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Abstract
In this paper, the approximate controllability of fractional impulsive neutral stochastic
differential equations with nonlocal conditions and infinite delay in Hilbert spaces is
studied. By using the Krasnoselskii-Schaefer-type fixed point theorem and stochastic
analysis theory, some sufficient conditions are given for the approximate
controllability of the system. At the end, an example is given to illustrate the
application of our result.
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1 Introduction
The purpose of this paper is to prove the existence and approximate controllability of mild
solutions for a class of fractional impulsive neutral stochastic differential equations with
nonlocal conditions described in the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cDα
t [x(t) – h(t,xt)] = A[x(t) – h(t,xt)] + Bu(t) + f (t,xt)

+ g(t,xt) dW (t)
dt , t ∈ J := [,T],

�x|t=τk = Ik(x(τ–
k )), k = , , . . . ,n,

x() +μ(x) = x = ϕ ∈ Cv,

()

where cDα
t is the Caputo fractional derivative of order 

 < α < ; the state variable x(·)
takes values in the real separable Hilbert space H ; A : D(A) ⊂ H → H is the infinitesimal
generator of a strongly continuous semigroup of a bounded linear operators T(t), t ≥ ,
in the Hilbert space H . The history xt : (–∞, ] → H , xt(θ ) = x(t + θ ), θ ≤ , belongs to
an abstract phase space Cv. The control function u(·) is given in L(J ,U), U is a Hilbert
space; B is a bounded linear operator from U into H . The functions f , h, g , Ik are ap-
propriate functions to be specified later. The process {W (t) : t ≥ } is a given U-valued
Wiener process with a finite trace nuclear covariance operator Q ≥  defined on a com-
plete probability space (�,F , {Ft},P). Here  ≤ τ ≤ · · · ≤ τn ≤ T , �x|t=τk = x(τ+

k ) – x(τ–
k ),

x(τ+
k ) and x(τ–

k ) represent the right and left limits of x(t) at t = τk , respectively. The initial
data ϕ = {ϕ(t), t ∈ (–∞, ]} is an F-measurable, Cv-valued random variable independent
ofW (t) with finite second moments.
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In the past few decades, the theory of fractional differential equations has received a
great deal of attention, and they play an important role in many applied fields, including
viscoelasticity, electrochemistry, control, porous media, electromagnetic and so on. We
refer the reader to the monographs of Kilbas et al. [], Mill and Ross [], Podlubny [] and
the references therein. There is also an extensive literature concerned with the fractional
differential equations. For example, Benchohra et al. in [] considered the VIP for a par-
ticular class of fractional neutral functional differential equations with infinite delay. Zhou
in [] discussed the existence and uniqueness for fractional neutral differential equations
with infinite delay.
In practice, deterministic systems often fluctuate due to environmental noise. So it is

important and necessary for us to discuss the stochastic differential systems. On the other
hand, the control theory is one of the important topics in mathematics. Roughly speaking,
controllability generally means that it is possible to steer a dynamical control system from
an arbitrary initial state to an arbitrary final state using the set of admissible controls. As
a result of its widespread use, the controllability of stochastic or deterministic systems all
have received extensive attention. Mahmudov [] investigated the controllability of infi-
nite dimensional linear stochastic systems, and in [] Dauer andMahmudov extended the
results to semilinear stochastic evolution equations with finite delay. Park, Balasubrama-
niam and Kumaresan [] gave the controllability of neutral stochastic functional infinite
delay systems. Besides the environmental noise, sometimes, we have to consider the im-
pulsive effects, which exist inmany evolution processes, because the impulsive effectsmay
bring an abrupt change at certain moments of time. For the literatures on controllability
of stochastic system with impulsive effect, we can see [–].
However, to the best of our knowledge, it seems that little is known about approximate

controllability of fractional impulsive neutral stochastic differential equationswith infinite
delay and nonlocal conditions. The aim of this paper is to study this interesting problem.
The rest of the paper is organized as follows. In Section , we introduce some preliminaries
such as definitions of fractional calculus and some useful lemmas. In Section , we prove
our main results. Finally in Section , an example is given to demonstrate the application
of our results.

2 Preliminaries
In this section, we introduce some notations and preliminary results, needed to estab-
lish our results. Throughout this paper, let U and H be two real separable Hilbert spaces,
and we denote by L(U ,H) the set of all linear bounded operators from U into H . For
convenience, we will use the same notation ‖ · ‖ to denote the norms in U , H and
L(U ,H), and use 〈·, ·〉 to denote the inner product of U and H without any confusion. Let
(�,F , {Ft}t≥,P) be a complete probability space with a filtration {Ft}t≥ satisfying the
usual conditions (i.e., it is increasing and right continuous, while F contains all P-null
sets). Let W = (Wt)t≥ be a Q-Wiener process defined on (�,F , {Ft}t≥,P) with the co-
variance operator Q, that is

E
〈
W (t),x

〉〈
W (s), y

〉
= (t ∧ s)〈Qx, y〉 for all x, y ∈U and t, s ∈ [,T],
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where Q is a positive, self-adjoint, trace class operator on U . Let L
 = L(U ,H) be the

space of all Q-Hilbert-Schmidt operators from U to H with the norm

‖ξ‖L

:= tr

(
ξQξ ∗) < ∞, ξ ∈L(U ,H).

For the construction of stochastic integral in Hilbert space, see Da Prato and Zabczyk
[]. Let A be the infinitesimal generator of an analytic semigroup {T(t)}t≥ of uniformly
bounded linear operators on H , and in this paper, we always assume that T(t) is compact.
Now, we present the abstract space Cv. Assume that v : (–∞, ] → (, +∞) with l =∫ 

–∞ v(t)dt < +∞ is a continuous function. The abstract phase space Cv is defined by Cv =
{ϕ : (–∞, ] → H , for any a > , (E|ϕ(θ )|)/ is a bounded and measurable function on
[–a, ] and

∫ 
–∞ v(s) sups≤θ≤(E|ϕ(θ )|)/ ds < +∞}. If Cv is endowed with the norm

‖ϕ‖Cv =
∫ 

–∞
v(s) sup

s≤θ≤

(
E
∣∣ϕ(θ )∣∣)/ ds, ϕ ∈ Cv,

then (Cv,‖ · ‖Cv ) is a Banach space [, ].
Now, we consider the space

BT :=
{
x : (–∞,T] →H ,xk ∈ C(Jk ,H) and there exist x

(
τ–
k
)
and x

(
τ+
k
)

with x(τk) = x
(
τ–
k
)
,x = ϕ ∈ Cv,k = , , , . . . ,n

}
,

where xk is the restriction of x to Jk = (τk , τk+], k = , , , . . . ,n. We endow a seminorm
‖ · ‖BT on BT , it is defined by

‖x‖BT = ‖ϕ‖Cv + sup
s∈[,T]

(
E
∥∥x(s)∥∥)/, x ∈ BT .

Lemma . (see []) Assume that x ∈ BT , then for t ∈ J , xt ∈ Cv.Moreover,

l
(
E
∥∥x(t)∥∥)/ ≤ ‖xt‖Cv ≤ l sup

s∈[,t]

(
E
∥∥x(s)∥∥)/ + ‖x‖Cv ,

where l =
∫ 
–∞ v(s)ds < ∞.

Definition . The fractional integral of order α with the lower limit  for a function f is
defined as

Iαf (t) =


	(α)

∫ t



f (s)
(t – s)–α

ds, t > ,α > ,

provided the right side is pointwise defined on [,∞), where 	(·) is the gamma function.

Definition . The Caputo derivative of order α with the lower limit  for a function f
can be written as

cDα
t f (t) =


	(n – α)

∫ t



f n(s)
(t – s)α+–n

ds = In–αf n(t), t > ,n –  < α < n.
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Definition . A stochastic process x : J × � →H is called a mild solution of the system
() if

(i) x(t) is measurable and Ft-adapted, for each t ≥ ;
(ii) x(t) ∈ H has càdlàg paths on t ∈ [,T] a.s., and satisfies the following integral

equation

x(t) = T (t)
[
ϕ() –μ(x) – h(,ϕ)

]
+ h(t,xt) +

∫ t


(t – s)α–S(t – s)Bu(s)ds

+
∫ t


(t – s)α–S(t – s)f (s,xs)ds

+
∫ t


(t – s)α–S(t – s)g(s,xs)dW (s)

+
∑
<τk<t

T (t – τk)Ik
(
x
(
τ–
k
))
, t ∈ J ;

(iii) x(·) = ϕ ∈ Cv on (–∞, ] satisfying ‖ϕ‖Cv < ∞, where

T (t) =
∫ ∞


ξα(θ )T

(
tαθ

)
dθ , S(t) = α

∫ ∞


θξα(θ )T

(
tαθ

)
dθ ,

ξα(θ ) =

α

θ–– 
α 
α

(
θ– 

α
) ≥ ,


α(θ ) =

π

∞∑
n=

(–)n–θ–nα– 	(nα + )
n!

sin(nπα), θ ∈ (,∞),

ξα is a probability density function defined on (,∞), that is,

ξα(θ ) ≥ , θ ∈ (,∞) and
∫ ∞


ξα(θ )dθ = .

Lemma . [] The operators T and S have the following properties:
(i) For any fixed t ≥ , T (t) and S(t) are linear and bounded operators, i.e., for any

x ∈ X ,

∥∥T (t)x
∥∥ ≤ M‖x‖ and

∥∥S(t)x
∥∥ ≤ αM

	( + α)
‖x‖.

(ii) {T (t), t ≥ } and {S(t), t ≥ } are strongly continuous, which means that for every
x ∈H and  ≤ t′ < t′′ ≤ T , we have

∥∥T
(
t′′

)
x – T

(
t′
)
x
∥∥ →  and

∥∥S
(
t′′

)
x – S

(
t′
)
x
∥∥ →  as t′ → t′′.

(iii) For every t > , T (t) and S(t) are also compact operators if T(t) is compact for every
t > .

In order to study the approximate controllability for the fractional control system (),
we introduce the following linear fractional differential system

⎧⎨
⎩

cDα
t x(t) = Ax(t) + Bu(t), t ∈ J ,

x() = x.
()
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The controllability operator associated with () is defined by

	T
 =

∫ T


(T – s)α–S(T – s)BB∗S∗(T – s)ds,

where B∗ and S∗ denote the adjoint of B and S, respectively.
Let x(T ;ϕ,u) be the state value of () at terminal time T , corresponding to the control

u and the initial value ϕ. Denote by R(T ,ϕ) = {x(T ;ϕ,u) : u ∈ L(J ,U)} the reachable set of
system () at terminal time T , its closure in H is denoted by R(T ,ϕ).

Definition . The system () is said to be approximately controllable on J if R(T ,ϕ) =
L(�,H).

Lemma . [] The linear fractional control system () is approximately controllable on
J if and only if λ(λI + 	T

 ) →  as λ → + in the strong operator topology.

Lemma . ([] Krasnoselskii’s fixed point theorem) Let N be a Banach space, let N̂ be
a bounded closed and convex subset of N , and let F, F be maps of N̂ into N such that
Fx+ Fy ∈ N̂ for every pair x, y ∈ N̂ . If F is a contraction and F is completely continuous,
then the equation Fx + Fx = x has a solution on N̂ .

3 Main results
In this section, we formulate sufficient conditions for the approximate controllability of
system (). For this purpose, we first prove the existence of solutions for system (). Second,
in Theorem ., we shall prove that system () is approximately controllable under certain
assumptions. In order to prove our main results, we need the following assumptions.
(H) The functions f ,h : J × Cv →H are continuous, and there exist two positive

constantsMf andMh such that the function satisfies that

E
∥∥f (t,x) – f (t, y)

∥∥ ≤ Mf ‖x – y‖Cv , E
∥∥f (t,x)∥∥ ≤ Mf

(
 + ‖x‖Cv

)
and

E
∥∥h(t,x) – h(t, y)

∥∥ ≤ Mh‖x – y‖Cv , E
∥∥h(t,x)∥∥ ≤ Mh

(
 + ‖x‖Cv

)
for every x, y ∈ Cv, t ∈ J .

(H) There exists a positiveMg such that

E
∥∥g(t,xt) – g(t, yt)

∥∥
L

≤ Mg‖x – y‖Cv , E

∥∥g(t,xt)∥∥
L

≤ Mg

(
 + ‖x‖Cv

)
.

(H) The function Ik :H →H is continuous, and there exists continuous
nondecreasing function Lk : R+ → R+ such that, for each x ∈H ,

E
∥∥Ik(x)∥∥ ≤ Lk

(
E‖x‖) and lim inf

r→∞
Lk(r)
r

= βk < ∞, k = , . . . ,n.

(H) μ is continuous, and there exists some constantMμ such that

E
∥∥μ(x)

∥∥ ≤ Mμ‖x‖Cv .

http://www.boundaryvalueproblems.com/content/2013/1/193
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(H) The linear stochastic system () is approximately controllable on [,T].
The following lemma is required to define the control function.

Lemma . [] For any x̄T ∈ L(FT ,H), there exists σ (·) ∈ LF (�;L(J ;L)) such that x̄T =
Ex̄T +

∫ T
 σ (s)dW (s).

Now, for any λ >  and x̄T ∈ L(FT ,H), we define the control function

uλ(t) = B∗S∗(T – t)
(
λI + 	T


)–

×
[
Ex̄T +

∫ t


σ (s)dW (s) – T (T)

(
ϕ() –μ(x) – h(,ϕ)

)
– h(T ,xT )

]

– B∗S∗(T – t)
∫ t



(
λI + 	T

s
)–(T – s)α–S(T – s)f (s,xs)ds

– B∗S∗(T – t)
∫ t



(
λI + 	T

s
)–(T – s)α–S(T – s)g(s,xs)dW (s)

– B∗S∗(T – t)
(
λI + 	T


)– ∑

<τk<T

T (T – τk)Ik
(
x
(
τ–
k
))
.

Theorem. Assume that the assumptions (H)-(H)hold.Then for each λ > , the system
() has a mild solution on [,T], provided that

[
lMMμ + lMh + lMf

(
MTα

	( + α)

)

+ lMg
Tα–

α – 

(
αM

	( + α)

)

+ lnM
n∑
k=

βk

]
×

[
 +

Tα

λα

(
αMMB

	( + α)

)]
≤ 

and

L = l
[
Mh +Mf

Tα

α

(
αM

	( + α)

)

+Mg
Tα–

α – 

(
αM

	( + α)

)]
< .

Proof For any λ > , define the operator � : BT → BT by

(�x)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(t), t ∈ (–∞, ];

T (t)[ϕ() –μ(x) – h(,ϕ)] + h(t,xt)

+
∫ t
 (t – s)α–S(t – s)Buλ(s)ds

+
∫ t
 (t – s)α–S(t – s)f (s,xs)ds

+
∫ t
 (t – s)α–S(t – s)g(s,xs)dW (s)

+
∑

<τk<t T (t – τk)Ik(x(τ–
k )), t ∈ J .

We shall show that the operator � has a fixed point in the space BT , which is the mild
solution of (). Let x(t) = z(t) + ϕ̂(t), –∞ < t ≤ T , where ϕ̂(t) is defined by

ϕ̂(t) =

⎧⎨
⎩ϕ(t), t ∈ (–∞, ],

T (t)ϕ(), t ∈ J .

http://www.boundaryvalueproblems.com/content/2013/1/193
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Then ϕ̂(t) ∈ BT , and it is clear that x satisfies () if and only if z satisfies z =  and

z(t) = T (t)
[
–μ(z + ϕ̂) – h(,ϕ)

]
+ h(t, zt + ϕ̂t)

+
∫ t


(t – s)α–S(t – s)Buλ(s)ds

+
∫ t


(t – s)α–S(t – s)f (s, zs + ϕ̂s)ds

+
∫ t


(t – s)α–S(t – s)g(s, zs + ϕ̂s)dW (s)

+
∑
<τk<t

T (t – τk)Ik
(
z
(
τ–
k
)
+ ϕ̂

(
τ–
k
))
, t ∈ J .

Set B
T = {z ∈ BT , z =  ∈ Cv}, and for any z ∈ B

T , we define

‖z‖B
T
= ‖z‖Ch + sup

s∈[,T]

(
E
∥∥z(s)∥∥) 



= sup
s∈[,T]

(
E
∥∥z(s)∥∥) 

 , x ∈ BT .

Thus, (B
T ,‖ · ‖B

T
) is a Banach space. Let Br = {z ∈ B

T : ‖z‖B
T

≤ r} for some r > , then Br ,
for each r, is a bounded, closed subset of H . Moreover, for z ∈ Br , by lemma ., we have

‖zt + ϕ̂t‖Cv ≤ 
(‖zt‖Cv + ‖ϕ̂t‖Cv

)
≤ 

(
l sup

≤s≤t
E
∥∥z(s)∥∥ + ‖z‖Cv + l sup

≤s≤t
E
∥∥ϕ̂(s)

∥∥ + ‖ϕ̂‖Cv
)

≤ l
(
r +ME

∥∥ϕ()
∥∥
H

)
+ ‖ϕ‖Cv .

For the sake of convenience, we divide the proof into several steps.
Step . We claim that there exists a positive number r such that �(Br) ⊂ Br . If this is not

true, then, for each positive integer r, there exists zr ∈ Br such that E‖�(zr)(t)‖ > r for
t ∈ (–∞,T], t may depending upon r. However, on the other hand, we have

r ≤ E
∥∥�

(
zr

)
(t)

∥∥

≤ E
∥∥T (t)

[
–μ

(
zr + ϕ̂

)
– h(,ϕ)

]∥∥ + E
∥∥h(t, zrt + ϕ̂t

)∥∥

+ E
∥∥∥∥
∫ t


(t – s)α–S(t – s)Buλ(s)ds

∥∥∥∥


+ E
∥∥∥∥
∫ t


(t – s)α–S(t – s)f

(
s, zrs + ϕ̂s

)
ds

∥∥∥∥


+ E
∥∥∥∥
∫ t


(t – s)α–S(t – s)g

(
s, zrs + ϕ̂s

)
dW (s)

∥∥∥∥


+ E
∥∥∥∥ ∑
<τk<t

T (t – τk)Ik
(
z
(
τ–
k
)
+ ϕ̂

(
τ–
k
))∥∥∥∥



, t ∈ J .
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By using (H)-(H), Lemma . and Hölder’s inequality, we obtain

r ≤ E
∥∥�

(
zr

)
(t)

∥∥

≤ MMμ

∥∥zr + ϕ̂
∥∥
Cv + MMh

(
 +

∥∥ϕ
∥∥
Cv

)
+ Mh

(
 +

∥∥(
zrt + ϕ̂t

)∥∥
Cv

)
+ 

Tα

α

(
αMMB

	( + α)

) ∫ t


(t – s)α–E

∥∥uλ(s)
∥∥ ds

+ 
Tα

α

(
αM

	( + α)

) ∫ t


(t – s)α–E

∥∥f (s, zrs + ϕ̂s
)∥∥ ds

+ 
(

αM
	( + α)

) ∫ t


(t – s)(α–)E

∥∥g(s, zrs + ϕ̂s
)∥∥

L

ds

+ nM
n∑
k=

E
∥∥Ik(z(τ–

k
)
+ ϕ̂

(
τ–
k
))∥∥

≤ MMμr′ + MMh
(
 + ‖ϕ‖Cv

)
+ Mh

(
 + r′

)
+
Tα

λα

(
αMMB

	( + α)

)

MC

+ 
(

MTα

	( + α)

)

Mf
(
 + r′

)
+ 

Tα–

α – 

(
αM

	( + α)

)

Mg
(
 + r′

)

+ nM
n∑
k=

Lk
(
r′
)
,

where r′ = l(r +ME‖ϕ()‖H) + ‖ϕ‖Cv , ‖B‖ ≤ MB, and

MC = E‖x̄T‖ + 
∫ T


E
∥∥σ (s)

∥∥
L

ds +M‖ϕ‖Cv +MMμ

(
 + r′

)

+MMh
(
 + ‖ϕ‖Cv

)
+Mh

(
 + r′

)
+

(
MTα

	( + α)

)

Mf
(
 + r′

)

+
Tα–

α – 

(
αM

	( + α)

)

Mg
(
 + r′

)
+ nM

n∑
k=

Lk
(
r′
)
.

Dividing both sides by r and taking the limit as r → ∞, we obtain

 ≤
[
lMMμ + lMh + lMf

(
MTα

	( + α)

)

+ lMg
Tα–

α – 

(
αM

	( + α)

)

+ lnM
n∑
k=

βk

]
·
[
 +

Tα

λα

(
αMMB

	( + α)

)]
,

which is a contradiction to our assumption. Thus, for each λ > , there exists some positive
number r such that �(Br)⊂ Br .
Next, we show that the operator � is condensing, for convenience, we decompose � as

� = � +�, where

(�z)(t) = h(t, zt + ϕ̂t) +
∫ t


(t – s)α–S(t – s)f (s, zs + ϕ̂s)ds

+
∫ t


(t – s)α–S(t – s)g(s, zs + ϕ̂s)dW (s),

http://www.boundaryvalueproblems.com/content/2013/1/193
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(�z)(t) = T (t)
[
–μ(z + ϕ̂) – h(,ϕ)

]
+

∫ t


(t – s)α–S(t – s)Buλ(s)ds.

+
∑
<τk<t

T (t – τk)Ik
(
z
(
τ–
k
)
+ ϕ̂

(
τ–
k
))
, t ∈ J .

Step . We prove that � is a contraction on Br . Let t ∈ J and z, z ∈ Br , we have

E
∥∥�z(t) –�z(t)

∥∥

≤ E
∥∥h(t, z,t + ϕ̂t) – h(t, z,t + ϕ̂t)

∥∥

+ E
∥∥∥∥
∫ t


(T – s)α–S(T – s)

[
f (s, z,s + ϕ̂s) – f (s, z,s + ϕ̂s)

]
ds

∥∥∥∥


+ E
∥∥∥∥
∫ t


(T – s)α–S(T – s)

[
g(s, z,s + ϕ̂s) – g(s, z,s + ϕ̂s)

]
dW (s)

∥∥∥∥


≤ Mh‖z,t – z,t‖Cv + Mf
Tα

α

(
αM

	( + α)

) ∫ t


(T – s)α–‖z,s – z,s‖Cv ds

+ Mg

(
αM

	( + α)

) ∫ t


(T – s)(α–)‖z,s – z,s‖Cv ds

≤ L sup
s∈J

E
∥∥z(s) – z(s)

∥∥,

where L = l[Mh +Mf
Tα

α
( αM
	(+α) )

 +Mg
Tα–

α– (
αM

	(+α) )
] < , hence � is a contraction.

Step . � maps bounded sets into bounded sets in Br ,

E
∥∥�z(t)

∥∥
H ≤ E

∥∥T (t)
[
–μ(z + ϕ̂) – h(,ϕ)

]∥∥

+ E
∥∥∥∥
∫ t


(t – s)α–S(t – s)Buλ(s)ds

∥∥∥∥


+ E
∥∥∥∥ ∑
<τk<t

T (t – τk)Ik
(
z
(
τ–
k
)
+ ϕ̂

(
τ–
k
))∥∥∥∥



≤ MMμr′ + MMh
(
 + ‖ϕ‖)

+

λ

Tα

α

(
αMMB

	( + α)

)

MC + Mn
n∑
k=

Lk
(
r′
)

:=�.

Therefore, for each z ∈ Br , we get E‖�z(t)‖ ≤ �.
Step . The map � is equicontinuous. Let  < t < t ≤ T and t, t ∈ J \ {τ, τ, . . . , τn}.

Then, we have

E
∥∥�z(t) –�z(t)

∥∥ ≤ E
∥∥[

T (t) – T (t)
][
–μ(z + ϕ̂) – h(,ϕ)

]∥∥

+ E
∥∥∥∥
∫ t


(t – s)α–

[
S(t – s) – S(t – s)

]
Buλ(s)ds

∥∥∥∥


+ E
∥∥∥∥
∫ t



[
(t – s)α– – (t – s)α–

]
S(t – s)Buλ(s)ds

∥∥∥∥


http://www.boundaryvalueproblems.com/content/2013/1/193


Zang and Li Boundary Value Problems 2013, 2013:193 Page 10 of 13
http://www.boundaryvalueproblems.com/content/2013/1/193

+ E
∥∥∥∥
∫ t

t
(t – s)α–S(t – s)Buλ(s)ds

∥∥∥∥


+ E
∥∥∥∥ ∑
<τk<T

[
T (t – τk) – T (t – τk)

]
Ik

(
z
(
τ–
k
)
+ ϕ̂

(
τ–
k
))∥∥∥∥



.

Noting the fact that for every ε > , there exists a δ >  such that, whenever |s – s| < δ for
every s, s ∈ J , ‖T (s) –T (s)‖ < ε and ‖S(s) –S(s)‖ < ε. Therefore, when |t – t| < δ, we
have

E
∥∥�z(t) –�z(t)

∥∥ ≤ ε
[
Mμr′ +Mh

(
 + ‖ϕ‖)] + εM

B
λ

Tα

α MC

+
MC

αλ

(
αMMB

	(α + )

)[
tα – tα – (t – t)α

]

+
MC

αλ

(
αMMB

	(α + )

)

(t – t)α + nε
n∑
k=

Lk
(
r′
)
.

The right hand of the inequality above tends to  as t → t and ε → , hence the set
{�z, z ∈ Br} is equicontinuous.
Step . The set V (t) = {�z(t), z ∈ Br} is relatively compact in Br . Let  < t ≤ T be fixed

and  < ε < t. For δ > , z ∈ Br , we define

�
ε,δ
 z(t) =

∫ ∞

δ

ξα(θ )T
(
tαθ

)[
–μ(z + ϕ̂) – h(,ϕ)

]
dθ

+ α

∫ t–ε



∫ ∞

δ

θ (t – s)α–ξα(θ )T
(
(t – s)αθ

)
Buλ(s)dθ ds.

+
∑
<τk<t

∫ ∞

δ

ξα(θ )T
(
(t – τk)αθ

)
Ik

(
z
(
τ–
k
)
+ ϕ̂

(
τ–
k
))
dθ

= T
(
εαδ

)∫ ∞

δ

ξα(θ )T
(
tαθ – εαδ

)[
–μ(z + ϕ̂) – h(,ϕ)

]
dθ

+ αT
(
εαδ

)∫ t–ε



∫ ∞

δ

θ (t – s)α–ξα(θ )T
(
(t – s)αθ – εαδ

)
Bu(s)dθ ds.

+
∑
<τk<t

T
(
εαδ

)∫ ∞

δ

ξα(θ )T
(
(t – τk)αθ – εαδ

)
Ik

(
z
(
τ–
k
)
+ ϕ̂

(
τ–
k
))
dθ .

Then from the compactness of T(εαδ), we obtain that Vε,δ(t) = {�ε,δ
 z(t) : z ∈ Br} is rela-

tively compact in H for every ε,  < ε < t. Moreover, for z ∈ Br , we can easily prove that
�

ε,δ
 z(t) is convergent to �z(t) in Br as ε →  and δ → , hence the set V (t) = {�z(t), z ∈

Br} is also relatively compact in Br . Thus, by Arzela-Ascoli theorem � is completely con-
tinuous. Consequently, from Lemma ., � has a fixed point, which is a mild solution
of (). �

Theorem. Assume that (H)-(H) are satisfied, and the conditions of Theorem . hold.
Further, if the functions f and g are uniformly bounded, and T(t) is compact, then the
system () is approximately controllable on [,T].
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Proof Let xλ be a solution of (), then we can easily get that

xλ(T) = x̄T – λ
(
λI + 	T


)–[Ex̄T +

∫ T


σ (s)dW (s)

– T (T)
(
ϕ() –μ(x) – h(,ϕ)

)
– h

(
T ,xλ

T
)]

+ λ

∫ T



(
λI + 	T

s
)–(T – s)α–S(T – s)f

(
s,xλ

s
)
ds

+ λ

∫ T



(
λI + 	T

s
)–(T – s)α–S(T – s)g

(
s,xλ

s
)
dW (s)

+ λ
(
λI + 	T


)– ∑

<τk<T

T (T – τk)Ik
(
xλ
s
)
.

In view of the assumptions that f and g are uniformly bounded on J , hence, there is a
subsequence still denoted by f (s,xλ

s ) and g(s,xλ
s ), which converges weakly to say f (s) in H ,

and g(s) inL(U ,H). On the other hand, by assumption (H), the operator λ(λI+	T
s )– → 

strongly as λ → + for all  ≤ s≤ T , and,moreover, ‖λ(λI+	T
s )–‖ ≤ . Thus, the Lebesgue

dominated convergence theorem and the compactness of S yield

E
∥∥xλ(T) – x̄T

∥∥ ≤ 
∥∥λ

(
λI + 	T


)–∥∥E

∥∥∥∥Ex̄T +
∫ T


σ (s)dW (s)

– T (T)
(
ϕ() –μ(x) – h(,ϕ)

)
– h

(
T ,xλ

T
)∥∥∥∥



+ E
(∫ T



∥∥λ
(
λI + 	T

s
)–(T – s)α–S(T – s)f

(
s,xλ

s
)∥∥ds)

+ E
∥∥∥∥
∫ T


λ
(
λI + 	T

s
)–(T – s)α–S(T – s)g

(
s,xλ

s
)
dW (s)

∥∥∥∥


+ 
∥∥λ

(
λI + 	T


)–∥∥E

∥∥∥∥ ∑
<τk<T

T (T – τk)Ik
(
xλ
s
)∥∥∥∥



→ , as λ → +.

This gives the approximate controllability of (), the proof is complete. �

4 An example
As an application, we consider an impulsive neutral stochastic partial differential equation
with the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDα
t [x(t, y) –

∫ t
–∞ e(s–t)x(s, y)ds]

= ∂

∂y [x(t, y) –
∫ t
–∞ e(s–t)x(s, y)ds]

+ b(y)u(t) +
∫ T
 k(t, s)

∫ s
–∞ α(s – θ )x(θ , y)dθ ds

+
∫ t
–∞ α(t – s)x(s, y)dW (s), x ∈ [,π ], t ∈ J = [,T],

x(τ+
k , y) – x(τ–

k , y) = Ik(x(τ–
k , y)), k = , , . . . ,n,

x(t, ) = x(t,π ) = , t ∈ J = [,T],

x(, y) +
∫ π

 k(y, z)x(t, z)dz = ϕ(t, y), t ∈ (–∞, ].

()

http://www.boundaryvalueproblems.com/content/2013/1/193


Zang and Li Boundary Value Problems 2013, 2013:193 Page 12 of 13
http://www.boundaryvalueproblems.com/content/2013/1/193

Let U =H = L([,π ]) and v(t) = et , t <  with l = 
 . To study the approximate controlla-

bility of (), assume that k(t, s) is measurable and continuous on [,T] × [,T] and thus
bounded by Lk . α(t) is measurable and continuous with finite Lα =

∫ 
–∞

α(–s)
v(s) ds.

We define the operatorA by Ax = ∂x
∂y with domainD(A) = {x ∈H , ∂x

∂y ,
∂x
∂y ∈H and x() =

x(π ) = }. It is well known that A generates an analytic semigroup T(t), t ≥  given by
T(t)x =

∑∞
n= e–n

t〈x, en〉en, x ∈H , and en(y) = (/π )/ sin(ny), n = , , . . . , is the orthogonal
set of eigenvectors of A.
Define the operators h, f : J × Cv →H , g : J × Cv → L(U ,H) by

h(t,ϕ)(y) =
∫ 

–∞
e–sϕ(s)(y)ds,

f (ϕ)(y) =
∫ T


k(t, s)

∫ 

–∞
α(–θ )ϕ(θ , y)dθ ds,

g(ϕ)(y) =
∫ 

–∞
α(–s)ϕ(s, y)dW (s).

With the choice of A, h, f , g , () can be rewritten as the abstract form of system (). Thus,
under the appropriate conditions on the functions h, f , g and Ik as those in (H)-(H),
system () is approximately controllable.
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