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Abstract
In this study we consider steady MHD flow of a Maxwell fluid past a vertical stretching
sheet in a Darcian porous medium. The motion of the fluid is caused by the stretched
sheet. The governing boundary layer equations for momentum, thermal energy and
concentration are reduced using a similarity transformation to a set of coupled
ordinary differential equations. The similarity ordinary differential equations are then
solved numerically by a recently developed spectral relaxation method together with
the Chebyshev pseudo-spectral collocation method. Effects of the physical
parameters on the velocity, temperature and concentration profiles as well as the
local skin friction coefficient and the heat and mass transfer rates are depicted
graphically and/or in tabular form.
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1 Introduction
During the last few years, the boundary layer flows of non-Newtonian fluids driven by
stretching surfaces have attracted much research interest [–]. This has been driven by
their great importance in engineering and industrial applications. In particular, such ap-
plications are encountered in extrusion processes, glass-fiber and paper production, elec-
tronic chips, application of paints, food processing and movement of biological fluids.
There is no single constitutive relationship between stress and rate of strain by which all
the non-Newtonian fluids can be examined. The main difficulty in researching a general
boundary-layer theory for non-Newtonian fluids lies, obviously, in the diversity of these
fluids, in their constitutive behavior, simultaneous viscous and elastic properties such that
differentiating between those effectswhich arise as a result of a fluid’s shear-dependent vis-
cosity from those which are attributable to the fluid’s elasticity becomes virtually impossi-
ble. But some mathematical models have been proposed to fit well with the experimental
observations []. The simplest model for the rheological effects of viscoelastic fluids is
the Maxwell model where the dimensionless relaxation time is small. However, in some
more concentrated polymeric fluids, the Maxwell model is also used for large dimension-
less relaxation time. Vieru et al. [] applied Fourie and Laplace transforms to find exact
solutions of a fractional Maxwell model for flow between two-sided wall perpendicular
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to a plate. Hayat et al. [] analyzed the MHD flow and mass transfer of a UCM fluid past
a porous shrinking sheet on the presence of chemical reaction species. Fetecau et al. [,
] investigated unsteady flows in Maxwell fluids with the flow being induced by oscillat-
ing/accelerated mature of the rigid body. Hayat et al. [] studied theMHD unsteady flow
of a Maxwell fluid in a rotating frame of reference and porous medium. It must be noted
that the Maxwell fluid model allows for the relaxation effects which cannot be predicted
in other different types of non-Newtonian fluids such as second, third and fourth grades.
The heat transfer analysis of boundary layer flow with radiation is very important in

electrical power generation, astrophysical flows, solar power technology and space vehicle
re-entry. Shateyi et al. [] investigated the influence of a magnetic field on heat and mass
transfer by mixed convection in the presence of Hall, radiation Soret and Dufour effects.
Shateyi and Motsa [] studied the effects of thermal radiation on heat and mass transfer
over an unsteady stretching surface. Abel et al. [] performed the analysis of the effect of
MHD and thermal radiation on two-dimensional steady flow of an incompressible, upper-
converted Maxwell fluid.
Thermophoresis is a mechanism of migration of small particles in the direction of a de-

creasing thermal gradient []. Thermophoresis causes small particles to deposit on the
cold surfaces. It has many applications in aerosol technology, deposition of silicon thin
films and radioactive particle deposition in nuclear reactor safety simulations. Tsai et al.
[] observed that the thermophoresis is an effective method for particle collection. The
velocity acquired by the particle is called thermophoretic velocity, and the force expe-
rienced by the suspended particle is called thermophoretic force. Tsai and Huang []
theoretically studied the steady stagnation point flow over a flat stretching surface in the
presence of species concentration, andmass diffusion under Soret and Dufour effects was
obtained by solving the governing equations of continuity, momentum, energy and con-
centration using similarity analysis and numerical technique.
Hayat and Qasim [] investigated the MHD two-dimensional flow with heat and mass

transfer over a stretching sheet in the presence of Joule heating and thermophoresis. Hayat
et al. [] studied three-dimensional flow of a non-Newtonian fluid induced by a stretch-
ing surface. Prasad et al. [] investigated the effects of temperature-dependent viscosity,
thermal conductivity and internal heat generation/absorption on the MHD flow and heat
transfer of a non-Newtonian UCM fluid over a stretching sheet. Noor [] considered the
hydrodynamic flowof aMaxwell fluid past a vertical stretching sheetwith thermophoresis.
In this paper, the study of MHD flow of a Maxwell fluid with thermophoresis and chem-
ical reaction, previously considered by Noor [], will be investigated by using a recently
developed numerical technique known as the spectral relaxation method. The method is
based on simple iterative schemes which are formed by reducing the order of the momen-
tum equation and by rearranging the resulting non-linear equations into a system of linear
equations. The linear equations are then solved using the Chebyshev spectral collocation
method [, ].

2 Mathematical formulation
We consider steady MHD flow of a Maxwell fluid past a vertical stretching sheet in a Dar-
cian porous medium. The motion in the fluid is caused by the stretching of the sheet.
A uniform magnetic field of strength B is applied normally to the flow. We assume the
magnetic Reynolds number to be sufficiently small so that the induced magnetic field can
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be neglected. At t = , the sheet is impulsively stretched with the variable velocity Uw(x);
both the temperature distribution Tw(x) and the concentration distribution Cw(x) vary
along the sheet. The fluid has uniform ambient temperature T∞ and uniform ambient
concentration C∞ while Tw > T∞ and C∞. Under these assumptions and Boussineq’s ap-
proximation, the governing equations for the model under consideration are written as

∂u
∂x

+
∂v
∂y

= , ()
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The boundary conditions for this problem can be written as

u(x, ) =Uw(x) = ax, v(x, ) = ,

T(x, ) = T∞ + bx, C(x, ) = C∞ + cx,
()

u(x,∞) = , T(x,∞) = T∞, C(x,∞) = C∞, ()

where u and v are the velocity components in the x- and y-directions, respectively, ν is the
kinematic viscosity, ρ is the fluid density, K is the permeability of the porousmedium, σ is
the electrical conductivity, g is the acceleration due to gravity, C is the fluid concentration,
T is the fluid temperature, βT and βC are the volumetric expansion coefficients of temper-
ature and concentration, respectively, λg is the fluid thermal conductivity, cp is the specific
heat at constant pressure, qr is the radiative heat flux, μ is the dynamic viscosity, D is the
molecular diffusivity of the species concentration, VT is the thermophoretic velocity and
k is the chemical reaction parameter. By using the Rosseland diffusion approximation [,
] and following Raptis [], among other researchers, the radiative heat flux, qr is given
by

qr = –
σ ∗

Ks

∂T

∂y
, ()

where σ ∗ and Ks are the Stefan-Boltzman constant and the Rosseland mean absorption
coefficient, respectively. We assume that the temperature differences within the flow are
sufficiently small so that T may be expressed as a linear function of temperature,

T ≈ T
∞T – T

∞. ()

Using () and () in the last term of equation (), we obtain

∂qr
∂y

= –
σ ∗T∞
Ks

∂T
∂y

. ()
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The thermophoretic velocity VT , which appears in equation (), can be written as

VT = –
kν
Tr

∂T
∂y

, ()

where Tr is the reference temperature and k is the thermophoretic coefficient with a range
of values from . to .. We define a thermophoretic parameter τ as

τ = –
k(Tw – T∞)

Tr
. ()

2.1 Similarity transformation
The governing equations ()-() can be transformed to a set of non-linear ordinary differ-
ential equations by introducing the following non-dimensional variables:

η =
√
a
u
y, ψ =

√
aνxf (η), θ (η) =

T – T∞
Tw – T∞

, φ(η) =
C –C∞
Cw –C∞

, ()

where ψ is the stream function that satisfies the continuity equation () with

u =
∂ψ

∂y
= axf ′(η), v = –

∂ψ

∂x
= –

√
aνf (η). ()

Using equations () and () in the governing equations, we obtain the following set of
non-linear ordinary differential equations.

f ′′′ + ( +Mβ)ff ′′ – f ′ + β
(
ff ′f ′′ – f f ′′′) – (λ +M)f ′ + γ [θ +Nφ] = , ()(

 +


R
)

θ ′′ + Pr
(
f θ ′ – f ′θ

)
+ PrEc

(
Mf ′ + f ′′) = , ()

φ′′ + Sc
[
f φ′ – f ′φ – τ

(
θ ′φ′ + θ ′′φ

)]
–Kφ = . ()

Here primes denote differentiation with respect to η, β = λa is the Deborah number,
M = σB

ρa is the Hartmann number, λ = ν
aK is the porosity parameter, γ = Grx

Rex
is the local

buoyancy parameter, Grx = gβT (Tw–T∞)x
ν

is the Grashof number, Rex = Uwx
ν

is the Reynolds
number, N = βC(Cw –C∞)/(β(Tw – T∞)) is the buoyancy ratio, R = σ ∗/Ksλg is the radia-
tion parameter, Pr is the Prandtl number, Ec =U

w/(cp(Tw –T∞)) is the Eckert number, Sc
is the Schmidt number andK = kSc/a is the chemical reaction. The boundary conditions
are

f () = , f ′() = , θ () = , φ() = , ()

f ′ → , θ → , φ → , as η → ∞. ()

3 Method of solution
In this section we apply the proposed method of solution, hereinafter referred to as the
spectral relaxationmethod (SRM), to solve the governing non-dimensional equations ()
to (). The SRMmethod was recently developed byMotsa [] and has been successfully
used to solve a wide range of problems. The SRM algorithm starts with the assumption of
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having a system of m non-linear ordinary differential equations in m unknown functions
zi(η), i = , , . . . ,m, where η ∈ [a,b] is the independent variable. The system of equations
is then written in terms of Zi as a sum of its linear (Li) and non-linear components (Ni) as
indicated below.

Li[Z,Z, . . . ,Zm] +Ni[Zi,Z, . . . ,Zm] =Hi(η), i = , , . . . ,m, ()

where H(η) is a known function of η. The non-linear components (Ni) are then taken to
the right-hand side of equation (). The details of the SRM schemes are found in Motsa
and Makukula []. We then use the Chebyshev pseudo-spectral method to solve the re-
sultant iterative scheme. For details of the spectral methods, readers are referred to [,
]. Before applying the spectral method, the domain on which the governing equation is
defined must be transformed to the interval [–, ], on which the spectral method can be
implemented. We use the transformation η = (b – a)(τ + )/ to map the interval [a,b] to
[–, ].
Applying the SRM to () to (), we first set f ′(η) = g(η) and then write the equations

as the following set of equations:

f ′ = g, ()

g ′′ + ( + βM)fg ′ + β
(
fgg ′ – f g ′′) – (λ +M)g – g –Mg + γ (θ +Nφ) = , ()(

 +


R
)

θ ′′ + Pr
(
f θ ′ – gθ

)
+ PrEc

(
Mg + g ′) = , ()

φ′′ + Sc
[
f φ′ – gφ – τ

(
θ ′φ′ + θ ′′φ

)]
–Kφ = , ()

and the boundary conditions become

f () = , g() = , θ () = , φ() = , ()

g(∞) = , g ′(∞) = , θ (∞) = , φ(∞) = . ()

Equations () to () are then linearized to become

f ′
r+ = gr , fr+() = , ()

g ′′
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r – f r+g
′′
r
]
– γ θr – γNφr ,

gr+() = , gr+(∞) = ,
()


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

R
)
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r
)
,

θr+() = , θr+(∞) = ,
()


Sc

φ′′
r+ +

[
fr+φ′

r+ – gr+φr+
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–Kφr = τ

(
θ ′
rφ

′
r + θ ′′

r φr
)
,

φr+() = , φr+(∞) = .
()

We note that the equations now form a system of linear decoupled equations which
can be solved iteratively for r = , , . . . , starting from initial guesses/approximations
(f(η), g(η), θ(η),φ(η)).
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Applying the Chebyshev pseudo-spectral method to () to (), we obtain

Afr+ = B, fr+(τN̄ ) = , ()

Agr+ = B, gr+(τN̄ ) = , gr+(τ) = , ()

Aθr+ = B, θr+(τN̄ ) = , θr+(τ) = , ()

Aφr+ = B, φr+(τN̄ ) = , φr+(τ) = , ()

where

A =D, B = gr

A =D + diag
[
( + βM)fr+

]
D – ( +M)I,

B = gr – β
[
fr+grg ′

r – fr+gr
]
– γ θr – γNφr ,

A =
(
 +

R


)
D + diag[Prfr+]D – diag(Prgr+),

B = –PrEcMgr – PrEcg ′
r ,

A =D + diag[Scfr+]D – diag(Scgr+ +K),

B = Scτ
[
θ ′
rφ

′
r + θ ′′

r φr
]
.

The initial approximation required to start the iterative process is

f =  – e–η, g(η) = e–η, ()

θ(η) = e–η, φ(η) = e–η, ()

which are convenient random functions that satisfy the boundary conditions. The itera-
tion is repeated until convergence is achieved.

4 Results and discussion
In this section, we present the results obtained using the spectral relaxation method. The
SRMmethod depends on the length of the governing domain (b– a) and the number (N̄ )
of collocation points. The SRM approach requires that we find the appropriate finite value
η∞ whichmust be selected to be large enough to numerically approximate infinity and the
behavior of the governing flow parameters at infinity. In order to select the appropriate
value of η, we start with an initial guess, which is relatively small, and solve the governing
SRM scheme equations over [,η∞] to obtain the solutions of flow parameters f (η), g(η),
θ (η) and φη. Once the optimal value of η∞ has been identified, we then use the same
experiment to determine the minimum value of the number of grid points required to
give solutions that do not depend on the grid size. In this study of the current problem, we
used N̄ = , η∞ = , with accuracy tolerance of –. We also remark that convergence
was achieved after as little as  iterations.
From the numerical computations, dimensionless velocity, temperature and concentra-

tion profiles as well as the local skin-friction coefficient, the local Nusselt number and
the Sherwood number are presented for different values of the physical parameters sig-
nificant in this study. The results are presented in tabular and graphical forms. Solutions
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are obtained for Pr = .; Sc = .; N = ; λ = ; M = ; γ = ; R = .; K = .; β = .;
τ = .; Ec = .. In order to ascertain the accuracy and applicability as well as depend-
ability of the current proposed newly developed method, the computed numerical values
of the skin friction coefficient –f ′′(), the local Nusselt number –θ () and the Sherwood
number φ() are compared with the previously generated results in [] where the homo-
topy analysis method was used. These results are depicted in Tables -. Though in []

Table 1 Comparison of the SRM results of –f ′′(0), –θ ′(0), –φ′(0) with those obtained in [20] for
different values of the magnetic parameter

M –f ′′(0) –θ ′(0) –φ′(0)
[20] Present [20] Present [20] Present

0.0 0.61105 0.61105243 0.63589 0.63588754 1.30284 1.30284353
0.5 0.81242 0.81241682 0.53469 0.53469349 1.28395 1.28395421
1.0 0.99660 0.99658887 0.44624 0.44621677 1.26728 1.26727829
2.0 1.38934 1.32487675 0.28290 0.28719193 1.24527 1.2389943

Table 2 Comparison of the SRM results of –f ′′(0), –θ ′(0), –φ′(0) with those obtained in [20] for
different values of the chemical reaction parameter

K2 –f ′′(0) –θ ′(0) –φ′(0)
[20] Present [20] Present [20] Present

0.0 0.92029 0.92027899 0.47847 0.47854048 0.70970 0.70959986
0.5 0.96935 0.96934259 0.45647 0.45644780 1.03512 1.03512125
1.0 0.99660 0.99658887 0.44624 0.44621677 1.26728 1.26727829
2.0 1.03073 1.03072331 0.43520 0.43517486 1.62744 1.62744240

Table 3 Comparison of the present results of –f ′′(0), –θ ′(0), –φ′(0) with those obtained in [20]
as the thermophoresis parameter is varied

τ –f ′′(0) –θ ′(0) –φ′(0)
[20] Present [20] Present [20] Present

0.0 0.993696 0.99394752 0.44709 0.44706534 1.24182 1.24182644
0.2 0.99660 0.99658887 0.44624 0.44621677 1.26728 1.26722829
0.5 1.00052 1.00051054 0.44499 0.44496863 1.30586 1.30585794
1.0 1.00695 1.00693761 0.44298 0.44295388 1.37122 1.37120617

Table 4 Comparison of the SRM results of –f ′′(0), –θ (0), –φ(0) with those obtained in [20] for
different values of the porosity parameter

λ –f ′′(0) –θ ′(0) –φ′(0)
[20] Present [20] Present [20] Present

0.0 0.61270 0.61270238 0.50658 0.50658616 1.24182 1.29851630
0.5 0.81416 0.81416494 0.47655 0.47655131 1.26728 1.27936940
1.0 0.99660 0.99658887 0.44624 0.44621677 1.30586 1.26727829
2.0 1.34492 1.31831969 0.38715 0.38737709 1.37122 1.24647373

Table 5 Effects of the Deborah number on the skin friction, heat flux andmass flux

β –f ′′(0) –θ ′(0) –φ′(0)
0.0 0.95042487 0.46037264 1.27219499
0.5 1.06635679 0.42584920 1.26021407
1.0 1.18203689 0.39446318 1.24938909
2.0 1.29462059 0.36415504 1.239732147
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convergence was said to be achieved after  iterations, varying some parameters like the
magnetic strength might affect that. In [], accuracy was only up to –, but in the cur-
rent study, accuracy is up to –, which we believe is good enough for any numerical
method. In Table  we observe that for small values of the magnetic parameter, there is
excellent agreement between our results and those of []. However, asM becomes large,
the previously obtained results become less accurate. From Table , we observe that as
the Hartmann number increases, the Lorentz drag force caused by electromagnetism in-
creases, thereby causing the skin friction to increase. This, in turn, causes the thickness
of the velocity boundary layer as well as the velocity to decrease as depicted in Figure .
With high values of the skin friction (–f ′′()), more heat and concentration are absorbed,
which results in less heat flux –θ ′() and mass flux –φ() as can be clearly seen in Table .
In Table , we observe that there is an excellent agreement between our present results

with those obtained by Noor [] as the porosity of the medium is varied. The skin fric-
tion increases as the values of the porosity increase. The physical interpretation of this
phenomenon is that imposing greater porosity on the medium causes a greater force in
the opposite direction of the flow. The heat and mass fluxes are greatly reduced as values
of the porosity increase.

Figure 1 Variation of dimensionless (a) velocity, (b) temperature and (c) concentration profiles across
the boundary layer for different values ofM.
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The numerical results depicted in Tables  and  again show excellent agreement be-
tween the SRM and HAM results. In these tables, we observe consistent increments in
the skin friction and mass flux but decrements in the heat flux as the thermophoresis and
chemical reaction increase. We also observe in Table  that thermophoresis has more im-
pact on the concentration profiles than on the velocity and temperature distributions. As
the chemical reaction increases, higher fluid composition can be flushed away from the
surface as shown in Table .
Table  depicts the influence of the Deborah number on the skin friction, heat and mass

fluxes. As expected, increasing theDeborah number causes increments in the skin friction
and decrements in the fluxes. Physically, at higher Deborah numbers, the material behav-
ior changes to a non-Newtonian regime, increasingly dominated by elasticity, demonstrat-
ing solid-like behavior, hence high skin friction.
Figure (a)-(c) represents, respectively, the dimensionless velocity, temperature and con-

centration for various values of the magnetic field parameter M. From Figure (a), we
observe that the velocity profiles are reduced as the magnetic parameter M increases.
Physically, increasing themagnetic field strength normal to the flow in an electrically con-
ducting fluid produces a drag force known as the Lorentz force, which acts against the flow.
Therefore, application of a moderate magnetic field normal to the flow can be used as a
stabilizing mechanism, delaying the transition from laminar to turbulent flow. Reduction
of the flow velocity due to the increase of the magnetic field strength causes increments in
the heat and concentration profiles as depicted in Figure (b) and (c), respectively. Phys-
ically, applying the magnetic field heats up the fluid and thus reduces the heat and mass
transfers from the wall causing increases in fluid temperature and concentration distribu-
tions.
In Figure (a)-(c), we display the influence of permeability of the medium on the flow

velocity, temperature and concentration, respectively. We observe that the dimensionless
velocity decreases as the values of the porosity parameter are increased. Physically, poros-
ity allows more fluid to be taken away from the boundary layer and, therefore, reduces the
velocity boundary layer but increases the thermal and solutal boundary layers as depicted
in Figure (b) and (c).
Figure (a)-(b) shows the influence of a chemical reaction on the fluid velocity and con-

centration profiles. In this study, we are analyzing the effects of a destructive chemical
reaction (K > ). It is noticed that both velocity and concentration distributions decrease
when the chemical reaction increases. Physically, for a destructive case, chemical reaction
takes place with many disturbances. This, in turn, causes high molecular motion, which
results in an increase in the transport phenomenon, thereby reducing the concentration
distributions in the fluid flow.
The effects of the Deborah number β on the velocity and temperature profiles are

depicted in Figure (a)-(b), respectively. We observe that the boundary layer thickness
decreases with increasing values of β while the temperature increases. Physically, the
Deborah number is the ratio of relaxation time characterizing the time it takes a mate-
rial to adjust to applied stresses or deformations, and the characteristic time scale of an
experiment probing the response of the material. At higher Deborah numbers, the ma-
terial behavior changes to increasingly dominated by elasticity, demonstrating solid like
behavior, thereby slowing down the flow velocity and increasing the temperature of the
fluid.
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Figure 2 Effects of the porosity parameter on dimensionless (a) velocity, (b) temperature and
(c) concentration profiles across the boundary layer.

Figure 3 The influence of the chemical reaction parameter on dimensionless (a) velocity and
(b) concentration profiles.
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Figure 4 Variation of dimensionless (a) velocity and (b) temperature for different values of β .

Figure 5 Variation of dimensionless (a) velocity and (b) temperature for different values of R.

The influence of the thermal radiation on fluid velocity and temperature is depicted in
Figure (a)-(b), respectively. It is observed that the thermal radiation is to enhance fluid
velocity in the boundary layer. It is interesting to note that thermal radiation has a signifi-
cant influence on the temperature distribution within the fluid. We observe in Figure (b)
that increasing thermal radiation causes the fluid temperature to increase. This is due to
the fact that increase in the values of the thermal radiation parameter implies increasing
radiation in the boundary layer, and hence increases the values of the temperature profiles
in the thermal boundary layer.
Figure (a)-(b) represents the variation of velocity and temperature distributions in the

boundary layer for various values of the Eckert number Ec. We notice that the Eckert
number has very little increasing effect on the velocity distribution in the boundary layer.
By analyzing Figure (b), we observe that the effect of Eckert number is greatly increase
the temperature in the flow region. This is because heat energy is stored in the liquid due
to frictional heating. Thus the effect of increasing Ec, is to enhance the temperature of the
fluid.
Figure (a)-(b) depicts the effects of the Prandtl number on the velocity and tempera-

ture distributions. We observe that both velocity and temperature profiles are reduced as
the Prandtl number increases. This is because when Pr increases, the thermal diffusiv-
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Figure 6 The influence of the Eckert number on the dimensionless (a) velocity and (b) temperature
profiles.

Figure 7 The effects of the Prandtl number on the dimensionless (a) velocity and (b) temperature
profiles.

ity decreases leading to the decrease of energy transfer ability that decreases the thermal
boundary layer.
Lastly, the effects of the thermophoretic parameter τ and the Schmidt number Sc are

shown in Figure (a)-(b), respectively. We observe that increasing values of the ther-
mophoretic parameter, τ , induces a decrement in the concentration of the particles
throughout the flow domain. We observe that the effect of increasing the thermophoretic
parameter τ is limited to increasing slightly the wall slope of the concentration profiles
but decreasing the concentration. The Schmidt number signifies the relative effectiveness
of the momentum transport diffusion in the hydrodynamic boundary layer to the species
diffusion in the concentration boundary layer. We clearly see from this figure that the
concentration boundary layer thickness decreases as the Schmidt number Sc increases.
This phenomenon occurs because when Sc increases, the concentration species becomes
heavier.

5 Conclusion
Anew numerical approach has been successfully used to solve themagnetohydrodynamic
flow of a Maxwell fluid past a vertical stretching sheet in a Darcian porous medium under
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Figure 8 The effects of the thermophoretic parameter (a) and the Schmidt number (b) on the
dimensionless concentration profiles.

the influence of thermophoresis, thermal radiation and a uniform chemical reaction. The
investigation observed that this newly developed scheme had potential to be used even in
complex non-linear problems. The velocity profiles were found to be greatly affected by
magnetic strength, porosity, Deborah number as well as by thermal radiation. The fluid
temperature was found to increase with increases in the magnetic strength, porosity, the
Deborah number, thermal radiation as well as the Eckert number, but it decreased while
the Prandtl number increased. The fluid concentration profiles were found to be signifi-
cantly affected by the thermophoresis as well as by the presence of a chemical reaction.
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