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Abstract
The paper deals with the state-dependent impulsive problem

z′(t) = f (t, z(t)) for a.e. t ∈ [a,b],

z(τ+) – z(τ ) = J (τ , z(τ )), γ (z(τ )) = τ ,

�(z) = c0,

where [a,b] ⊂ R, c0 ∈ R, f fulfils the Carathéodory conditions on [a,b]×R, the
impulse function J is continuous on [a,b]×R, the barrier function γ has a
continuous first derivative on some subset of R and � is a linear bounded functional
which is defined on the Banach space of left-continuous regulated functions on [a,b]
equipped with the sup-norm. The functional � is represented by means of the
Kurzweil-Stieltjes integral and covers all linear boundary conditions for solutions of
first-order differential equations subject to state-dependent impulse conditions. Here,
sufficient and effective conditions guaranteeing the solvability of the above problem
are presented for the first time.
MSC: 34B37; 34B15
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1 Introduction
The investigation of impulsive differential equations has a long history; see, e.g., themono-
graphs [–]. Most papers dealing with impulsive differential equations subject to bound-
ary conditions focus their attention on impulses at fixed moments. But this is a very par-
ticular case of a more complicated case with state-dependent impulses. Boundary value
problems with state-dependent impulses, where difficulties with an operator representa-
tion appear (cf. Remark .), are substantially less developed.We refer to the papers [–]
and [] which are devoted to periodic problems, and for problems with other boundary
conditions, see [, ] or [–].
Here, in our paper, we present an approach leading to a new existence principle for im-

pulsive boundary value problems. This approach is applicable to each linear boundary
condition which is considered with some first-order differential equation subject to state-
dependent impulses. The important step is a proof of a transversality (Remark . and
Lemmas . and .), which makes possible a construction of a continuous operator (Sec-
tion ) whose fixed point leads to a solution of our original impulsive problem (Section ).
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Notation
LetM ⊂R

n, n ∈N, [a,b]⊂R.
• C(M) is the set of real functions continuous onM.
• AC(M) is the set of real functions absolutely continuous onM.
• L

[a,b] is the set of real functions Lebesgue integrable on [a,b].
• L

∞[a,b] is the set of real functions essentially bounded on [a,b].
• BV[a,b] is the set of real functions with bounded variation on [a,b].
• GL[a,b] is the set of real left-continuous regulated functions on [a,b], that is,
z ∈GL[a,b] if and only if z : [a,b]→R, and for each τ ∈ (a,b] and each τ ∈ [a,b),

z(τ) = z(τ–) = lim
t→τ–

z(t), z(τ+) = lim
t→τ+

z(t) ∈ R. (.)

• Car([a,b]×M) is the set of functions f : [a,b]×M →R such that
(i) f (·,x) : [a,b]→R is measurable for all x ∈M,
(ii) f (t, ·) : M →R is continuous for a.e. t ∈ [a,b],
(iii) for each compact set Q ⊂M, there existsmQ ∈ L

[a,b] satisfying

∣∣f (t,x)∣∣ ≤ mQ(t) for a.e. t ∈ [a,b] and each x ∈Q.

• The set L∞[a,b] equipped with the norm

‖z‖∞ = sup ess
{∣∣z(t)∣∣ : t ∈ [a,b]

}
for z ∈ L

∞[a,b] (.)

is a Banach space.
• Since C[a,b]⊂GL[a,b]⊂ L∞[a,b], we equip the sets C[a,b] and GL[a,b] with the
norm ‖ · ‖∞ and get also Banach spaces (cf. []). Then (.) can be written as

‖z‖∞ = sup
{∣∣z(t)∣∣ : t ∈ [a,b]

}
for z ∈GL[a,b] (.)

and

‖z‖∞ =max
{∣∣z(t)∣∣ : t ∈ [a,b]

}
for z ∈ C[a,b]. (.)

• W
,∞[a,b] is the Banach space of functions z : [a,b]→R such that z ∈ AC[a,b] and

z′ ∈ L
∞[a,b], where the norm ‖ · ‖,∞ is given by

‖z‖,∞ = ‖z‖∞ +
∥∥z′∥∥∞ for z ∈W

,∞[a,b]. (.)

• χA is the characteristic function of a set A, where A⊂R.

2 Formulation of problem
We investigate the solvability of the nonlinear differential equation

z′(t) = f
(
t, z(t)

)
(.)

subject to the state-dependent impulse condition

z(τ+) – z(τ ) = J
(
τ , z(τ )

)
, γ

(
z(τ )

)
= τ , (.)

http://www.boundaryvalueproblems.com/content/2013/1/195
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and the general linear boundary condition

�(z) = c. (.)

Here we assume that
⎧⎨
⎩
f ∈ Car([a,b]×R), J ∈C([a,b]×R), [a,b]⊂R,

K ∈ (,∞), γ ∈C
[–K ,K], c ∈R,

(.)

and � : GL[a,b]→R is a linear bounded functional.

Definition . A function z : [a,b]→R is a solution of problem (.), (.) if
• there exists a unique τ ∈ (a,b) such that γ (z(τ )) = τ ;
• the restrictions z|[a,τ ] and z|(τ ,b] are absolutely continuous;
• z(τ+) = z(τ ) +J (τ , z(τ ));
• z satisfies equation (.) for a.e. t ∈ [a,b].

Definition . A graph of a function γ : [–K ,K] →R is called a barrier γ .

Remark . Let S be the set of all solutions of problem (.), (.). According to Def-
inition ., each function z ∈ S satisfies a transversality property, which means that the
graph of z crosses a barrier γ at a unique point τ ∈ (a,b), where the impulse J acts on z.
After that (for t ∈ (τ ,b]) the graph of z lies on the right of the barrier γ . This transver-
sality property follows from transversality conditions (cf. (.), (.)) and it is proved in
Section .

Assume that z, z ∈ S and z 	= z. Then there exists a unique τi ∈ (a,b) such that
γ (zi(τi)) = τi for i = ,  and τ 	= τ can occur. Therefore different functions from S can
have their discontinuities at different points from (a,b). Our aim in this paper is to prove
the existence of a solution of problem (.), (.) satisfying the general linear bound-
ary condition (.). To do this, we need a suitable linear space containing S . Due to
state-dependent impulses, the Banach space of piece-wise continuous functions on [a,b]
with the sup-norm cannot be used here. Therefore we choose the Banach space GL[a,b].
Clearly, by (.), S ⊂ GL[a,b]. The operator � in the general linear boundary condition
(.) can be written uniquely in the form

�(z) = kz(a) + (KS)

∫ b

a
v(t) d

[
z(t)

]
, (.)

where k ∈ R, v ∈ BV[a,b] and (KS)
∫ b
a is the Kurzweil-Stieltjes integral (cf. [], Theo-

rem .). Representation (.) is correct on S , because for each z ∈ GL[a,b] the integral
(KS)

∫ b
a v(t) d[z(t)] exists. Its definition and properties can be found in [] (see Perron-

Stieltjes integral based on the work of Kurzweil).

Definition. A function z : [a,b]→R is a solution of problem (.)-(.) if z is a solution
of problem (.), (.) and fulfils (.).

http://www.boundaryvalueproblems.com/content/2013/1/195
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3 Green’s function
For further investigation, we will need a linear homogeneous problem corresponding to
problem (.)-(.). Such problem has the form

z′(t) = , (.)

�(z) = , (.)

because the impulse in (.) disappears if J ≡ . We will also work with the non-
homogeneous equation

z′(t) = q(t), (.)

where q ∈ L
[a,b].

Definition . A solution of problem (.), (.) is a function z ∈AC[a,b] satisfying equa-
tion (.) for a.e. t ∈ [a,b] and fulfilling condition (.).

Remark . If x is a solution of problem (.), (.), then x belongs to AC[a,b], and con-
sequently condition (.) can be written in the form (cf. (.))

�(x) = kx(a) +
∫ b

a
v(t)x′(t) dt = , (.)

where k ∈R, v ∈ BV and the Lebesgue integral
∫ b
a v(t)x′(t) dt is used.

Definition . A function G : [a,b]× [a,b] → R is the Green’s function of problem (.),
(.) if

(i) for any s ∈ (a,b), the restrictions G(·, s)|[a,s), G(·, s)|(s,b] are solutions of equation
(.) and G(s+, s) –G(s, s) = , where G(s, s) =G(s–, s);

(ii) G(t, ·) ∈ BV[a,b] for any t ∈ [a,b];
(iii) for any q ∈ L

[a,b], the function

x(t) =
∫ b

a
G(t, s)q(s) ds (.)

fulfils condition (.).

Lemma . Let � be from (.) with k ∈R and v ∈ BV[a,b].
(i) k 	=  if and only if there exists the Green’s function G of problem (.), (.) which

has the form

G(t, s) =

⎧⎨
⎩
– v(s)

k for a ≤ t ≤ s≤ b,

 – v(s)
k for a ≤ s < t ≤ b.

(.)

(ii) k 	=  if and only if there exists a unique solution x of problem (.), (.), which has a
form of (.) with G from (.).

http://www.boundaryvalueproblems.com/content/2013/1/195
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Proof Clearly,G given by (.) fulfils (i) and (ii) of Definition . if and only if k 	= . A gen-
eral solution of equation (.) is x(t) = c +

∫ t
a q(s) ds, where c ∈R. By (.),

�(x) = kc +
∫ b

a
v(t)q(t) dt = .

The equation

kc = –
∫ b

a
v(t)q(t) dt

has a unique solution c if and only if k 	= . Then a unique solution x of problem (.), (.)
is written as

x(t) = –

k

∫ b

a
v(s)q(s) ds +

∫ t

a
q(s) ds

=
∫ t

a

(
 –

v(s)
k

)
q(s) ds +

∫ b

t

(
–
v(s)
k

)
q(s) ds, t ∈ [a,b]. �

Lemma . Let G be the Green’s function of problem (.), (.), where � is from (.) and
k 	= . Then, for each s ∈ [a,b), the function G(·, s) belongs to GL[a,b] and

�
(
G(·, s)) = , s ∈ [a,b). (.)

Proof Choose s ∈ [a,b). By (.),

G(t, s) = χ(s,b](t) –
v(s)
k

for t ∈ [a,b].

Consequently, the function G(·, s) belongs to GL[a,b]. This yields that the integral
(KS)

∫ b
a v(t) d[G(t, s)] exists for each v ∈ BV[a,b]. Note that sinceG(·, s) is not continuous on

[a,b], formula (.) cannot be used for G(·, s) in place of x. Instead, we use the properties
of the Kurzweil-Stieltjes integral which justify the following computation

(KS)

∫ b

a
v(t) d

[
G(t, s)

]
= (KS)

∫ b

a
v(t) d

[
χ(s,b](t) –

v(s)
k

]

= (KS)

∫ b

a
v(t) d

[
χ(s,b](t)

]
– (KS)

∫ b

a
v(t) d

[
v(s)
k

]
= v(s).

Hence, by (.), we get

�
(
G(·, s)) = kG(a, s) + (KS)

∫ b

a
v(t) d

[
G(t, s)

]
= k

(
–v(s)
k

)
+ v(s) = . �

Example . Consider a solution x of problem (.), (.), where � has a form of the two-
point boundary condition

�(x) = αx(a) + βx(b) = , α,β ∈R. (.)

http://www.boundaryvalueproblems.com/content/2013/1/195
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We will show that � can be expressed in a form of (.). If α + β 	= , then k and v can be
found from the equality

αx(a) + βx(b) = kx(a) +
∫ b

a
v(t)x′(t) dt.

Assuming that v(t)≡ v ∈ R, we get

αx(a) + βx(b) = kx(a) + v
(
x(b) – x(a)

)
,

and hence k = α + β , v = β . In addition, if α + β 	= , then (cf. (.))

G(t, s) =

⎧⎨
⎩
– β

α+β
for a ≤ t ≤ s≤ b,

 – β

α+β
for a ≤ s < t ≤ b.

Example . Consider a solution x of problem (.), (.), where � has a formof themulti-
point boundary condition

�(x) =
n∑
i=

αix(ti), αi ∈R, i = , , . . . ,n,n ∈N. (.)

Here a = t < t < · · · < tn = b. If
∑n

i= αi 	= , then k and v of (.) can be found from the
equality

n∑
i=

αix(ti) = kx(a) +
∫ b

a
v(t)x′(t) dt. (.)

Assume that v is a piece-wise constant right-continuous function on [a,b], that is,

v(s) = vi for s ∈ [ti, ti+), i = , . . . ,n – ,

v(s) = vn– for s ∈ [tn–,b],

where vi ∈R, i = , . . . ,n – . By (.), we get

n∑
i=

αix(ti) = kx(a) +
n–∑
i=

vi
∫ ti+

ti
x′(t) dt

= kx(a) + v
(
x(t) – x(a)

)
+ v

(
x(t) – x(t)

)
+ · · · + vn–

(
x(b) – x(tn–)

)
.

Consequently,

vi =
n∑

j=i+

αj, i = , . . . ,n – , k =
n∑
j=

αj.

To summarize, if
∑n

j= αj 	= , then

v(s) =
n∑

j=i+

αj for s ∈ [ti, ti+), i = , . . . ,n – ,

v(s) = αn for s ∈ [tn–,b],

http://www.boundaryvalueproblems.com/content/2013/1/195
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and further (cf. (.))

G(t, s) =

⎧⎨
⎩
– v(s)∑n

j= αj
for a ≤ t ≤ s≤ b,

 – v(s)∑n
j= αj

for a ≤ s < t ≤ b.

Example . Consider a solution x of problem (.), (.), where � has a form of the
integral condition

�(x) = x(b) –
∫ b

a
h(ξ )x(ξ ) dξ ,

where h ∈ L
[a,b]. If

∫ b
a h(ξ ) dξ 	= , then k and v of (.) can be found from the equality

x(b) –
∫ b

a
h(ξ )x(ξ ) dξ = kx(a) +

∫ b

a
v(t)x′(t) dt. (.)

Let us put

v(s) =
∫ s

a
h(ξ ) dξ + v(a).

Then

∫ b

a
v(ξ )x′(ξ ) dξ = –

∫ b

a
h(ξ )x(ξ ) dξ + v(b)x(b) – v(a)x(a)

and (.) gives v(a) = k,
∫ b
a h(ξ ) dξ + k = . Consequently,

k =  –
∫ b

a
h(ξ ) dξ , v(s) =  –

∫ b

s
h(ξ ) dξ , s ∈ [a,b].

Similarly, if

�(x) = x(a) –
∫ b

a
h(ξ )x(ξ ) dξ ,

and
∫ b
a h(ξ ) dξ 	= , we derive

k =  –
∫ b

a
h(ξ ) dξ , v(s) = –

∫ b

s
h(ξ ) dξ , s ∈ [a,b].

In both cases, G is written as

G(t, s) =

⎧⎪⎨
⎪⎩
– v(s)

–
∫ b
a h(ξ ) dξ

for a ≤ t ≤ s≤ b,

 – v(s)
–

∫ b
a h(ξ ) dξ

for a ≤ s < t ≤ b.

http://www.boundaryvalueproblems.com/content/2013/1/195
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4 Assumptions
An existence result for problem (.)-(.) will be proved in the next sections under the ba-
sic assumption (.) and the following additional assumptions imposed on f , �, J and γ .

(i) Boundedness of f

⎧⎨
⎩
There exists h ∈ L

∞[a,b] such that

|f (t,x)| ≤ h(t) for a.e. t ∈ [a,b] and all x ∈R.
(.)

(ii) Boundedness of J
⎧⎨
⎩
There exists J ∈ (,∞) such that

|J (t,x)| ≤ J for t ∈ [a,b],x ∈R.
(.)

(iii) Boundedness of γ

⎧⎨
⎩
There exist a,b ∈ (a,b) such that

a ≤ γ (x)≤ b for x ∈ [–K ,K].
(.)

(iv) Properties of �

� fulfils (.), where k ∈R,k 	= , v ∈ BV[a,b]∩C[a,b]. (.)

(v) Transversality conditions

∣∣γ ′(x)
∣∣ < 

‖h‖∞
for x ∈ [–K ,K], (.)

⎧⎨
⎩
either J (t,x)≥ , γ ′(x) ≤  for t ∈ [a,b],x ∈ [–K ,K],

or J (t,x)≤ , γ ′(x) ≥  for t ∈ [a,b],x ∈ [–K ,K],
(.)

where h is from (.) and a, b are from (.).
(vi) L

∞-continuity of f

⎧⎨
⎩
For any ε > , there exists δ >  such that

|x – y| < δ ⇒ ‖f (·,x) – f (·, y)‖∞ < ε, x, y ∈ [–K ,K].
(.)

Remark .
(a) Boundedness of f and J can be replaced by more general conditions, for example,

growth or sign ones, if the method of a priori estimates is used. See, e.g., [, ].
(b) Continuity of v on [a,b] is necessary for the construction of a continuous operator

in Section . Note that then we need t, . . . , tn– /∈ [a,b] in Example ..
(c) Clearly, if f is continuous on [a,b]× [–K ,K], then f fulfils (.).
(d) Let there exist p ∈N, ψ ∈ L

∞[a,b] and gi ∈C(R), i = , . . . ,p, such that

∣∣f (t,x) – f (t, y)
∣∣ ≤ ψ(t)

p∑
i=

∣∣gi(x) – gi(y)
∣∣

http://www.boundaryvalueproblems.com/content/2013/1/195
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for a.e. t ∈ [a,b] and all x, y ∈ [–K ,K]. Then f fulfils (.). An example of such a
function f is

f (t,x) =
p∑
i=

fi(t)gi(x) + f(t),

where fj ∈ L
∞[a,b], j = , , . . . ,p, gi ∈C[–K ,K], i = , . . . ,p.

5 Transversality
Consider K ∈ (,∞), h ∈ L

∞[a,b] and define a set B by

B =
{
u ∈W

,∞[a,b] : ‖u‖∞ < K ,
∥∥u′∥∥∞ < ‖h‖∞

}
. (.)

The following two lemmas for functions from B are the modifications of lemmas in []
and provide the transversality (cf. Remark .) which will be essential for operator con-
structions in Section .

Lemma . Let γ satisfy (.), (.) and (.). Then, for each u ∈ B, there exists a unique
τ ∈ (a,b) such that

τ = γ
(
u(τ )

)
. (.)

In addition τ ∈ [a,b].

Proof Let us take an arbitrary u ∈ B and denote

σ (t) = γ
(
u(t)

)
– t, t ∈ [a,b].

Then, by (.) and (.), we see that σ ∈AC[a,b] and

σ ′(t) = γ ′(u(t))u′(t) –  for a.e. t ∈ [a,b].

Since u(a),u(b) ∈ [–K ,K], condition (.) gives

σ (a) = γ
(
u(a)

)
– a ≥ a – a > ,

σ (b) = γ
(
u(b)

)
– b≤ b – b < .

Consequently, there exists at least one zero of σ in (a,b). Let τ ∈ (a,b) be a zero of σ . By
virtue of (.) and (.), we get, for t ∈ [a,b], t 	= τ ,

sign(t – τ )σ (t) = sign(t – τ )
∫ t

τ

σ ′(s) ds = sign(t – τ )
∫ t

τ

(
γ ′(u(s))u′(s) – 

)
ds

≤ sign(t – τ )
∫ t

τ

(∣∣γ ′(u(s))∣∣ · ∥∥u′∥∥∞ – 
)
ds

< sign(t – τ )
∫ t

τ

(


‖h‖∞
‖h‖∞ – 

)
ds = .

http://www.boundaryvalueproblems.com/content/2013/1/195
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That is,

σ >  on [a, τ ), σ <  on (τ ,b]. (.)

Hence τ is a unique zero of σ , and (.) yields τ ∈ [a,b]. �

Due to Lemma ., we can define a functional P : B → [a,b] by

Pu = τ , (.)

where τ fulfils (.).

Lemma . Let γ satisfy (.), (.) and (.). Then the functional P is continuous.

Proof Let us choose a sequence {un}∞n= ⊂ B which is convergent inW
,∞[a,b]. Then

un ∈W
,∞[a,b], ‖un‖∞ ≤ K ,

∥∥u′
n
∥∥∞ ≤ ‖h‖∞, n ∈ N, (.)

and there exists u ∈W,∞[a,b] such that

lim
n→∞‖un – u‖,∞ = . (.)

So, by virtue of (.) and (.),

‖u‖∞ ≤ lim
n→∞‖u – un‖∞ + lim

n→∞‖un‖∞ ≤ K ,
∥∥u′∥∥∞ ≤ lim

n→∞
∥∥u′ – u′

n
∥∥∞ + lim

n→∞
∥∥u′

n
∥∥∞ ≤ ‖h‖∞.

We see that u ∈ B. For n ∈N, define

σn(t) = γ
(
un(t)

)
– t, σ (t) = γ

(
u(t)

)
– t, t ∈ [a,b].

By Lemma .,

σn(τn) = , σ (τ ) = , where τn =Pun, τ =Pu,n ∈N. (.)

We need to prove that

lim
n→∞ τn = τ . (.)

Conditions (.), (.) and (.) yield

lim
n→∞σn = σ in C[a,b]. (.)

Let us take an arbitrary ε > . By (.) and (.) we can find ξ ∈ (τ – ε, τ ), η ∈ (τ , τ + ε) and
n ∈ N such that σn(ξ ) > , σn(η) <  for each n ≥ n. By Lemma . and the continuity of
σn, we see that τn ∈ (ξ ,η)⊂ (τ – ε, τ + ε) for n≥ n, and (.) follows. �

http://www.boundaryvalueproblems.com/content/2013/1/195
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6 Fixed point problem
In this section we assume that

conditions (.), (.)-(.) are fulfilled, (.)

and we construct a fixed point problem whose solvability leads to a solution of problem
(.)-(.). To this aim, having the set B from (.), we define a set � by

� = B ×B ⊂W
,∞[a,b]×W

,∞[a,b], (.)

and for u = (u,u) ∈ �, we define a function fu : [a,b] → R as follows. We set, for a.e.
t ∈ [a,b],

fu(t) =

⎧⎨
⎩
f (t,u(t)) if t ∈ [a,Pu],

f (t,u(t)) if t ∈ (Pu,b],
(.)

where P is defined by (.) and the point Pu ∈ [a,b] is uniquely determined due to
Lemma .. By (.)

fu ∈ L
∞[a,b], ‖fu‖∞ ≤ ‖h‖∞. (.)

Now, we can define an operator F : � → W,∞[a,b] × W,∞[a,b] by F (u,u) = (x,x),
where

x(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ b
a G(t, s)fu(s) ds + c

k

– v(Pu)
k J (Pu,u(Pu)) if t ≤Pu ,∫ b

a G(t, s)f (s,u(s)) ds + c
k

– v(Pu)
k J (Pu,u(Pu)) +Au if t >Pu ,

(.)

x(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ b
a G(t, s)f (s,u(s)) ds + c

k

+ ( – v(Pu)
k )J (Pu,u(Pu)) +Au if t ≤Pu ,∫ b

a G(t, s)fu(s) ds + c
k

+ ( – v(Pu)
k )J (Pu,u(Pu)) if t >Pu .

(.)

Here the functionals A : � → R and A : � → R are defined such that the functions x
and x are continuous at the point Pu. Therefore

⎧⎨
⎩
Au =

∫ b
a G(Pu, s)fu(s) ds –

∫ b
a G(Pu, s)f (s,u(s)) ds,

Au =
∫ b
a G(Pu, s)fu(s) ds –

∫ b
a G(Pu, s)f (s,u(s)) ds.

(.)

Differentiating (.) and using (.) and (.), we get

x′
i(t) = f

(
t,ui(t)

)
for a.e. t ∈ [a,b], i = , . (.)

http://www.boundaryvalueproblems.com/content/2013/1/195
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This together with (.) yields

∥∥x′
i
∥∥∞ ≤ ‖h‖∞, i = , . (.)

Since v ∈ BV[a,b] (cf. (.)), we see that (.)-(.), (.), (.) and (.) give

‖xi‖∞ ≤ 
(
 +

‖v‖∞
|k|

)
(b – a)‖h‖∞ +

|c|
|k|

+
(
 +

‖v‖∞
|k|

)
J, i = , . (.)

Due to (.)-(.), we see that xi ∈W
,∞[a,b], i = , , and the operator F is defined well.

Lemma . Assume that (.) holds and that � and F are given by (.) and (.), (.),
respectively. Then the operator F is compact on �.

Proof
Step .We show that F is continuous on �. Choose a sequence

{
u[n]

}∞
n= =

{(
u[n] ,u[n]

)}∞
n= ⊂ �

which is convergent inW,∞[a,b]×W,∞[a,b], that is, (cf. (.)) there exists u = (u,u) ∈ �

such that

lim
n→∞

∥∥u[n] – u
∥∥
,∞ = , lim

n→∞
∥∥u[n] – u

∥∥
,∞ = . (.)

Lemma . and Lemma . yield

Pu,Pu[n] ∈ [a,b], n ∈N, lim
n→∞Pu[n] =Pu, (.)

where P is defined by (.). Denote

x = (x,x) =F (u,u), x[n] =
(
x[n] ,x[n]

)
=F

(
u[n] ,u[n]

)
, n ∈N. (.)

We will prove that

lim
n→∞

∥∥x[n] – x
∥∥
,∞ = , lim

n→∞
∥∥x[n] – x

∥∥
,∞ = . (.)

By (.), (.), (.) and (.),

lim
n→∞

∥∥(
x[n]i

)′ – x′
i
∥∥∞ = lim

n→∞
∥∥f (·,u[n]i (·)) – f

(·,ui(·))∥∥∞ = , i = , . (.)

Using (.), we get

lim
n→∞

∣∣∣∣
∫ τn

τ

∣∣f (s,u[n] (s)
)
– f

(
s,u[n] (s)

)∣∣ds
∣∣∣∣ ≤  lim

n→∞

∣∣∣∣
∫ τn

τ

h(s) ds
∣∣∣∣ = . (.)

http://www.boundaryvalueproblems.com/content/2013/1/195
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Since

∫ b

a

(
fu[n] (s) – fu(s)

)
ds =

∫ τ

a

(
f
(
s,u[n] (s)

)
– f

(
s,u(s)

))
ds

+
∫ b

τ

(
f
(
s,u[n] (s)

)
– f

(
s,u(s)

))
ds

+
∫ τn

τ

(
f
(
s,u[n] (s)

)
– f

(
s,u[n] (s)

))
ds,

the Lebesgue dominated convergence theorem and (.) give

lim
n→∞

∫ b

a

∣∣fu[n] (s) – fu(s)
∣∣ds = . (.)

Using (.) and (.), we get

∣∣x[n] (a) – x(a)
∣∣ ≤

∫ b

a

∣∣G(a, s)∣∣ · ∣∣fu[n] (s) – fu(s)
∣∣ds

+
∣∣∣∣v(Pu[n] )

k
J

(
Pu[n] ,u[n]

(
Pu[n]

))
–
v(Pu)

k
J

(
Pu,u(Pu)

)∣∣∣∣.

The continuity and boundedness ofP ,J and v (cf.Lemma ., (.), (.), (.) and (.))
imply

lim
n→∞

∣∣∣∣v(Pu[n] )
k

J
(
Pu[n] ,u[n]

(
Pu[n]

))
–
v(Pu)

k
J

(
Pu,u(Pu)

)∣∣∣∣
≤ ‖v‖∞

|k| lim
n→∞

∣∣J (
Pu[n] ,u[n]

(
Pu[n]

))
–J

(
Pu,u(Pu)

)∣∣

+
J
|k| lim

n→∞
∣∣v(Pu[n]

)
– v(Pu)

∣∣ = ,

wherefrom, by the boundedness of G and (.),

lim
n→∞

∣∣x[n] (a) – x(a)
∣∣ = . (.)

Using (.) and integrating (.), we get

x(t) = x(a) +
∫ t

a
f
(
s,u(s)

)
ds, x[n] (t) = x[n] (a) +

∫ t

a
f
(
s,u[n] (s)

)
ds,

and, due to (.) and (.), we arrive at

lim
n→∞

∥∥x[n] – x
∥∥∞ = . (.)

Similarly, we derive

lim
n→∞

∣∣x[n] (b) – x(b)
∣∣ = , lim

n→∞
∥∥x[n] – x

∥∥∞ = . (.)

Properties (.), (.) and (.) yield (.).

http://www.boundaryvalueproblems.com/content/2013/1/195
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Step . We show that the set F (�) is relatively compact in W
,∞[a,b] × W

,∞[a,b].
Choose an arbitrary sequence

{(
x[n] ,x[n]

)}∞
n= ⊂F (�) ⊂W

,∞[a,b]×W
,∞[a,b].

We need to prove that there exists a convergent subsequence. Clearly, there exists
{(u[n] ,u[n] )}∞n= ⊂ � such that

F
(
u[n] ,u[n]

)
=

(
x[n] ,x[n]

)
, n ∈N.

Choose i ∈ {, }. By (.) and (.), it holds

{
u[n]i

}∞
n= ⊂W

,∞[a,b],
∥∥u[n]i

∥∥∞ ≤ K ,

∣∣u[n]i (t) – u[n]i (t)
∣∣ =

∣∣∣∣
∫ t

t

(
u[n]i

)′(s) ds
∣∣∣∣ ≤ ‖h‖∞|t – t|

for t, t ∈ [a,b], n ∈ N. Therefore, the Arzelà-Ascoli theorem yields that there exists a
subsequence

{(
u[m]
 ,u[m]


)}∞

m= ⊂ {(
u[n] ,u[n]

)}∞
n=

which converges in C[a,b] × C[a,b]. Consequently, for each ε > , there exists m ∈ N

such that for eachm ∈N,

m ≥ m ⇒ ∥∥u[m]
i – u[m]

i
∥∥∞ < ε, i = , .

Similarly as in Step , we prove (cf. (.), (.), (.))

∥∥(
x[m]
i

)′ –
(
x[m]
i

)′∥∥∞ < ε,
∥∥x[m]

i – x[m]
i

∥∥∞ < ε, i = , ,

which gives by (.) that {(x[m]
 ,x[m]

 )}∞m= is convergent inW
,∞[a,b]×W

,∞[a,b]. �

Remark . If there exists τ ∈ [a,b] such that γ (x) = τ for x ∈ [–K ,K], then problem
(.)-(.) has an impulse at fixed time τ and a standard operator F, acting on the space
of piece-wise continuous functions on [a,b] and having the form

(Fz)(t) =
∫ b

a
G(t, s)f

(
s, z(s)

)
ds +

c
k
+G(t, τ)J

(
τ, z(τ)

)
, t ∈ [a,b], (.)

can be used instead of the operator F from (.), (.). But this is not possible if γ is not
constant on [–K ,K]. The reason is that then an impulse is realized at a state-dependent
point τ = γ (z(τ )), andF with τ instead of τ should be investigated on the spaceGL[a,b].
But if we write a state-dependent τ instead of a fixed τ in (.), F loses its continuity
on GL[a,b], which we show in the next example.

http://www.boundaryvalueproblems.com/content/2013/1/195


Rachůnek and Rachůnková Boundary Value Problems 2013, 2013:195 Page 15 of 18
http://www.boundaryvalueproblems.com/content/2013/1/195

Example . Let a = , b =  and � be from (.) with k ∈ R, k 	=  and v ∈ C[, ]. Con-
sider the functions

u(t) = , un(t) =  –

n
, t ∈ [, ],n ∈ N.

Clearly, un → u uniformly on [, ] and hence

lim
n→∞‖un – u‖∞ = .

For n ∈N, denote xn =Fun and x =Fu. Assume that the barrier γ is given by the linear
function γ (x) = x on R and the impulse function J (t,x) =  for t ∈ [, ], x ∈R. Then

τ = γ
(
u(τ )

)
= u(τ ) = ,

τn = γ
(
un(τn)

)
= un(τn) =  –


n
, n ∈ N,

and, according to (.), we have for t ∈ [, ]

xn(t) =
∫ 


G(t, s)f

(
s,  –


n

)
ds +

c
k
+G

(
t,  –


n

)
, n ∈N,

x(t) =
∫ 


G(t, s)f (s, ) ds +

c
k
+G(t, ).

Consequently,

lim
n→∞

(
xn() – x()

)
= lim

n→∞

∫ 


G(, s)

(
f
(
s,  –


n

)
– f (s, )

)
ds

+ lim
n→∞

(
G

(
,  –


n

)
–G(, )

)

=  –
v()
k

–
(
–
v()
k

)
= 

due to (.). Hence xn()� x() and we have also ‖xn–x‖∞ � , andF is not continuous
on GL[, ].

Lemma . results in the following theorem.

Theorem . Assume that (.) holds and that the set � is given by (.), where

K ≥
(
 +

‖v‖∞
|k|

)(
(b – a)‖h‖∞ + J

)
+

|c|
|k| . (.)

Further, let the operator F be given by (.), (.). Then F has a fixed point in �.

Proof By Lemma ., F is compact on �. Due to (.), (.), (.), (.), (.) and (.),

F (�)⊂ �.

Therefore, the Schauder fixed point theorem yields a fixed point of F in �. �

http://www.boundaryvalueproblems.com/content/2013/1/195
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7 Main result
Themain result, which is contained in Theorem ., guarantees the solvability of problem
(.)-(.) provided the data functions f , J and γ are bounded (cf. (.)-(.)). As it is
mentioned in Remark ., Theorem . serves as an existence principle which, in combi-
nation with the method of a priori estimates, can lead to more general existence results
for unbounded f and J and concrete boundary conditions.

Theorem . Assume that (.) and (.) hold. Then there exists a solution z of problem
(.)-(.) such that

‖z‖∞ ≤ K . (.)

Proof By Theorem ., there exists u = (u,u) ∈ � which is a fixed point of the operator
F defined in (.) and (.). This means that

u(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ b
a G(t, s)fu(s) ds + c

k

– v(Pu)
k J (Pu,u(Pu)) if t ≤Pu ,∫ b

a G(t, s)f (s,u(s)) ds + c
k

– v(Pu)
k J (Pu,u(Pu)) +Au if t >Pu ,

(.)

u(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ b
a G(t, s)f (s,u(s)) ds + c

k

+ ( – v(Pu)
k )J (Pu,u(Pu)) +Au if t ≤Pu ,∫ b

a G(t, s)fu(s) ds + c
k

+ ( – v(Pu)
k )J (Pu,u(Pu)) if t >Pu ,

(.)

where G, P , fu,A,A are given by (.), (.), (.), (.), respectively. Recall that Pu is
a unique point in (a,b) satisfying

Pu = τ ∈ [a,b], where τ = γ
(
u(τ)

)
. (.)

For t ∈ [a,b], define a function z by

z(t) =

⎧⎨
⎩
u(t) if t ∈ [a, τ],

u(t) if t ∈ (τ,b].
(.)

Differentiating (.), (.) and using (.) and (.), we get u′
i(t) = f (t,ui(t)) for a.e. t ∈

[a,b], i = , , and consequently

z′(t) = f
(
t, z(t)

)
for a.e. t ∈ [a,b].

By virtue of (.)-(.), we have

z(τ+) – z(τ) = u(τ) – u(τ) = J
(
τ,u(τ)

)
= J

(
τ, z(τ)

)
. (.)

Let us show that τ is a unique solution of the equation

t = γ
(
z(t)

)
(.)

http://www.boundaryvalueproblems.com/content/2013/1/195
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in [a,b]. According to (.) and (.), it suffices to prove

t 	= γ
(
u(t)

)
, t ∈ (τ,b]. (.)

Since (u,u) ∈ �, we have (cf. (.) and (.))

‖ui‖∞ ≤ K ,
∥∥u′

i
∥∥∞ ≤ ‖h‖∞, i = , .

Assume that the first condition in (.) is fulfilled. Then J (τ,x) ≥ , γ ′(x) ≤  for x ∈
[–K ,K]. Put

σ (t) = γ
(
u(t)

)
– t, t ∈ [a,b].

By (.), u(τ) – u(τ) = J (τ,u(τ))≥ , and since γ is non-increasing, we have

σ (τ) = γ
(
u(τ)

)
– τ ≤ γ

(
u(τ)

)
– τ = 

due to (.). Using (.), we derive for t ∈ (τ,b]

σ (t) =
∫ t

τ

(
γ ′(u(s))u′

(s) – 
)
ds ≤

∫ t

τ

(∣∣γ ′(u(s))∣∣ · ∥∥u′

∥∥∞ – 

)
ds

<
∫ t

τ

(


‖h‖∞
‖h‖∞ – 

)
ds = .

So, (.) is valid. If the second condition in (.) is fulfilled, we use the dual arguments.
Finally, let us check that �(z) = c. By (.)-(.) and (.), we have

z(t) =
∫ b

a
G(t, s)f

(
s, z(s)

)
ds +

c
k
+G(t, τ)J

(
τ, z(τ)

)
. (.)

Put

x(t) =
∫ b

a
G(t, s)f

(
s, z(s)

)
ds. (.)

Then, according to (iii) of Definition . and Remark ., we get �(x) = . Further, using
(.) from Lemma ., we arrive at �(G(·, τ)) = . Consequently, due to (.), (.) and
(.), �(z) results in

�(z) = �(x) + �

(
c
k

)
+ �

(
G(·, τ)

)
J

(
τ, z(τ)

)

= �

(
c
k

)
= k

c
k
+ (KS)

∫ b

a
v(t) d

[
c
k

]
= c. �
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