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Abstract
In this paper, we study the gradient estimates for positive solutions to the following
parabolic Lichnerowicz equations

∂u

∂ t
=�u + hu(x, t) + Aup(x, t) + Bu–q(x, t)

on complete noncompact Riemannian manifolds, where h, p, q, A, B are real constants
and p > 1, q > 0.
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1 Introduction
LetM be an n-dimensional complete noncompact Riemannianmanifold. In this paper, we
study the following nonlinear parabolic equation

ut(x, t) = �u(x, t) + hu(x, t) +Aup(x, t) + Bu–q(x, t), (.)

where h, p, q, A, B are real constants and p > , q > .
Gradient estimates play an important role in the study of PDE, especially the Laplace

equation and heat equation. Li [] derived the gradient estimates andHarnack inequalities
for positive solutions of nonlinear equations (� – ∂

∂t )u(x, t) + h(x, t)uα(x, t) =  and Au +
b∇u + huα =  on Riemannian manifolds. The author in [] also obtained a theorem of
Liouville-type for positive solutions of the nonlinear elliptic equation. Later, Yang [] gave
the gradient estimates for the solution to the elliptic equation with singular nonlinearity

�u + cu–α = , (.)

where α > , c are two real constants.More precisely, the author [] obtained the following
result.

Theorem . (Yang []) Let M be a noncompact complete Riemannian manifold of di-
mension n without boundary. Let Bp(R) be a geodesic ball of radius R around p ∈ M.
We denote –K(R), with K(R) ≥ , to be a lower bound of the Ricci curvature on Bp(R),
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i.e., Ric(ξ , ξ )≥ –K(R)|ξ | for all tangent field ξ on Bp(R). Suppose that u(x) is a positive
smooth solution of the equation (.) with α > , c being two real constants. Then we have:

(i) If c > , then u(x) satisfies the estimate

|∇u|
u

+ cu–(α+) ≤ n(n + )ε

R +
n(n – )ε

R
√
K(R) +

nν

R + nK(R)

on Bp(R), where ε >  and ν >  are some universal constants independent of
geometry ofM.

(ii) If c < , then u(x) satisfies the estimate

|∇u|
u

+ cu–(α+) ≤ (
n(α + )(α + ) +

√
n(α + )

)|c|( inf
Bp(R)

u
)–α–

+
nν

R +
(
n +

√
n

α + 

)
K(R)

+
nε

R (n + ) +
√
n

(α + )
+ (n – )

√
K(R)R

on Bp(R), where ε >  and ν >  are some universal constants independent of
geometry ofM.

For some interesting gradient estimates in this direction, we can refer to [–].
Recently, Song and Zhao [] studied a generalized elliptic Lichnerowicz equation

�u(x) + h(x)u(x) = A(x)up(x) +
B(x)
uq(x)

(.)

on compact manifold (M, g). The authors in [] got the local gradient estimate for the pos-
itive solutions of (.). Moreover, they considered the following parabolic Lichnerowicz
equation

ut(x, t) +�u(x, t) + h(x)u(x, t) = A(x)up(x, t) + B(x)u–q(x, t) (.)

on manifold (M, g) and obtained the Harnack differential inequality.

Theorem . (Song and Zhao []) Let M be a compact Riemannian manifold without
boundary, Ric(M) ≥ . Let c(t) ∈ C(,∞). Assume that u(x, t) is any positive solution of
(.) on M with A(x) ≡ A, B(x) ≡ B, and h(x) ≡ h. Denote ϕ = lnu, suppose that A ≤ ,
B ≥ , c(t) ≥ , c′(t) ≥ . If |∇ϕ| – 

pϕt + 
p H̃ – c(t) ≤  with H̃ = Ae(p–)ϕ + B

e(q+)ϕ – h at
t = , then we have

|∇ϕ| – 
p
ϕt +


p
H̃ – c(t) ≤ .

While the author considered the gradient estimates on compact Riemannian manifolds
in Theorem ., it is natural to study this problem on complete noncompact manifolds.
Motivated by the work above, we present our main results as follows.

Theorem . Let (M, g) be a complete noncompact n-dimensional Riemannian manifold
with Ricci tensor bounded from below by the constant –K =: –K(R), where R >  and
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K(R) >  in the metric ball BR(p) around p ∈ M. Assume that u is a positive solution
of (.) with u≤ M for all (x, t) ∈ BR(p)× (, +∞). Then
() if A≤ , B ≥ , we have

β
|∇u|
u

+ h +Aup– + Bu–(q+) –
ut
u

≤ n
( – δ)β

(
nc

δβ( – β)R –
Mp–

 A(p – )(p – β)
( – β)

+H +

t

)
;

() if A > , B > , we get

β
|∇u|
u

+ h +Aup– + Bu–(q+) –
ut
u

≤ n
( – δ)β

(
nc

δβ( – β)R +Mp–
 A(p – ) +H +


t

)
,

where H = (n–)(+
√
KR)c+c+c
R , c, c, c, δ are positive constants with  < δ <  and

β = e–Kt .

Let R → ∞, we can get the following global gradient estimates for the nonlinear
parabolic equation (.).

Corollary . Let (M, g) be a complete noncompact n-dimensional Riemannian manifold
with Ricci tensor bounded from below by the constant –K =: –K(M), where K > . Assume
that u is a positive solution of (.) with u≤ M for all (x, t) ∈M × (, +∞). Then
() if A≤ , B ≥ , we have

β
|∇u|
u

+ h +Aup– + Bu–(q+) –
ut
u

≤ n
( – δ)β

(
–
Mp–

 A(p – )(p – β)
( – β)

+

t

)
;

() if A > , B > , we get

β
|∇u|
u

+ h +Aup– + Bu–(q+) –
ut
u

≤ n
( – δ)β

(
Mp–

 A(p – ) +

t

)
,

δ are positive constants with  < δ <  and β = e–Kt .

Let δ → , A =  in Corollary ., we get a Li-Yau-type gradient estimate.

Corollary . Let (M, g) be a complete noncompact n-dimensional Riemannian manifold
with Ric(M) ≥ . Assume that u(x, t) is a positive solution to the equation

∂u
∂t

= �u + hu(x, t) + Bu–q(x, t)

on complete noncompact manifolds, where h, q, B are real constants and q > . Then we
have

|∇u|
u

+ h + Bu–(q+) –
ut
u

≤ n
t
. (.)

As an application, we have the following Harnack inequality.
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Theorem . Let (M, g) be a complete noncompact n-dimensional Riemannian manifold
with Ric(M) ≥ . Assume that u(x, t) is a positive solution to the equation

∂u
∂t

= �u + hu(x, t) + Bu–q(x, t)

on complete noncompact manifolds,where h, q, B are real constants and q > , B > . Then
for any points (x, t) and (x, t) on M × [, +∞) with  < t < t, we have the following
Harnack inequality:

u(x, t) ≤ u(x, t)
(
t
t

) n

eφ(x,x,t,t)+D,

where φ(x,x, t, t) = d(x,x)
t–t

, D = h(t – t).

2 Proof of Theorem 1.3
Assume that u is a positive solution to (.). Set w = lnu, then w satisfies the equation

wt = �w + |∇w| + h +Ae(p–)w + Be–w(q+). (.)

Lemma . Let (M, g) be a complete noncompact n-dimensional Riemannian manifold
with Ricci curvature bounded from below by the constant –K =: –K(R), where R >  and
K >  in the metric ball BR(p) around p ∈M. Let w be a positive solution of (.), then

(
� –

∂

∂t

)
F ≥ –∇w · ∇F + t

{
β
n

(
(β – )|∇w| – F

t

)

+A(p – β)(p – )e(p–)w|∇w| + B(q + )(q + β)e–w(q+)|∇w|
}

+
[
B(q + )e–(q+)w –A(p – )e(p–)w

]
F –

F
t
,

where

F = t
(
β|∇w| + h +Ae(p–)w + Be–(q+)w –wt

)
,

and β = e–Kt .

Proof Define

F = t
(
β|∇w| + h +Ae(p–)w + Be–(q+)w –wt

)
,

where β = e–Kt . By the Bochner formula, we have

�|∇w| ≥ 
n

|�w| + ∇w∇(�w) – K |∇w|. (.)

By a direct computation, we have

�wt = (�w)t = –∇w∇wt –A(p – )e(p–)wwt + B(q + )e–(q+)wwt +wtt (.)
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and

�w = –|∇w| – h –Ae(p–)w – Be–(q+)w +wt

=
(
 –


β

)(
–h –Ae(p–)w – Be–(q+)w +wt

)
–

F
βt

= (β – )|∇w| – F
t
,

and we know

�F = t
{
β�|∇w| +A

[
(p – )e(p–)w|∇w| + (p – )e(p–)w�w

]
+ B

[
(q + )e–(q+)w|∇w| – (q + )e–(q+)w�w

]
–�wt

}
.

Therefore, by equalities (.) and (.), we obtain

β�|∇w| ≥ β
n

(
(β – )|∇w| – F

t

)

+ β∇w∇(�w) – βK |∇w|

=
β
n

(
(β – )|∇w| – F

t

)

+ β∇w∇
[(

 –

β

)(
–h –Ae(p–)w – Be–(q+)w +wt

)
–

F
βt

]

– βK |∇w|

=
β
n

(
(β – )|∇w| – F

t

)

– A(β – )(p – )e(p–)w|∇w|

+ B(β – )(q + )e–(q+)w|∇w| + (β – )∇w∇wt

–

t
∇w∇F – βK |∇w|.

This implies that,

�F ≥ t
{
β
n

(
(β – )|∇w| – F

t

)

– A(β – )(p – )e(p–)w|∇w|

+ B(β – )(q + )e–(q+)w|∇w| + (β – )∇w∇wt

–

t
∇w∇F – βK |∇w| +A(p – )e(p–)w|∇w|

+A(p – )e(p–)w
[
(β – )|∇w| – F

t

]
+ B(q + )e–(q+)w|∇w|

– B(q + )e–(q+)w
[
(β – )|∇w| – F

t

]
+ ∇w∇wt +A(p – )e(p–)wwt

– B(q + )e–(q+)wwt –wtt

}

and

Ft =
F
t
+ t

(
β∇w∇wt +A(p – )e(p–)wwt – B(q + )e–(q+)wwt –wtt – Kβ|∇w|).
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Therefore, it follows that

(
� –

∂

∂t

)
F ≥ –∇w · ∇F + t

{
β
n

(
(β – )|∇w| – F

t

)

+A(p – β)(p – )e(p–)w|∇w| + B(q + )(q + β)e–w(q+)|∇w|
}

+
[
B(q + )e–(q+)w –A(p – )e(p–)w

]
F –

F
t
,

which completes the proof of Lemma .. �

We take aC cut-off function ϕ̃ defined on [,∞) such that ϕ̃(r) =  for r ∈ [, ], ϕ̃(r) = 
for r ∈ [,∞), and  ≤ ϕ̃(r) ≤ . Furthermore, ϕ̃ satisfies

ϕ̃′(r)
ϕ̃


 (r)

≥ –c

and

ϕ̃′′(r)≥ –c

for some absolute constants c, c > . Denote by r(x) the distance between x and p in M.
Set

ϕ(x) = ϕ̃

(
r(x)
R

)
.

Using an argument of Cheng and Yau [], we can assume that ϕ(x) ∈ C(M) with support
in Bp(R). Direct calculation shows that on Bp(R)

|∇ϕ|
ϕ

≤ c
R . (.)

By the Laplacian comparison theorem in [],

�ϕ ≥ –
(n – )( +

√
KR)c + c

R (c ≥ ). (.)

In inequality (.), if c < , then �ϕ can be controlled by – (n–)(+
√
KR)c+c

R , so in any case,
�ϕ ≥ –(n–)(+

√
KR)c+c

R , where c is some positive constant.
ForT ≥ , let (x, s) be a point inBR(p)× [,T], at which ϕF attains itsmaximumvalue P,

and we assume that P is positive (otherwise the proof is trivial). At the point (x, s), we have

∇(ϕF) = , �(ϕF) ≤ ,Ft ≥ .

It follows that

ϕ�F + F�ϕ – Fϕ–|∇ϕ| ≤ .

http://www.boundaryvalueproblems.com/content/2013/1/190
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This inequality, together with inequalities (.) and (.), yields

ϕ�F ≤ HF ,

where

H =
((n – )( +

√
KR))c + c + c
R .

At (x, s), by Lemma ., we have

ϕ�F ≥ –ϕ∇w∇F + sϕ
{
β
n

(
(β – )|∇w| – F

s

)

+A(p – β)(p – )e(p–)w|∇w| + B(q + )(q + β)e–w(q+)|∇w|
}

+ ϕ
[
B(q + )e–(q+)w –A(p – )e(p–)w

]
F – ϕ

F
s
,

it follows that

sϕβ

n

(
(β – )|∇w| – F

s

)

≤ c
R

ϕ

 F|∇w| +HF –A(p – β)(p – )e(p–)w|∇w|sϕ

– B(q + )(q + β)e–w(q+)|∇w|sϕ
–

[
B(q + )e–(q+)w –A(p – )e(p–)w

]
ϕF + ϕ

F
s
,

here we used

–ϕ∇w∇F = F∇w∇ϕ ≥ –F|∇w||∇ϕ| ≥ –
c
R

ϕ

 F|∇w|.

Following Davies [] (see also Negrin []), we set

μ =
|∇w|
F

.

Then we have

ϕβ((β – )sμ – )F

ns
≤ c

R
ϕ


 μ


 F


 +HF –A(p – β)(p – )e(p–)wsϕμF

– B(q + )(q + β)e–w(q+)sμϕF

–
[
B(q + )e–(q+)w –A(p – )e(p–)w

]
ϕF + ϕ

F
s
.

Next, we consider the following two cases:
() if A≤ , B ≥ , then we have

ϕβ((β – )sμ – )F

ns
≤ c

R
ϕ


 μ


 F


 +HF –Mp–

 A(p – )(p – β)μsϕF +
ϕF
s
,
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multiplying both sides of the inequality above by sϕ, we have

β((β – )sμ – )

n
(ϕF) ≤ c

R
sμ


 (ϕF)


 +HsϕF –Mp–

 A(p – )(p – β)μsϕF + ϕF

≤ δβ((β – )sμ – )

n
(ϕF) +

nc sμ
δβ((β – )sμ – )R ϕF

+HsϕF –Mp–
 A(p – )(p – β)μsϕF + ϕF .

So, it follows that

P ≤ n
( – δ)β((β – )sμ – )

×
(

nc sμ
δβ((β – )sμ – )R –

Mp–
 A(p – )(p – β)μs

( – β)
+Hs + 

)
.

Since

(
(β – )sμ – 

) ≥ ( – β)sμ +  ≥ ( – β)sμ,

we get

P ≤ n
( – δ)β

(
nc s

δβ( – β)R –
Mp–

 A(p – )(p – β)s
( – β)

+Hs + 
)
.

Now, () of Theorem . can be easily deduced from the inequality above;
() if A > , B > , then we have

ϕβ((β – )sμ – )F

ns
≤ c

R
ϕ


 μ


 F


 +Mp–

 A(p – )ϕF +HF +
ϕF
s
,

multiplying both sides of the inequality above by sϕ, we have

β((β – )sμ – )

n
(ϕF) ≤ c

R
sμ


 (ϕF)


 +Mp–

 A(p – )ϕFs +HsϕF + ϕF

≤ δβ((β – )sμ – )

n
(ϕF) +

nc sμ
δβ((β – )sμ – )R ϕF

+Mp–
 A(p – )ϕFs +HsϕF + ϕF .

So, it follows that

P ≤ n
( – δ)β

(
nc s

δβ( – β)R +Mp–
 A(p – )s +Hs + 

)
.

Similarly, we can obtain () of Theorem ..

Proof of Theorem . For any points (x, t) and (x, t) onM× [, +∞) with  < t < t, we
take a curve γ (t) parameterized with γ (t) = x and γ (t) = x. One gets fromCorollary .
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that

logu(x, t) – logu(x, t) =
∫ t

t

(
(logu)t + 〈∇ logu, γ̇ 〉)dt

≥
∫ t

t

(
|∇ logu| – n

t
+ h + Bu–(q+) – |∇ logu||γ̇ |

)
dt

≥ –
∫ t

t

(



|γ̇ | + n
t

– h
)
dt

= –
(∫ t

t




|γ̇ | dt + log

(
t
t

) n

+ h(t – t)

)
,

which means that

log
u(x, t)
u(x, t)

≤
∫ t

t




|γ̇ | dt + log

(
t
t

) n

+ h(t – t).

Therefore,

u(x, t) ≤ u(x, t)
(
t
t

) n

eφ(x,x,t,t)+D,

where φ(x,x, t, t) = d(x,x)
t–t

, D = h(t – t). �
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