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Abstract
In the paper we provide sufficient conditions for the existence of positive solutions for
some second-order differential equation subject to periodic boundary conditions.
Our method employs a Leggett-Williams norm-type theorem for coincidences due to
O’Regan and Zima. Two examples are given to illustrate the main result of the paper.
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1 Introduction
In the paper we are interested in the existence of positive solutions for the periodic bound-
ary value problem (PBVP)

⎧⎨
⎩
x′′(t) + h(t)x′(t) + f (t,x(t),x′(t)) = , t ∈ [,T],

x() = x(T), x′() = x′(T),
()

where f : [,T]× [,∞)×R → R and h : [,T] → (,∞) are continuous functions. Our
study is motivated by current activity of many researchers in the area of theory and appli-
cations of PVBPs; see, for example, [–] and references therein. In particular, in a recent
paper [], Chu, Fan and Torres have studied the existence of positive periodic solutions
for the singular damped differential equation

x′′(t) + h(t)x′(t) + a(t)x(t) = f
(
t,x(t),x′(t)

)

by combining the properties of the Green’s function of the PBVP

⎧⎨
⎩
x′′(t) + h(t)x′(t) + a(t)x(t) = , t ∈ [,T],

x() = x(T), x′() = x′(T),
()

with a nonlinear alternative of Leray-Schauder type (see, for example, []). It should be
noted that a �≡  was the key assumption used in []. If a ≡ , then PBVP () has nontrivial
solutions, which means that the problem we are concerned with here, that is, PBVP (), is
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at resonance. There are several methods to deal with the resonant PBVPs. For example, in
[], Torres studied the existence of a positive solution for the PBVP

⎧⎨
⎩
x′′(t) = f (t,x(t)), t ∈ (, π ),

x() = x(π ), x′() = x′(π ),

by considering the equivalent problem

⎧⎨
⎩
x′′(t) + a(t)x(t) = f (t,x(t)) + a(t)x(t), t ∈ (, π ),

x() = x(π ), x′() = x′(π ),

via Krasnoselskii’s theorem on cone expansion and compression. Further results in this
direction can be found in [] and []. In [] Rachůnková, Tvrdý and Vrkoč applied the
method of upper and lower solutions and topological degree arguments to establish the
existence of nonnegative and nonpositive solutions for the PBVP

⎧⎨
⎩
x′′(t) = f (t,x(t)), t ∈ (, ),

x() = x(), x′() = x′().
()

The same PBVP was studied byWang, Zhang andWang in []. Their existence and mul-
tiplicity results on positive solutions are based on the theory of a fixed point index for
A-proper semilinear operators on cones developed by Cremins [].
The goal of our paper is to provide sufficient conditions that ensure the existence of pos-

itive solutions of () with the function h positive on [,T]. Our general result is illustrated
by two examples. The method we use in the paper is to rewrite BVP () as a coincidence
equation Lx =Nx, where L is a Fredholm operator of index zero andN is a nonlinear oper-
ator, and to apply the Leggett-Williams norm-type theorem for coincidences obtained by
O’Regan andZima [].Wewould like to emphasize that the idea of results of [] and [],
as well as these of [–], goes back to the celebrated Mawhin’s coincidence degree the-
ory []. For more details on this significant tool, its modifications and wide applications,
we refer the reader to [–] and references therein.
In this paper, for the first time, the existence theorem from [] is used for studying

the boundary value problem with the nonlinearity f depending also on the derivative. In
general, the presence of x′ in f makes the problem much harder to handle. We point out
that, to the best of our knowledge, there are only a few papers on PBVPs that discuss such
a nonlinearity; we refer the reader to [, –] for some results of that type. We also
complement several results in the literature, for example, in [, ] and []. It is evident
that the existence theorems for PBVP () can be established by the shiftmethod used in [],
that is, one can employ the results of [] to the periodic problem we study here. However,
the conditions imposed on f in [] are not comparable with ours.

2 Coincidence equation
For the convenience of the reader, we begin this section by providing some background
on cone theory and Fredholm operators in Banach spaces.
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Definition  A nonempty subset C, C �= {}, of a real Banach space X is called a cone if C
is closed, convex and

(i) λx ∈ C for all x ∈ C and λ ≥ ,
(ii) x, –x ∈ C implies x = .

Every cone induces a partial ordering in X as follows: for x, y ∈ X, we say that

x 	 y if and only if y – x ∈ C.

The following property holds for every cone in a Banach space.

Lemma  [] For every u ∈ C \ {}, there exists a positive number σ (u) such that

‖x + u‖ ≥ σ (u)‖x‖

for all x ∈ C.

Consider a linear mapping L : domL ⊂ X → Y and a nonlinear operator N : X → Y ,
where X and Y are Banach spaces. If L is a Fredholm operator of index zero, that is, ImL is
closed and dimKerL = codim ImL < ∞, then there exist continuous projections P : X → X
and Q : Y → Y such that ImP =KerL and KerQ = ImL (see, for example, [, ]). More-
over, since dim ImQ = codim ImL, there exists an isomorphism J : ImQ → KerL. Denote
by LP the restriction of L toKerP∩domL. Then LP is an isomorphism fromKerP∩domL
to ImL and its inverse

KP : ImL →KerP ∩ domL

is defined.
As a result, the coincidence equation Lx =Nx is equivalent to x = �x, where

� = P + JQN +KP(I –Q)N .

Let ρ : X → C be a retraction, that is, a continuous mapping such that ρ(x) = x for all
x ∈ C. Put

�ρ = � ◦ ρ.

Let �, � be open bounded subsets of X with � ⊂ � and C ∩ (� \ �) �= ∅. Assume
that

◦ L is a Fredholm operator of index zero,
◦ QN : X → Y is continuous and bounded and KP(I –Q)N : X → X is compact on every

bounded subset of X ,
◦ Lx �= λNx for all x ∈ C ∩ ∂� ∩ domL and λ ∈ (, ),
◦ ρ maps subsets of � into bounded subsets of C,
◦ dB([I – (P + JQN)ρ]|KerL,KerL∩ �, ) �= , where dB stands for the Brouwer degree,

http://www.boundaryvalueproblems.com/content/2013/1/19
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◦ there exists u ∈ C \ {} such that ‖x‖ ≤ σ (u)‖�x‖ for x ∈ C(u)∩ ∂�, where

C(u) = {x ∈ C : μu 	 x for some μ > }

and σ (u) is such that ‖x + u‖ ≥ σ (u)‖x‖ for every x ∈ C,
◦ (P + JQN)ρ(∂�) ⊂ C and �ρ(� \ �) ⊂ C.

Theorem  [] Under the assumptions ◦-◦ the equation Lx = Nx has a solution in the
set C ∩ (� \ �).

In the next section, we use Theorem  to prove the existence of a positive solution for
PBVP (). For applications of Theorem  to nonlocal boundary value problems at reso-
nance, we refer the reader to [], [] and [].

3 Periodic boundary value problem
We now provide sufficient conditions for the existence of positive solutions for PBVP ().
For convenience and ease of exposition, we make use of the following notation:

e(t) = exp

(
–

∫ t


h(τ )dτ

)
, ϕ(t) =

∫ t


e(τ )dτ , �(t) =

∫ t


ϕ(τ )dτ , ()

and

ψ(t) =


e(t)

(


 – e(T)
–

ϕ(t)
ϕ(T)

)
, t ∈ [,T]. ()

We observe that  < ψ(t) < 
e(T)(–e(T)) on [,T]. Moreover, we put

k(t, s) =


Te(s)

⎧⎪⎪⎨
⎪⎪⎩

ϕ(s)
ϕ(T) [ϕ(T)s – Tϕ(t) +�(T)] –�(s),  ≤ s ≤ t ≤ T ,
ϕ(s)
ϕ(T) [ϕ(T)(s – T) – Tϕ(t) +�(T)] + Tϕ(t) –�(s),

 ≤ t ≤ s ≤ T ,

()

and

K(t, s) = k(t, s) +
M –

∫ T
 k(t, τ )dτ∫ T

 ψ(τ )dτ
ψ(s), t, s ∈ [,T], ()

whereM is a positive constant.
We assume that
(H) f : [,T]× [,∞)×R→R and h : [,T] → (,∞) are continuous functions.

We also assume that there exist R > ,  < α ≤ β ,  < M ≤ e(T)(–e(T))
∫ T
 ψ(τ )dτ

αT , r ∈ (,R),
m ∈ (, ), η ∈ [,T] and a continuous function g : [,T]→ [,∞) such that
(H) f (t,x, y) > –αx + β|y| for (t,x, y) ∈ [,T]× [,R]× [–R,R],
(H) f (t,R, ) <  for t ∈ [,T],
(H) f (,x,R) = f (T ,x,R) and f (,x, –R) = f (T ,x, –R) for x ∈ [,R],
(H) f (t,x, –R)≤ h(t)R for t ∈ [,T] and x ∈ [,R),
(H) f (t,x, y)≥ g(t)(x + |y|) for (t,x, y) ∈ [,T]× (, r]× [–r, r],
(H) 

αT ≥ K(t, s)≥  for t, s ∈ [,T] and m
∫ T
 K(η, s)g(s)ds≥ .

http://www.boundaryvalueproblems.com/content/2013/1/19
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Theorem  Under the assumptions (H)-(H), PBVP () has a positive solution on [,T].

Proof Let ‖ · ‖∞ denote the supremum norm in the space C[,T], that is, ‖x‖∞ =
supt∈[,T] |x(t)|. Consider the Banach spaces X = C[,T] with the norm ‖x‖ =max{‖x‖∞,
‖x′‖∞}, and Y = C[,T] with the norm ‖ · ‖∞.
We write problem () as a coincidence equation

Lx =Nx,

where

Lx(t) = –x′′(t) – h(t)x′(t), t ∈ [,T],

and

Nx(t) = f
(
t,x(t),x′(t)

)
, t ∈ [,T],

with domL = {x ∈ X : x′′ ∈ C[,T],x() = x(T),x′() = x′(T)}. Then

KerL =
{
x ∈ X : x(t) = c, t ∈ [,T], c ∈R

}

and

ImL =
{
y ∈ Y :

∫ T


ψ(s)y(s)ds = 

}
,

where ψ is given by ().
Clearly, ImL is closed and Y = Y + ImL with

Y =
{
y ∈ Y : y =

∫ T
 ψ(s)ds

∫ T


ψ(s)y(s)ds, y ∈ Y

}
.

Since Y ∩ ImL = {}, we have Y = Y ⊕ ImL. Moreover, dimY = , which gives
codim ImL = . Consequently, L is Fredholm of index zero, and the assumption ◦ is satis-
fied.
Define the projections P : X → X by

Px(t) =

T

∫ T


x(s)ds, t ∈ [,T],

and Q : Y → Y by

Qy(t) =
∫ T

 ψ(s)ds

∫ T


ψ(s)y(s)ds, t ∈ [,T].

It is a routine matter to show that for y ∈ ImL, the inverse KP of LP is given by

(KPy)(t) =
∫ T


k(t, s)y(s)ds, t ∈ [,T],

http://www.boundaryvalueproblems.com/content/2013/1/19
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with the kernel k defined by (). Clearly, the assumption ◦ is satisfied. For y ∈ ImQ, define

J(y) =My.

Then J is an isomorphism from ImQ to KerL. Next, consider a cone

C =
{
x ∈ X : x(t)≥  on [,T]

}
.

For u(t) ≡ , we have σ (u) =  and

C(u) =
{
x ∈ C : x(t) >  on [,T]

}
.

Let

� =
{
x ∈ X : ‖x‖ < r,

∣∣x(t)∣∣ >m‖x‖∞ and
∣∣x′(t)

∣∣ >m
∥∥x′∥∥∞ on [,T]

}
,

and

� =
{
x ∈ X : ‖x‖ < R

}
.

Obviously, � and � are open bounded subsets of X, and � ⊂ �.
To verify ◦, suppose that there exist x ∈ C ∩ ∂� ∩ domL and λ ∈ (, ) such that

Lx = λNx. Then x(t)≥  on [,T], ‖x‖ = R,

–x′′
(t) – h(t)x′

(t) = λf
(
t,x(t),x′

(t)
)
, t ∈ [,T], ()

and

x() = x(T), x′
() = x′

(T). ()

There are two cases to consider.
. If ‖x‖ = ‖x‖∞, then there exists t ∈ [,T] such that x(t) = R. For t ∈ (,T), we get

 ≤ –x′′(t) = λf (t,R, ), contrary to the assumption (H). Similarly, if t =  or t = T ,
BCs () imply x′() = x′(T) = . Hence,  ≤ –x′′(t) = λf (t,R, ) which contradicts (H)
again.
. If ‖x‖ = ‖x′

‖∞ > ‖x‖∞, then there exists t ∈ [,T] such that |x′(t)| = R. Observe
that (H) implies f (t,x,±R) >  for t ∈ [,T] and x ∈ [,R]. Suppose that t ∈ (,T). If
x′(t) = R, we get from ()

–h(t)R = λf
(
t,x(t),R

)
, ()

a contradiction. For x′(t) = –R, we have

h(t)R = λf
(
t,x(t), –R

)
< f

(
t,x(t), –R

)
, ()

contrary to (H). By similar arguments, if t =  or t = T , BCs () and (H) imply either
() or (). Thus, ◦ is fulfilled.

http://www.boundaryvalueproblems.com/content/2013/1/19


Zima and Drygaś Boundary Value Problems 2013, 2013:19 Page 7 of 10
http://www.boundaryvalueproblems.com/content/2013/1/19

Next, for x ∈ X, define (see [])

ρx(t) =

⎧⎨
⎩
x(t) if x(t)≥  on [,T],

 (x(t) –min{x(t) : t ∈ [,T]}) if x(t̃) <  for some t̃ ∈ [,T].

Clearly, ρ is a retraction and maps subsets of � into bounded subsets of C, so ◦ holds.
To verify ◦, it is enough to consider, for x ∈KerL∩ � and λ ∈ [, ], the mapping

H(x,λ)(t) = x(t) – λ

(

T

∫ T


(ρx)(s)ds +

M∫ T
 ψ(s)ds

∫ T


ψ(s)f

(
s, (ρx)(s), (ρx)′(s)

)
ds

)
.

Observe that if x ∈KerL∩ �, then x(t) = c on [,T] and ‖x‖ < R. Suppose H(x,λ) =  for
x ∈ ∂�. Then c = ±R. For c = R, we have (ρx)(t) = x(t) and in view of (H), we get

 ≤ R( – λ) = λ
M∫ T

 ψ(s)ds

∫ T


ψ(s)f (s,R, )ds < ,

which is a contradiction. If c = –R, then (ρx)(t) = , hence

–R = λ
M∫ T

 ψ(s)ds

∫ T


ψ(s)f (s, , )ds,

which contradicts (H). Thus, H(x,λ) �=  for x ∈ ∂� and λ ∈ [, ]. This implies

dB
(
H(x, ),KerL∩ �, 

)
= dB

(
H(x, ),KerL∩ �, 

)
,

and

dB
([
I – (P + JQN)ρ

]∣∣
KerL,KerL∩ �, 

)
= dB

(
H(c, ),KerL∩ �, 

) �= .

We next show that ◦ holds. Let x ∈ C(u)∩ ∂�. Then for t ∈ [,T], we have r ≥ x(t)≥
m‖x‖∞ > , r ≥ |x′(t)| ≥ ‖x′‖∞, and by (H) and (H), we obtain

�x(η) =

T

∫ T


x(s)ds +

∫ T


K(η, s)f

(
s,x(s),x′(s)

)
ds

≥
∫ T


K(η, s)g(s)

[
x(s) +

∣∣x′(s)
∣∣]ds≥ m

∫ T


K(η, s)g(s)

[‖x‖∞ +
∥∥x′∥∥∞

]
ds

≥ m‖x‖
∫ T


K(η, s)g(s)ds≥ ‖x‖.

This implies ‖x‖ ≤ ‖�x‖ for x ∈ C(u)∩ ∂�, so ◦ is satisfied.
Finally, we must check if ◦ holds. If x ∈ ∂�, then in view of (H), we get

(P + JQN)(ρx)(t) =

T

∫ T


(ρx)(s)ds +

M∫ T
 ψ(s)ds

∫ T


ψ(s)f

(
s, (ρx)(s), (ρx)′(s)

)
ds

≥ 
T

∫ T


(ρx)(s)ds +

M∫ T
 ψ(s)ds

∫ T


ψ(s)

[
–α(ρx)(s) + β

∣∣(ρx)′(s)∣∣]ds

http://www.boundaryvalueproblems.com/content/2013/1/19
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≥
∫ T



[

T

–
αMψ(s)∫ T
 ψ(τ )dτ

]
(ρx)(s)ds

≥
∫ T



[

T

–
αM

e(T)( – e(T))
∫ T
 ψ(τ )dτ

]
(ρx)(s)ds≥ .

Moreover, for x ∈ � \ �, we have from (H) and (H)

�ρx(t) =

T

∫ T


(ρx)(s)ds +

∫ T


K(t, s)f

(
s, (ρx)(s), (ρx)′(s)

)
ds

≥ 
T

∫ T


(ρx)(s)ds +

∫ T


K(t, s)

[
–α(ρx)(s) + β

∣∣(ρx)′(s)∣∣]ds

≥
∫ T



[

T

– αK(t, s)
]
(ρx)(s)ds≥ .

Thus, ◦ is fulfilled and the assertion follows. �

We now give two examples illustrating Theorem . Some calculations have been made
with Mathematica. In the first example, the function h is constant, while in the second
h(t) = /( + t) and f is independent of t.

Example  Consider the following PBVP:
⎧⎨
⎩
x′′(t) + x′(t) + (t( – t) + )(– 

x(t) +

 |x′(t)| + ) = , t ∈ [, ],

x() = x(), x′() = x′().
()

Then e(t) = e–t , ϕ(t) =  – e–t , �(t) = t + e–t – , ψ(t) = e
e– , and

k(t, s) =

⎧⎨
⎩
–s + es–t+–e–t

e– , ≤ s ≤ t ≤ ,

–s +  + es–t–e–t
e– , ≤ t ≤ s ≤ .

Moreover, () withM = 
 reads

K(t, s) =

⎧⎨
⎩
t – s + es–t+

e– ,  ≤ s ≤ t ≤ ,

t – s +  + es–t
e– ,  ≤ t ≤ s ≤ ,

and the assumptions (H)-(H) are met with R = , α = 
 , β = 

 , r =

 , m ∈ [ (e–)+e , ),

η =  and g(t) = t( – t) + . By Theorem , problem () has a positive solution.

Example  Consider the PBVP
⎧⎨
⎩
x′′(t) + 

+t x
′(t) + 

 –

x(t) + (x′(t))/ = , t ∈ [,  ],

x() = x(  ), x′() = x′(  ).
()

In this case, we have e(t) = 
+t , ϕ(t) = ln( + t), �(t) = –t + ln( + t) + t ln( + t) and

ψ(t) = ( + t)
(
 –

ln( + t)
ln(  )

)
.

http://www.boundaryvalueproblems.com/content/2013/1/19
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The assumptions of Theorem  are fulfilled with M = , R = , α = 
 , β = 

 , r =


 ,
m = ., η = 

 and g(t) = .
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