μ� + δ) + (TG)Tλ,μ(uλ� ,μ� + δ) + · · ·
+ (TG)nTλ,μ(uλ� ,μ� + δ) + · · · )(t) =Qλ,μ(uλ� ,μ� + δ)(t)

< uλ� ,μ� (t) + δ = u(t) ≤ υu(t), υ ≥ .

By Lemma , i(Qλ,μ,P ∩ ∂Duλ� ,μ� ,P) = .
Let k be such that

u(t) ≥ k‖u‖ for t ∈
[


,



]
.

We know that limu→∞ f (t,u)
u = ∞ uniformly for t ∈ [, ], so we may choose J > , so that

λJδδδCCmCk > ,

l > ‖uλ� ,μ� + δ‖ > , so that

f (t,u) ≥ Ju for u > l and t ∈
[


,



]
.

Set R = l
k and PR = {u ∈ P : ‖u‖ < R}. Then Qλ,μ : PR → P is completely continuous. It

is easy to obtain

(Qλ,μu)(t) ≥ (Tλ,μu)(t) ≥ λ

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,u(s)

)
dsdτ dv

≥ λδδδCCG(t, t)
∫ 


G(s, s)f

(
s,u(s)

)
ds

≥ λδδδCCG(t, t)
∫ 






G(s, s)f
(
s,u(s)

)
ds

≥ 

λδδδCCmCJu(t) ≥ 


λδδδCCmCJk‖u‖ > ‖u‖

for t ∈ [, ] and u ∈ ∂PR . Now u(t) ≥ k‖u‖ = kR = l, and so

‖Qλ,μu‖ > ‖u‖.

In view of Lemma , i(Qλ,μ,PR ,P) = . By the additivity of the fixed point index,

i(Qλ,μ,PR\P ∩Duλ� ,μ� ,P) = i(Qλ,μ,PR ,P) – i(Qλ,μ,P ∩Duλ� ,μ� ,P) = –.

Thus Qλ,μ has a fixed point in {P ∩ Duλ� ,μ� }\{θ} and has another fixed point in PR\P ∩
Duλ� ,μ� by choosing λ� = λ̃. �
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Let us introduce the notation μ =  in the equation of (), then we have

– u() +A(t)u() + B(t)u′′ +C(t)u = λf (t,u),

u() = u() = u′′() = u′′() = u()() = u()() = .
()

In this case, we can prove the following theorem, which is similar to Theorem .

Theorem  Suppose that (H)-(H) hold, and L < . Then there exists at λ� >  such that
() has at least two, one and has no positive solutions for  < λ < λ�, λ = λ� for λ > λ�,
respectively.

We follow exactly the same procedure, described in detail in the proof of Theorem  for
μ = .
Let us introduce the following notations for μ =  and λ = 

TFu(t) =
∫ 



∫ 



∫ 


G(t, v)G(v, s)G(s, τ )f

(
τ ,u(τ )

)
dτ dsdv,

Qu :=HFu = TFu + (TG)TFu + (TG)TFu + · · · + (TG)nTFu + · · · ,
()

i.e., Qu =Q,u =HFu.

Lemma  Suppose that (H), (H) and (H) hold, and L < . Then for any u ∈
C+[, ]\{θ}, there exist real numbers Su ≥ su >  such that

sug(t) ≤ (Qu)(t)≤ Sug(t), for t ∈ [, ],

where g(t) =
∫ 


∫ 
 G(t, τ )G(τ , v)G(v, v)dvdτ .

Proof For any u ∈ C+[, ]\{θ} from Lemma , we have

(Qu)(t) = (HFu)(t)≤ 
 – L

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,u(s)

)
dsdτ dv

≤ C

 – L
max
s∈[,]

f
(
s,u(s)

)∫ 



∫ 


G(t, τ )G(τ , v)G(v, v)dvdτ

=
C

 – L
max
s∈[,]

f
(
s,u(s)

)
g(t) = Sug(t) for t ∈ [, ].

Note that for any u ∈ C+[, ]\{θ}, there exists an interval [a,b] ⊂ (, ) and a number
p >  such that u(t) ≥ p for t ∈ [a,b]. In addition, by (H), there exists s >  and u ∈
(,∞) such that f (t,u) ≥ s for t ∈ [a,b]. If p ≥ u, then f (t,u) ≥ f (t,p) ≥ f (t,u) ≥ s;
if p < u, then f (t,u) ≥ f (t,p) ≥ f (t, p

u p) ≥ ( p
u )

αs. Hence

(Qu)(t)≥ (TFu)(t)

=
∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,u(s)

)
dsdτ dv

≥ δ

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , τ )G(s, s)f

(
s,u(s)

)
dsdτ dv
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≥ δg(t)
∫ b

a
G(s, s)f

(
s,u(s)

)
dsdτ dv

≥ (b – a)δg(t)mG

(
p
u

)α

= sug(t),

where mG = mins∈[a,b]G(s, s), g(t) =
∫ 


∫ 
 G(t, v)G(v, τ )G(τ , τ )dτ dv, su = (b – a)×

δmG( p
u )

α . �

Theorem  Suppose that (H), (H) and (H) hold, L <  and λ = . Then
(i) () has a unique positive solution u� ∈ C+[, ]\{θ} satisfying

mug(t)≤ u�(t)≤ Mug(t) for t ∈ [, ],

where  <mu <Mu are constants.
(ii) For any u(t) ∈ C+[, ]\{θ}, the sequence

un(t) = (Qun–)(t) = (HFun–)(t)

= TFun– + (TG)TFun– + (TG)TFun– + · · · + (TG)nTFun– + · · ·

(n = , , . . .) converges uniformly to the unique solution u�, and the rate of
convergence is determined by

∥∥un(t) – u�(t)
∥∥ =O

(
 – dαn),

where  < d <  is a positive number.

Proof In view of (H), (H) and (H), Q : C+[, ] → C+[, ] is a nondecreasing opera-
tor and satisfies Q(ρu) ≥ ραQ(u) for t ∈ [, ] and u ∈ C+[, ]. Indeed, let u�(t) ≤ u��(t),
u�,u�� ∈ C+[, ], since f (s,u) is nondecreasing in u, then by using f (s,u�(s)) ≤ f (s,u��(s)),
for t ∈ [, ], it follows that

TFu�(t) =
∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,u�(s)

)
dsdτ dv

≤
∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,u��(s)

)
dsdτ dv = TFu��(t).

Moreover, from (), it follows that for TFu�(t)≤ TFu��(t)

G(TFu�)(t)≤ G(TFu��)(t) for t ∈ [, ]. ()

Finally, since f (s,u) is nondecreasing in u, then by using form (), f (s,G(TFu�)(t)) ≤
f (s,G(TFu��)(t)), for t ∈ [, ], we have

(TG)TF(u�) =
∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,G(TFu�)(s)

)
dsdτ dv

≤
∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,G(TFu��)(s)

)
dsdτ dv

= (TG)TFu��,
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i.e.,

(TG)TF(u�) ≤ (TG)TFu��.

By induction, it is easy to see that

(TG)nTF(u�) ≤ (TG)nTFu��, n = , , . . . . ()

Hence, using (), we have

Q(u�) = TF(u�) + (TG)TF(u�) + (TG)TF(u�) + · · · + (TG)nTF(u�) + · · ·
≤ TF(u��) + (TG)TF(u��) + (TG)TF(u��) + · · · + (TG)nTF(u��) + · · ·
=Q(u��). ()

Now, we show that Q : C+[, ] → C+[, ] satisfies Q(ρu) ≥ ραQ(u) for t ∈ [, ] and
u ∈ C+[, ]. Note that

TF(ρu) =
∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,ρu(s)

)
dsdτ dv

≥ ρα

∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,u(s)

)
dsdτ dv

= ραTF(u).

Moreover, from (), it follows that for TF(ρu)≥ ραTF(u),

G(TFρu)(t)≥ G
(
ραTF(u)

)
(t)

= ραG
(
TF(u)

)
(t) for t ∈ [, ].

Finally, we have

(TG)TF(ρu)(t) =
∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,G(TFρu)(s)

)
dsdτ dv

≥
∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,ραG

(
TF(u)

)
(s)

)
dsdτ dv

≥ ρα
∫ 



∫ 



∫ 


G(t, v)G(v, τ )G(τ , s)f

(
s,G

(
TF(u)

)
(s)

)
dsdτ dv

= ρα (TG)TF(u)(t),

i.e.,

(TG)(TFρu)(t)≥ ρα (TG)TF(u)(t).

By induction, it is easy to see that

(TG)n(TFρu)(t)≥ ραn+ (TG)TF(ρu)(t), n = , , . . . . ()
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Hence, using () and ρ ∈ (, ), α ∈ (, ), we have

Q(ρu) = TF(ρu) + (TG)TF(ρu) + (TG)TF(ρu) + · · · + (TG)nTF(ρu) + · · ·
≥ ραTF(u) + ρα (TG)TF(u) + ρα (TG)TF(u) + · · · + ραn+ (TG)nTF(u) + · · ·
≥ ραTF(u) + ρα(TG)TF(u) + ρα(TG)TF(u) + · · · + ρα(TG)nTF(u) + · · ·
= ρα

(
TF(u) + (TG)TF(u) + (TG)TF(u) + · · · + (TG)nTF(u) + · · · )

= ραQ(u). ()

By Lemma , there exists  < sg ≤ Sg such that

sug(t) ≤ Qg(t) ≤ Sug(t).

Let

s = sup
{
sg : sug(t) ≤ Qg(t)

}
, S = inf

{
Sg :Qg(t)≤ Sug(t)

}
.

Pick ms andMs such that

 <ms <min
{
, s


–α

}
()

and

max
{
,S


–α

}
=Ms < ∞. ()

Set u(t) =msg(t), v(t) =Msg(t), un = Qun–, and vn = Qvn–, n = , , . . . . From () and
(), we have

msg(t) = u(t) ≤ u(t)≤ · · · ≤ un(t) ≤ · · · ≤ vn(t) ≤ · · · ≤ v(t) ≤ v(t) =Msg(t). ()

Indeed, from ()ms < , andmα–
s s > , we have

u(t) =Q(u) =Q
(
msg(t)

) ≥ mα
s Q

(
g(t)

) ≥ mα
s sg(t)

=mα–
s smsg(t) =mα–

s su(t)≥ u(t),

and by induction

un+(t) =Q(un) ≥ Q(un–) = un(t).

From (),Ms > , andMα–
s S < , we have

v(t) =Q(v) ≤ Mα
s Q

(
g(t)

)
=Mα

s Q
(


Ms

v
)
=Mα

s Q(g)

≤ Mα
s Sg ≤ SMα–

s Msg = SMα–
s v(t) ≤ v(t),
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and by induction

vn+(t) =Q(vn) ≤ Q(vn–) = vn(t).

Let d = ms
Ms

. Then

un ≥ dαnvn. ()

In fact u = dv is clear. Assume that () holds with n = k (k is a positive integer), i.e.,
uk ≥ dαk vk . Then

uk+ =Q(uk) ≥ Q
(
dαk vk

) ≥ (
dαk )αQ(vk) = dαk+Q(vk) = dαk+vk+.

By induction, it is easy to see that () holds. Furthermore, in view of (), () and (),
we have

 ≤ un+z – un ≤ vn – un ≤ (
 – dαn)v = (

 – dαn)Msg(t)

and

‖un+z – un‖ ≤ ‖vn – un‖ ≤ (
 – dαn)Ms‖g‖,

where z is a nonnegative integer. Thus, there exists u� ∈ C+[, ] such that

lim
n→∞un(t) = lim

n→∞ vn(t) = u�(t) for t ∈ [, ]

and u�(t) is a fixed point of Q and satisfies

mgg(t) ≤ u�(t) ≤ Mgg(t).

This means that u� ∈ C+
� [, ], where C+

� [, ] = {u ∈ C+[, ],u(t) >  for t ∈ (, )}.
Next we show that u� is the unique fixed point ofQ in C+

� [, ]. Suppose, to the contrary,
that there exists another u ∈ C+

� [, ] such that Qu = u. We can suppose that

u�(t) ≤ u(t), u�(t) �= u(t) for t ∈ [, ].

Let τ̂ = sup{ < τ <  : τu� ≤ u ≤ τ–u�}. Then  < τ̂ ≤  and τ̂u� ≤ u ≤ τ̂–u�. We assert
τ̂ = . Otherwise,  < τ̂ < , and then

u =Qu≥ Q
(̂
τu�

) ≥ τ̂ αQ
(
u�

)
= τ̂ αu�,

u� =Qu� ≥ Q(̂τu) ≥ τ̂ αQ(u) = τ̂ αu.

This means that τ̂ αu� ≤ u ≤ (̂τα)–u�, which is a contradiction of the definition of τ̂ , be-
cause τ̂ < τ̂ α .
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Let us introduce the following notations for μ = 

Tλu(t) := TFu(t) = λ

∫ 



∫ 



∫ 


G(t, v)G(v, s)G(s, τ )f

(
τ ,u(τ )

)
dτ dsdv,

Qλu :=HFu = TFu + (TG)TFu + (TG)TFu + · · · + (TG)nTFu + · · ·
= Tλu + (TG)Tλu + (TG)Tλu + · · · + (TG)nTλu + · · · ,

i.e., Qλu = λQu, where Q is given by (). �

Theorem  Suppose that (H), (H), (H) and L <  hold. Then () has a unique positive
solution uλ(t) for any  < λ ≤ .

Proof Theorem  implies that for λ = , the operator Qλ has a unique fixed point u ∈
C+[, ], that is Qu = u. Then from Lemma , for every λ� ∈ (, ), there exists a func-
tion u� ∈ P\{θ} such that Qλ�u� = u�.
Thus, uλ is a unique positive solution of () for every  < λ ≤ . �

4 Application
As an application of Theorem , consider the sixth-order boundary value problem

– u() +
(
 – .t

)
u() + (. – . sinπ t)u′′ +C(– + cos.π t)u

=
(
.t( – t) + u

)
ϕ + λ

(
 + sinπ t + u

)
,  < t < ,

– ϕ′′ + ϕ = μu,  < t < ,

u() = u() = u′′() = u′′() = u()() = u()() = ,

ϕ() = ϕ() = ,

()

for a fixed λ = , λ = –, λ =  and κ = . In this case, a = λ + λ + λ = , b = –λλ –
λλ – λλ = , and c = λλλ = –. We have A(t) =  – .t, B(t) = . – . sinπ t,
C(t) = –+cos.π t,D(t) = .t(– t) and f (t,u) = + sinπ t+u. It is easy to see that π +
aπ – bπ + c = ,. > , a = supt∈[,]A(t), b = inft∈[,] B(t) and c = supt∈[,]C(t). Note
also that K =max≤t≤[–A(t) +B(t) –C(t) – (–a+b– c)] = ,D =maxt∈[,]

∫ 
 G(t, v)dv =

., C = maxt∈[,]D(t) = ., d = maxt∈[,]
∫ 
 G(t, s)ds = ., μ∗∗ = –DK

DCd
=

. and DK = . < . Thus, if  < μ < ., then the conditions of Theorem 
(note L =D(K +μCd) < ) are fulfilled (in particular, (H)-(H) are satisfied). As a result,
Theorem  can be applied to ().
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