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Abstract
In this paper, we consider a kind of Sturm-Liouville boundary value problems with
impulsive effects. By using the mountain pass theorem and Ekeland’s variational
principle, the existence of two positive solutions and two negative solutions is
established. Moreover, we do not assume that the nonlinearity satisfies the
well-known AR-condition.
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1 Introduction
Impulsive effects exist widely in many evolution processes, in which their states are
changed abruptly at a certain moment of time. Impulsive differential equations have be-
come more important in recent years in mathematical models of real processes and phe-
nomena studied in control theory [, ], population dynamics and biotechnology [, ],
physics andmechanics problems []. There has been a significant development in the area
of impulsive differential equations with fixed moments. We refer the reader to [, ] and
the references therein. Fixed-point theorems in cones [–] and the method of lower
and upper solutions with monotone iterative technique [–], have been used to study
impulsive differential equations.
Moreover, the Sturm-Liouville boundary value problems (for short BVPs) have received

a lot of attention. Many works have been carried out to discuss the existence of at least
one solution, multiple solutions. The methods used therein mainly depend on the Leray-
Schauder continuation theorem, Mawhin’s continuation theorem. Since it is very difficult
to give the corresponding Euler functional for Sturm-Liouville BVPs and verify the exis-
tence of the critical points for the Euler functional, few people consider the existence of
solutions for Sturm-Liouville BVPs by critical point theory, and many works considered
the existence of solutions for Dirichlet BVPs []. Recently, few researchers have used
variational methods to study the existence of solutions for impulsive differential equa-
tions with Dirichlet boundary conditions [, ]. In [], by mountain pass theorem,
Tian and Ge considered the existence of positive solutions of a kind of Sturm-Liouville
boundary value problems with impulsive effects. The authors require that the nonlinear-
ity f (t,x) : [, ]× [, +∞) → [, +∞) and f (t, ) �≡ . They have not obtained the existence
of both positive solutions and negative solutions.
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Based on the knowledge mentioned above, in this paper, we consider the constant-sign
solutions of the following BVP

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–(φp(x′(t)))′ = –a(t)φp(x(t)) + f (t,x(t)), a.e. t ∈ [, ], t �= t, . . . , tk ,

–�φp(x′(ti)) = Ii(x(ti)), i = , , . . . ,k,

αx() – αx′() = ,

βx() + βx′() = ,

(.)

where p > , φp(x) = |x|p–x, α,β ≥ , α,β > ,  = t < t < · · · < tk < tk+ = ,
�(φp(x′(ti))) = φp(x′(t+i )) –φp(x′(t–i )). Here x′(t+i ) and x′(t–i ) denote the right and left limits,
respectively. Assume that F(t,x) =

∫ x
 f (t, s)ds, f (t,x) is continuous, Ii(x) is continuous on

R, i = , . . . ,k, a(t) ∈ C([, ], (, +∞)).
Ambrosetti and Rabinowitz [] established the existence of nontrival solutions for

Dirichlet problems under the well-known Ambrosetti-Rabinowitz condition: there exist
some μ >  and R >  such that

 < μ

∫ x


f (t, s)ds≤ f (t,x)x (.)

for all t ∈ [,T] and |x| ≥ R. Since then, theAR-condition has been used extensively. By the
usual AR-condition, it is easy to show that the Euler-Lagrange functional associated with
the system has the mountain pass geometry, and the Palais-Smale sequence is bounded.
For example, in [, ], based on (.), the authors considered the boundary value prob-
lems with impulsive effects.
In this paper, we study the existence of constant-sign solutions of BVP (.) without the

AR-condition. The paper is organized as follows. In the forthcoming section, we give the
Euler functional of BVP (.) and some basic lemmas. The aim of Section  is to prove
the existence of at least two positive solutions of BVP (.) based on the mountain pass
theorem and Ekeland’s variational principle. At last, we give some results of the existence
of at least two negative solutions.

2 Preliminary
The Sobolev spaceW ,p[, ] is defined by

W ,p[, ] =
{
x : [, ] → R | x is absolutely continuous and x′ ∈ Lp(, ;R)

}

and is endowed with the norm

‖x‖ =
(∫ 



∣∣x(t)∣∣p dt + ∫ 



∣∣x′(t)
∣∣p dt) 

p
.

Then, from [],W ,p[, ] is a sparable and reflexive Banach space.

Definition . We say that x is a classical solution of BVP (.) if it satisfies the equation
of BVP (.) a.e. on [, ], the limits x′(t+i ) and x′(t–i ), i = , , . . . ,k, exist and the Sturm-
Liouville boundary conditions hold.

http://www.boundaryvalueproblems.com/content/2013/1/192


Zhang et al. Boundary Value Problems 2013, 2013:192 Page 3 of 14
http://www.boundaryvalueproblems.com/content/2013/1/192

However, if x ∈ W ,p[, ], then x is absolutely continuous and x′ ∈ Lp[, ]. In this case,
the one-sided derivatives x′(t+i ), x′(t–i ) may not exist. As a consequence, we need to intro-
duce a different concept of solution.

Definition . We say that x ∈ W ,p[, ] is a weak solution of BVP (.) if it satisfies

∫ 


a(t)φp(x)ydt +

∫ 


φp

(
x′)y′ dt

=
∫ 


f (t,x)ydt +

k∑
i=

Ii
(
x(ti)

)
y(ti) – φp

(
αx()

α

)
y() – φp

(
βx()

β

)
y() (.)

for y ∈ W ,p[, ].

Consider ϕ :W ,p[, ]→R defined by

ϕ(x) =

p

∫ 


a(t)|x|p dt + 

p

∫ 



∣∣x′∣∣p dt – ∫ 


F(t,x)dt

–
k∑
i=

∫ x(ti)


Ii(t)dt +


p
φp

(
α

α

)∣∣x()∣∣p + 
p
φp

(
β

β

)∣∣x()∣∣p. (.)

It is clear ϕ is continuously differentiable onW ,p[, ] and by computation, one has

〈
ϕ′(x), y

〉
=

∫ 


a(t)φp(x)ydt +

∫ 


φp

(
x′)y′ dt –

∫ 


f (t,x)ydt –

k∑
i=

Ii
(
x(ti)

)
y(ti)

+ φp

(
αx()

α

)
y() + φp

(
βx()

β

)
y(), x, y ∈W ,p[, ]. (.)

Hence, a critical point of ϕ gives us a weak solution of BVP (.).

Lemma . [] There exists a positive constant cp such that

(|x|p–x – |y|p–y,x – y
) ≥

⎧⎨
⎩cp|x – y|p, p≥ ,

cp |x–y|
(|x|+|y|)–p ,  < p < 

(.)

for any x, y ∈ RN , |x| + |y| �= . Here, (x, y) = x · yT .

For x ∈ C[, ], suppose that ‖x‖∞ =maxt∈[,] |x(t)|, |x|m =mint∈[,] |x|.

Lemma . If x ∈W ,p[, ], then, ‖x‖∞ ≤ ‖x‖.

Lemma . [] For x ∈ X, let x± =max{±x, }, then, the following properties hold:
(i) x ∈ X ⇒ x+, x– ∈ X ;
(ii) x = x+ – x–;
(iii) ‖x+‖X ≤ ‖x‖X ;
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(iv) if (xn)n∈N uniformly converges to x in C([, ]), then, (x+n)n∈N uniformly converges
to x+;

(vi) φp(x)x+ = |x+|p, φp(x)x– = –|x–|p.

In the following, let H be a Banach space, let ϕ be continuously differentiable, and we
state (C) condition [].
(C) Every sequence (xn)n∈N ⊂H such that the following conditions hold:

(i) (ϕ(xn))n∈N is bounded,
(ii) ( + ‖xn‖H )‖ϕ′(xn)‖H∗ →  as n→ ∞
has a subsequence, which converges strongly in H .

This condition is weaker than the usual Palais-Smale condition, but can be used in place
of it when constructing deformations of sublevel sets via negative pseudo-gradient flows,
and, therefore, also inminimax theorems such as themountain pass lemma and the saddle
point theorem.

Lemma . If x(t) ∈W ,p[, ] is a weak solution of BVP (.), then x(t) is a classical solu-
tion of BVP (.).

Proof The proof of this lemma is similar to that of []. For the sake of completeness, we
give a simple proof here.
Choose y ∈W ,p

 [, ] with y(t) =  for every t ∈ [, ti]∪ [ti+, ], then

∫ ti+

ti
a(t)φp(x)ydt –

∫ ti+

ti
f (t,x)ydt –

∫ ti+

ti

(
φp

(
x′))′ydt = .

Whence, by the fundamental lemma,

–
(
φp

(
x′(t)

))′ = –a(t)φp(x) + f (t,x), a.e. t ∈ [ti, ti+].

Hence, x ∈W ,p(ti, ti+), that is, x′(t+i ), x′(t–i+) exist, and x satisfies the equation of BVP (.)
a.e. on [, ]. Moreover,

∫ 


φp

(
x′)y′ dt =

k∑
i=

∫ ti+

ti
φp

(
x′)dy

=
k∑
i=

[
φp

(
x′(t–i+))y(ti+) – φp

(
x′(t+i ))y(ti) –

∫ ti+

ti

(
φp

(
x′))′ydt

]

= –φp
(
x′()

)
y() + φp

(
x′()

)
y() –

k∑
i=

(
φp

(
x′(t+i )) – φp

(
x′(t–i )))

y(ti)

–
∫ 



(
φp

(
x′))ydt

= –φp
(
x′()

)
y() + φp

(
x′()

)
y() –

k∑
i=

�φp
(
x′(ti)

)
y(ti)

–
∫ 



(
φp

(
x′))′ydt.
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Nowmultiplying the equation by y ∈ W ,p[, ] and integrating between  and , together
with (.), we get

 =
(

φp

(
αx()

α

)
– φp

(
x′()

))
y() +

(
φp

(
βx()

β

)
+ φp

(
x′()

))
y()

–
k∑
i=

(
�φp

(
x′(ti)

)
+ Ii

(
x(ti)

))
y(ti). (.)

Assume that y(t) = t(t – )�k
j=,j �=i(t – tj), then, y(ti) �=  and –�φp(x′(ti)) = I(x(ti)) (i �= ,

k + ). Let i = , . . . ,k, we arrive x satisfies the impulsive condition and

 =
(

φp

(
αx()

α

)
– φp

(
x′()

))
y() +

(
φp

(
βx()

β

)
+ φp

(
x′()

))
y() (.)

by (.). Let y(t) = t – , then, φp( αx()
α

) = φp(x′()), that is, αx()
α

= x′(). Let y(t) = t, then,
φp( βx()

β
) = –φp(x′()), that is, βx()

β
= –x′(). Hence, x is a solution of BVP (.). �

3 Existence of constant-sign solutions
Assume thatH(t,x) = xf (t,x) – pF(t,x),Gi(x) = Ii(x)x– p

∫ x
 Ii(t)dt, f (t, ) =  a.e. on [, ],

f (t,x)≥  for a.e. t ∈ [, ] and x≥ ; f (t,x)≤  for a.e. t ∈ [, ] and x≤ ; Ii() = , Ii(x)≥
 for x ≥ , Ii(x) ≤  for x ≤ , i = , , . . . ,k. Define x± =max{±x, }, f +(t,x) =

{
, x ≤ ,
f (t,x), x > ,

I+i (x) =
{
, x ≤ ,
Ii(x), x > , F

+(t,x) =
∫ x
 f +(t, s)ds, and

ϕ+(x) =

p

∫ 


a(t)|x|p dt + 

p

∫ 



∣∣x′∣∣p dt – ∫ 


F+(t,x)dt

–
k∑
i=

∫ x(ti)


I+i (t)dt +


p
φp

(
α

α

)∣∣x()∣∣p + 
p
φp

(
β

β

)∣∣x()∣∣p. (.)

It is obvious that ϕ+ is continuously differentiable and f +(t,x) = f (t,x+), I+i (x) = Ii(x+),
i = , , . . . ,k.

Lemma . Assume that

(A) Ii(x)≤ bi + cixτ–, bi, ci ≥ , x≥ , τ > p, i = , , . . . ,k;
(A) there exits a constant a ≥  such that for a.e. t ∈ [, ],  < x≤ y,H(t,x)≤ H(t, y)+a,

Gi(x)≤ Gi(y) + a, i = , , . . . ,k;
(A) limx→+∞ f (t,x)

xp– = +∞ for t ∈ [, ].

Then, ϕ+ satisfies (C) condition.

Remark . Let

f (t,x) =

⎧⎪⎪⎨
⎪⎪⎩
, x < ,

cxp–(ln( + xp) +  – sinxp),  ≤ x≤ ,

cxp–(ln( + xp) +  – sin ),  < x.

Then, f (t,x) satisfies (A)-(A). However, it does not satisfy the AR-condition while x is
large.

http://www.boundaryvalueproblems.com/content/2013/1/192
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Remark . The condition of H(t,x) ≤ H(t, y) + a for a ≥ ,  < x ≤ y, a.e. t ∈ [, ], is
weaker than the following condition:

there is x >  such that H(t,x) is increasing in x ≥ x > ,
which is equivalent to the condition:

f (t,x)
x is increasing in x≥ x > .

Proof Let (xn)n≥ ⊂W ,p[, ] be a sequence such that

∣∣ϕ+(xn)
∣∣ ≤ c,

(
 + ‖xn‖

)∥∥ϕ′
+(xn)

∥∥
(W ,p)∗ → , as n→ ∞. (.)

In order to prove that (xn)n≥ is bounded inW ,p[, ], there are several steps.
Step . (x–n)n∈N ⊂W ,p[, ] is bounded.
From (.), for ε > , one has

∣∣〈ϕ′
+(xn),u

〉∣∣ < ε, u ∈W ,p[, ]. (.)

We know that x–n is an absolutely continuous function on [, ], and so, the fundamental
theorem of calculus ensures the existence of a set E ⊂ [, ] such thatmeas([, ] \E) = 
and x–n is differentiable on E, then, let u = –x–n ,

ε >
∣∣〈ϕ′

+(xn), –x
–
n
〉∣∣

=
∣∣∣∣–

∫ 


a(t)φp(xn)x–n dt +

∫ 


φp

(
x′
n
)(
–x–n

)′ dt +
∫ 


f +(t,xn)x–n dt

+
k∑
i=

I+i
(
xn(ti)

)
x–n(ti) – φp

(
αxn()

α

)
x–n() – φp

(
βxn()

β

)
x–n()

∣∣∣∣
=

∫ 


a(t)

∣∣x–n∣∣p dt +
∫ 



∣∣(x–n)′∣∣p dt + φp

(
α

α

)∣∣x–n()∣∣p + φp

(
β

β

)∣∣x–n()∣∣p
≥ min

{∣∣a(t)∣∣m, }∥∥x–n∥∥p + φp

(
α

α

)∣∣x–n()∣∣p + φp

(
β

β

)∣∣x–n()∣∣p.
Then, (x–n)n∈N ⊂W ,p[, ] is bounded.
Step . (x+n)n∈N ⊂W ,p[, ] is bounded.
Suppose that ‖x+n‖ → ∞ as n → ∞. Set yn = x+n

‖x+n‖ for all n ≥ . Obviously, ‖yn‖ = , that
is, (yn)n∈N is a bounded sequence in W ,p[, ]. Going to a subsequence if necessary, we
may assume that

yn ⇀ y inW ,p[, ], yn → y in C[, ]. (.)

It is clear that y ≥  and from the inequality |〈ϕ′
+(xn),x+n〉| ≤ ‖ϕ′

+(xn)‖(W ,p)∗ · ‖x+n‖ ≤
‖ϕ′

+(xn)‖(W ,p)∗ · ‖xn‖ →  as n → ∞, there exists a sequence (εn)n∈N , εn ≥  and εn → 
as n→ ∞ such that

∣∣〈ϕ′
+(xn),x

+
n
〉∣∣ ≤ εn for large n.
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Hence,

∣∣∣∣ 〈ϕ′
+(xn),x+n〉
‖x+n‖p

∣∣∣∣ =
∣∣∣∣
∫ 


a(t)ypn dt +

∫ 



∣∣y′
n
∣∣p dt – ∫ 



f +(t,xn)yn
‖x+n‖p–

dt –
k∑
i=

I+i (xn(ti))x+n(ti)
‖x+n‖p

+ φp

(
α

α

) |x+n()|p
‖x+n‖p

+ φp

(
β

β

) |x+n()|p
‖x+n‖p

∣∣∣∣
≤ εn

‖x+n‖p
for large n. (.)

From ‖yn‖ = ,  ≤ ∫ 
 |yn|p dt ≤ , one has

 ≤
∫ 


a(t)ypn dt ≤ ∥∥a(t)∥∥∞.

Moreover, φp( α
α
) |x+n ()|p

‖x+n‖p ≤ pφp( α
α
), φp( β

β
) |x+n ()|p

‖x+n‖p ≤ pφp( β
β
), and from (A), one has

 ≥ –
k∑
i=

I+i (xn(ti))x+n(ti)
‖x+n‖p

≥ –
k∑
i=

bi|x+n(ti)|
‖x+n‖p

–
k∑
i=

ci|x+n(ti)|τ
‖x+n‖p

≥ –
k∑
i=

bi
‖x+n‖p–

– τ

k∑
i=

ci
∥∥x+n∥∥τ–p → –∞, as n → ∞.

Let [, ]+ = {t ∈ [, ], y(t) > }, then, x+n(t) → +∞ as n → ∞ for t ∈ [, ]+. By the hypoth-
esis,

f (t,x+n(t))
(x+n(t))p–

→ +∞, t ∈ [, ]+, as n→ ∞.

Let χn(t) = χ{x+n>}(t) = χ{yn>}(t), then, χn(t)yn(t)p → χ[,]+ (t)y(t)p for all t ∈ [, ]. If
meas[, ]+ > , then,

χn(t)yn(t)p
f (t,x+n(t))
(x+n(t))p–

→ +∞, t ∈ [, ]+, as n→ ∞.

Hence, by Fatou’s lemma,

∫ 



f +(t,xn)yn
‖x+n‖p–

dt =
∫ 


χn(t)yn(t)p

f (t,x+n(t))
(x+n(t))p–

dt → +∞, as n→ ∞.

Then, from (.), we reach a contradiction, that is, meas[, ]+ = . Since y ≥ , we con-
clude that y(t) =  for a.e. t ∈ [, ]. Then, y(t) ≡  for t ∈ [, ].
Assume that (tn)n≥ ⊂ [, ] be such that

ϕ+
(
tnx+n

)
= max

t∈[,]
ϕ+

(
tx+n

)
.

Fix an integer m ≥  and define

zn =
(
p

∥∥x+m∥∥p) 
p yn, n≥ , (.)

http://www.boundaryvalueproblems.com/content/2013/1/192
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that is, zn = (p‖x+m‖p)

p

‖x+n‖ x+n . Since ‖x+n‖ → ∞, there exists an integer n, for n ≥ n, one has

(p‖x+m‖p)

p

‖x+n‖ ≤ . Whence,

ϕ+
(
tnx+n

) ≥ ϕ+(zn)

=

p

∫ 


a(t)|zn|p dt + 

p

∫ 



∣∣z′
n
∣∣p dt – ∫ 


F+(t, zn)dt –

k∑
i=

∫ zn(ti)


I+i (t)dt

+

p
φp

(
α

α

)∣∣zn()∣∣p + 
p
φp

(
β

β

)∣∣zn()∣∣p

= 
∥∥x+m∥∥p

(∫ 


a(t)|yn|p dt +

∫ 



∣∣y′
n
∣∣p dt) –

∫ 


F+(t, zn)dt

–
k∑
i=

∫ zn(ti)


I+i (t)dt +


p
φp

(
α

α

)∣∣zn()∣∣p + 
p
φp

(
β

β

)∣∣zn()∣∣p

≥ min
{∣∣a(t)∣∣m, }∥∥x+m∥∥p‖yn‖p –

∫ 


F+(t, zn)dt –

k∑
i=

∫ zn(ti)


I+i (t)dt.

Since yn →  uniformly for t ∈ [, ], then, zn(t)→  uniformly for t ∈ [, ], and zn(ti) → 
for i = , . . . ,k as n→ ∞. Hence,

ϕ+
(
tnx+n

) ≥ min
{∣∣a(t)∣∣m, }∥∥x+m∥∥p, n > n >m.

Therefore, we have ϕ+(tnx+n) → ∞ as m → ∞. Since ϕ+(xn) and (x–n)n∈N ⊂ W ,p[, ] are
bounded, then, (ϕ+(x+n))n∈N ⊂ R is bounded. Together with ϕ+() = , one has tn ∈ (, )
for all n ≥ . Then,

 = tn
(
d
dt

ϕ+
(
tx+n

)∣∣∣∣
t=tn

)
=

〈
ϕ′
+
(
tnx+n

)
, tnx+n

〉

=
∫ 


a(t)φp

(
tnx+n

)
tnx+n dt +

∫ 


φp

((
tnx+n

)′)(tnx+n)′ dt –
∫ 


f +

(
t, tnx+n

)
tnx+n dt

–
k∑
i=

I+i
(
tnx+n(ti)

)
tnx+n(ti) + φp

(
α

α

)∣∣tnx+n()∣∣p + φp

(
β

β

)∣∣tnx+n()∣∣p

= tpn
∫ 


a(t)

(
x+n

)p dt + tpn
∫ 



∣∣(x+n)′∣∣p dt – ∫ 


f +

(
t, tnx+n

)
tnx+n dt

–
k∑
i=

I+i
(
tnx+n(ti)

)
tnx+n(ti) + φp

(
α

α

)∣∣tnx+n()∣∣p + φp

(
β

β

)∣∣tnx+n()∣∣p.
Moreover,


p

∫ 


H

(
t, tnx+n

)
dt +


p

k∑
i=

Gi
(
tnx+n(ti)

)

=

p

∫ 


f
(
t, tnx+n

)
tnx+n dt +


p

k∑
i=

Ii
(
tnx+n(ti)

)
tnx+n(ti)

http://www.boundaryvalueproblems.com/content/2013/1/192
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–
∫ 


F
(
t, tnx+n

)
dt –

k∑
i=

∫ tnx+n (ti)


Ii(t)dt

=

p
tpn

∫ 


a(t)

(
x+n

)p dt + 
p
tpn

∫ 



∣∣(x+n)′∣∣p dt + 
p
φp

(
α

α

)∣∣tnx+n()∣∣p

+

p
φp

(
β

β

)∣∣tnx+n()∣∣p –
∫ 


F+(t, tnx+n)dt –

k∑
i=

∫ tnx+n (ti)


I+i (t)dt

= ϕ+
(
tnx+n

)
≥ min

{∣∣a(t)∣∣m, }∥∥x+m∥∥p, n > n >m.

Since ϕ+(x+n) is bounded, there exists η >  such that

η ≥ pϕ+
(
x+n

)
–

〈
ϕ′
+(xn),x

+
n
〉

=
∫ 


f +(t,xn)x+n dt +

k∑
i=

I+i
(
xn(ti)

)
x+n(ti) – p

∫ 


F+(t,x+n)dt – p

k∑
i=

∫ x+n (ti)


I+i (t)dt

=
∫ 


H

(
t,x+n

)
dt +

k∑
i=

Gi
(
x+n(ti)

)
.

Since  < tnx+n ≤ x+n , then,

(k + )a + η ≥ (k + )a +
∫ 


H

(
t,x+n

)
dt +

k∑
i=

Gi
(
x+n(ti)

)

≥
∫ 


H

(
t, tnx+n

)
dt +

k∑
i=

Gi
(
tnx+n(ti)

)
≥ pmin

{∣∣a(t)∣∣m, }∥∥x+m∥∥p, n > n >m.

Since m ≥  is an arbitrary integer, let m → ∞, we have a contradiction. This proves that
(x+n)n∈N ⊂ W ,p[, ] is bounded.
From step  and step , we obtain that (xn)n∈N is bounded. Hence, we may assume that

xn ⇀ x inW ,p[, ], xn → x in C[, ].

Moreover, form,n ∈N , one has

〈
ϕ′
+(xn) – ϕ′

+(xm),xn – xm
〉

=
∫ 


a(t)

(
φp(xn) – φp(xm)

)
(xn – xm)dt +

∫ 



(
φp

(
(xn)′

)

– φp
(
(xm)′

))(
x′
n – x′

m
)
dt –

∫ 



(
f +(t,xn) – f +(t,xm)

)
(xn – xm)dt

–
k∑
i=

(
I+i

(
xn(ti)

)
– I+i

(
xm(ti)

))(
xn(ti) – xm(ti)

)
+

(
φp

(
αxn()

α

)

http://www.boundaryvalueproblems.com/content/2013/1/192


Zhang et al. Boundary Value Problems 2013, 2013:192 Page 10 of 14
http://www.boundaryvalueproblems.com/content/2013/1/192

– φp

(
αxm()

α

))(
xn() – xm()

)

+
(

φp

(
βxn()

β

)
– φp

(
βxm()

β

))(
xn() – xm()

)
.

Since (xn)n∈N is a Cauchy sequence in C[, ], |〈ϕ′
+(xn) – ϕ′

+(xm),xn – xm〉| ≤ (‖ϕ′
+(xn)‖ +

‖ϕ′
+(xm)‖)(‖xn‖ + ‖xm‖), (xn)n∈N is bounded in W ,p[, ], ϕ′

+(xn) → , ϕ′
+(xm) →  as

m,n → ∞, one has 〈ϕ′
+(xn) – ϕ′

+(xm),xn – xm〉 →  as m,n → ∞. Moreover, f +(t,x) is
continuous in x, I+i (x) is continuous, xn → x uniformly in [, ], whence, (φp( αxn()

α
) –

φp( αxm()
α

))(xn() – xm())→ , (φp( βxn()
β

) – φp( βxm()
β

))(xn() – xm())→ , and

∫ 



(
φp

(
x′
n
)
– φp

(
x′
m
))(

x′
n – x′

m
)
dt → , as n,m → ∞. (.)

If p≥ , from Lemma ., there exists a positive constant cp such that

∫ 



(
φp

(
x′
n
)
– φp

(
x′
m
))(

x′
n – x′

m
)
dt ≥ cp

∫ 



∣∣x′
n – x′

m
∣∣p dt. (.)

If p < , by Lemma ., the Hölder inequality and the boundedness of (xn)n∈N in
W ,p[, ], one has

∫ 



∣∣x′
n – x′

m
∣∣p dt = ∫ 



|x′
n – x′

m|p
(|x′

n| + |x′
m|) p(–p)

(∣∣x′
n
∣∣ + ∣∣x′

m
∣∣) p(–p)

 dt

≤
(∫ 



|x′
n – x′

m|
(|x′

n| + |x′
m|)–p dt

) p

(∫ 



(∣∣x′
n
∣∣ + ∣∣x′

m
∣∣)p dt)

–p


≤ c–
p


p

(∫ 



(
φp

(
x′
n
)
– φp

(
x′
m
)
,x′

n – x′
m
)
dt

) p



(p–)(–p)


×
(∫ 



(∣∣x′
n
∣∣p + ∣∣x′

m
∣∣p)dt)

–p


≤ c–
p


p

(∫ 



(
φp

(
x′
n
)
– φp

(
x′
m
)
,x′

n – x′
m
)
dt

) p



(p–)(–p)


× (‖xn‖p + ‖xm‖p) –p
 . (.)

Then, we have
∫ 
 |x′

n – x′
m|p dt →  as n,m → ∞. Hence, ‖xn – xm‖ → , that is, (xn)n∈N

is a Cauchy sequence inW ,p[, ]. By the completeness ofW ,p[, ], one has that (xn)n∈N
is a convergence sequence. �

Theorem . Assume that (A)-(A) and

(A) f (t,x)≤ b(t) + c(t)xτ–, x ≥ , b(t), c(t) ∈ C([, ], [, +∞));
(A) 

p min{|a|m, } – (
∫ 
 b(t)dt +

∑k
i= bi)–p – τ

τ
(
∫ 
 c(t)dt +

∑k
i= ci)τ–p > ,  =

( τ (p–)(
∫ 
 b(t)dt+

∑k
i= bi)

τ–(τ–p)(
∫ 
 c(t)dt+

∑k
i= ci)

) 
τ–

hold, then, BVP (.) has at least one positive solution.
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Proof From (A), one has F+(t,x)≤ b(t)x+ + c(t)
τ

(x+)τ and

ϕ+(x) ≥ 
p

∫ 


a(t)|x|p dt + 

p

∫ 



∣∣x′∣∣p dt – ∫ 


F+(t,x)dt –

k∑
i=

∫ x(ti)


I+i (t)dt

≥ 
p

∫ 


a(t)|x|p dt + 

p

∫ 



∣∣x′∣∣p dt – ∫ 


b(t)|x|dt – 

τ

∫ 


c(t)|x|τ dt

–
k∑
i=

bi
∣∣x(ti)∣∣ – k∑

i=

ci
τ

∣∣x(ti)∣∣τ

≥ 
p
min

{|a|m, }‖x‖p – ‖x‖
∫ 


b(t)dt –

τ

τ
‖x‖τ

∫ 


c(t)dt

– ‖x‖
k∑
i=

bi –
τ

τ
‖x‖τ

k∑
i=

ci

=

(

p
min

{|a|m, } – 

(∫ 


b(t)dt +

k∑
i=

bi

)
‖x‖–p

–
τ

τ

(∫ 


c(t)dt +

k∑
i=

ci

)
‖x‖τ–p

)
‖x‖p. (.)

Let h(x) = (
∫ 
 b(t)dt +

∑k
i= bi)x–p +

τ

τ
(
∫ 
 c(t)dt +

∑k
i= ci)xτ–p, then, limx→+ h(x) =

limx→+∞ h(x) = +∞. Hence, there exists x̄ ∈ (, +∞) such that  < h(x̄) = minx∈(,+∞) h(x).
Obviously,  = h′(x̄) = ( – p)(

∫ 
 b(t)dt +

∑k
i= bi)x̄–p + τ τ–p

τ
(
∫ 
 c(t)dt +

∑k
i= ci)x̄τ–p–,

then, x̄ = ( τ (p–)(
∫ 
 b(t)dt+

∑k
i= bi)

τ–(τ–p)(
∫ 
 c(t)dt+

∑k
i= ci)

) 
τ– . We infer that there exists an η′ >  such that ϕ+(x)≥

η′ >  for all x ∈ {x ∈W ,p[, ],‖x‖ = x̄}.
Moreover, choose x(t) > , t ∈ (, ), x ∈ W ,p[, ],

∫ 
 |x|p dt = . For, ∀N > , there ex-

ists M >  such that f (t,x)
xp– ≥ N for x >M. Choose N = ‖b(t)‖∞ + ‖c(t)‖∞Mτ–, one has

f +(t,x)≥ Nxp– –N. Hence, F+(t,x)≥ 
pNxp –Nx and

ϕ+(λx)
λp ≤ 

p

∫ 


a(t)|x|p dt + 

p

∫ 



∣∣x′∣∣p dt – 
p
N +

N

λp–

∫ 


xdt +


p
φp

(
α

α

)∣∣x()∣∣p
+

p
φp

(
β

β

)∣∣x()∣∣p. (.)

Since N >  is arbitrary, we have limλ→+∞ ϕ+(λx)
λp = –∞, that is, limλ→+∞ ϕ+(λx) = –∞.

Hence, from the mountain pass theorem, we obtain x ∈W ,p[, ], such that

ϕ′
+(x) =  and ϕ+(x) ≥ η′ >  = ϕ+(). (.)

It follows x �≡ . If x ≤  for a.e. t ∈ [, ], then,  = 〈ϕ′
+(x),x–〉 = –

∫ 
 a(t)|x– |p dt –∫ 

 |(x–)′|p dt –φp( α
α
)|x–()|p –φp( β

β
)|x–()|p. Hence, x–(t) =  a.e. t ∈ [, ], that is x(t) ≥

 and x �≡ . This implies that x is a positive solution of BVP (.). �

Theorem . Assume (A)-(A) and

(A) Ii(x)≥ dixγ–,  < γ < p, x≥ , di ≥ , i = , , . . . ,k

hold, then, BVP (.) has two positive solutions.
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Proof Assume Bρ = {x ∈W ,p[, ] : ‖x‖ ≤ x̄}. Obviously, infB̄ρ
ϕ+(x) > –∞ and

ϕ+(λx) ≤ 
p
λp

∫ 


a(t)|x|p dt + 

p
λp

∫ 



∣∣x′∣∣p dt – λγ

γ

k∑
i=

di
(
x+(ti)

)γ

+
λp

p
φp

(
α

α

)∣∣x()∣∣p + λp

p
φp

(
β

β

)∣∣x()∣∣p.
If λ ∈ (, ) is small enough and x is positive, we have ϕ+(λx) < , then,

–∞ < inf
B̄ρ

ϕ+(x) < .

Let ε ∈ [, ρ̄) with ρ̄ = inf∂Bρ ϕ+ – infB̄ρ
ϕ+ and consider the functional ϕ+ : B̄ρ → R, we

can apply Ekeland’s variational principle [] and obtain xε ∈ B̄ρ such that

inf
B̄ρ

ϕ+(x) ≤ ϕ+(xε) ≤ inf
B̄ρ

ϕ+(x) + ε < inf
B̄ρ

ϕ+(x) + ρ̄ = inf
∂Bρ

ϕ+ (.)

and

ϕ+(xε)≤ ϕ+(y) + ε‖y – xε‖ for all y ∈ B̄ρ .

From (.), we have xε ∈ Bρ . Define ψε(y) = ϕ+(y) + ε‖y– xε‖, then, xε ∈ Bρ is a minimizer
of ψε on B̄ρ . Therefore, for small λ >  and all h ∈W ,p[, ] with ‖h‖ = , we have

ψε(xε + λh) –ψε(xε)
λ

≥ ,

then,

ϕ+(xε + λh) – ϕ+(xε)
λ

+ ε‖h‖ ≥ ,

that is,

〈ϕ′
+(xε),h〉 ≥ –ε‖h‖. (.)

Define ψε(y) = ϕ+(y) – ε‖y – xε‖, then, ψε(y) ≤ ψε(xε), that is, xε ∈ Bρ is a maximum of
ψε on B̄ρ . Therefore, for small λ >  and all h ∈ W ,p[, ] with ‖h‖ = , with the same
discussion above, one has

〈
ϕ′
+(xε),h

〉 ≤ ε‖h‖. (.)

Hence,

∥∥ϕ′
+(xε)

∥∥ ≤ ε. (.)

Let εn = 
n and set xn = xεn ∈ Bρ . Then, ϕ+(xεn ) → infB̄ρ

ϕ+(x) and ϕ′
+(xεn ) → . Since ϕ+(x)

satisfies (C) condition, we may assume that xn → x̃ inW ,p[, ]. Hence, ϕ′
+(x̃) = 

ϕ+(x̃) = inf
B̄ρ

ϕ+(x) <  = ϕ+(),

http://www.boundaryvalueproblems.com/content/2013/1/192
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which implies that x̃ �≡  and x̃ is a critical point of ϕ+. Moreover,

ϕ+(x̃) = inf
B̄ρ

ϕ+(x) <  < η ≤ ϕ+(x),

so, x̃ �≡ x. If x̃ ≤  a.e. t ∈ [, ], with the same discussion in Theorem ., x̃– =  a.e.
t ∈ [, ]. Hence, x̃≥  and x̃ �≡ , which implies x̃ is another positive solution of BVP (.).

�

With the similar discussion above, we have the following result.

Theorem . Assume (A), (A)-(A) and

(A′
) there existsμ >  such that for all s ∈ [, ],we haveμH(t,x) ≥ H(t, sx) for a.e. t ∈ [, ],

all x≥ , μGi(x)≥ Gi(sx), i = , , . . . ,k, x ≥ 

hold, then, BVP (.) has at least two positive solutions.

Theorem . Assume that (A) and

(B) Ii(x)≥ –bi – ci|x|τ–, bi, ci ≥ , i = , , . . . ,k, x≤ , τ > p;
(B) H(t,x)≤ H(t, y) + a, Gi(x) ≤ Gi(y) + a, y ≤ x ≤ , a ≥ ;
(B) limx→–∞ f (t,x)

φp(x) = +∞ for a.e. t ∈ [, ];
(B) f (t,x)≥ –b(t) – c(t)|x|τ–, b(t), c(t) ∈ C([, ], [,∞)), x≤ ;
(B) Ii(x)≤ –di|x|γ–, γ < p, x ≤ , i = , , . . . ,k

hold, then, BVP (.) has at least two negative solutions.

Theorem . Assume that (B), (B)-(B), (A) and

(B′
) there existsμ >  such that for all s ∈ [, ],we haveμH(t,x)≥ H(t, sx) for a.e. t ∈ [, ],

all x≥ , μGi(x)≥ Gi(sx), i = , , . . . ,k, x≤ 

hold, then, BVP (.) has at least two negative solutions.
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