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Abstract
In 2000, Cingolani and Lazzo (J. Differ. Equ. 160:118-138, 2000) studied nonlinear
Schrödinger equations with competing potential functions and considered only the
subcritical growth. They related the number of solutions with the topology of the
global minima set of a suitable ground energy function. In the present paper, we
establish these results in the critical case. In particular, we remove the condition
c0 < c∞, which is a key condition in their paper. In the proofs we apply variational
methods and Ljusternik-Schnirelmann theory.
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1 Introduction andmain result
We investigate the following nonlinear Schrödinger equation:

i�
∂ψ

∂t
= –

�


m
�ψ +W (x)ψ – g(x,ψ), (.)

which arises in quantum mechanics and provides a description of the dynamics of the
particle in a non-relativistic setting. � is the Planck’s constant, m >  denotes the mass of
the particle,W :RN →R is the electric potential, g is the nonlinear coupling, and ψ is the
wave function representing the state of the particle. A standing wave solution of equation
(.) is a solution of the form ψ(x, t) = u(x)e–i

Et
h . It is clear that ψ(x, t) solves (.) if and

only if u(x) solves the following stationary equation:

–
�


m
�u +

(
W (x) – E

)
u = g(x,u). (.)

For simplicity and without loss of generality, we set ε = �, V (x) = m(W (x) – E) and g̃ =
mg , then equation (.) is equivalent to

–ε�u +V (x)u = g̃(x,u). (.)

A considerable amount of work has been devoted to investigating solutions of (.). The
existence, multiplicity and qualitative property of such solutions have been extensively
studied. For single interior spikes solutions in the whole spaceRN , please see [–] etc. For
multiple interior spikes, please see [, ] etc. For single boundary spike solutions with
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Neumann boundary condition, please see [, –] etc. For multiple boundary spikes,
please see [–] etc. In particular,Wang and Zeng [] studied the existence and concen-
tration behavior of solutions for NLS with competing potential functions. Cingolani and
Lazzo in [] obtained themultiple solutions for the similar equation. In those papers only
the subcritical growth was considered. In the present paper, we complete these studies by
considering a class of nonlinearities with the critical growth. In particular, we remove the
condition c < c∞, which is a key condition in [].
In the sequel, we restrict ourselves to the critical case in which g̃(x,u) = |u|∗–u+ f (x,u).

More specifically, we study the following problem:

⎧⎪⎪⎨
⎪⎪⎩
–ε�u +V (x)u = |u|∗–u + f (x,u) in R

N ,

u >  in R
N ,

lim|x|→∞ u(x) = ,

(.)

where ∗ := N/(N – ) if N ≥ , and ∗ :=∞ if N = , . f ∈ C(RN ×R,R) satisfies

(f) f (x, t) =  for each t ≤ ;
(f) limt→+

f (x,t)
t = ;

(f) there exists q ∈ (, ∗) such that

lim sup
t→∞

f (x, t)
tq–

<∞;

(f) there exists  < θ < ∗ such that

 < θF(x, t)≤ f (x, t)t, ∀t > ,

where F(t) :=
∫ t
 f (τ )dτ ;

(f) the function f (x,t)
t is strictly increasing in t ≥  for any x ∈ �.

Our main results are the following theorem.

Theorem . Let N ≥ . Suppose that f satisfies (f)-(f), V is a continuous function in R
N

and satisfies infx∈RN V (x) > . Then when ε is sufficiently small, the problem (.) has at
least cat(	,	δ) distinct nontrivial solutions.

Here cat(	,	δ) denotes the Ljusternik-Schnirelmann category of 	 in 	δ . By definition
(e.g., []), the category of A with respect to M, denoted by cat(A,M), is the least integer
k such that A ⊂ A ∪ · · · ∪ Ak , with Ai (i = , . . . ,k) closed and contractible in M. We set
cat(∅,M) =  and cat(A,M) = +∞ if there are no integers with the above property. We will
use the notation cat(M) for cat(M,M).
To prove Theorem ., wemainly use the idea of [, , ].More precisely, we can show

that the (PS)c-condition holds in the subset Ñε (see (.)). Hence the standard Ljusternik-
Schnirelmann category theory can be applied in Ñε to yield the existence of at least cat(Ñε)
critical points of Iε . And then we construct two continuous mappings

φε :	 → Ñε (.)

http://www.boundaryvalueproblems.com/content/2013/1/199
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and

β : Ñε → 	δ , (.)

where

	δ =
{
x ∈R

N : dist(x,	) ≤ δ
}
, ∀δ > . (.)

Then a topological argument asserts that

cat(Ñε)≥  cat(	,	δ).

We will also prove that if u is a critical point of Iε satisfying Iε(u) ≤ εN (c + h(ε)), then u
cannot change sign. Hence we obtain at least cat(	,	δ) nontrivial critical points of Iε .
The paper is organized as follows. In Section , we collect some notations and prelimi-

naries. A compactness result is given in Section , which is a key step in our proof. Finally,
in Section , we prove Theorem ..

2 Notations and preliminaries
H(RN ) is the usual Sobolev space of real-valued functions defined by

H(
R

N)
:=

{
u :∇u ∈ L

(
R

N)
and u ∈ L

(
R

N)}

with the normal

‖u‖ :=
∫
RN

(|∇u| +V (a)u
)
dx.

Let Hε be the subspace of a Hilbert space H(RN ) with respect to the norm

‖u‖ε :=
∫
RN

(
ε|∇u| +V (x)u

)
dx <∞.

We denote by S the Sobolev constant for the embedding D,(RN ) ↪→ L∗ (RN ), namely

S = inf
�=u∈D,

∫
RN |∇u| dx

(
∫
RN |u|∗ dx)/∗ , (.)

where D,(RN ) is the usual Sobolev space of real-valued functions defined by

D,(
R

N)
:=

{
u :∇u ∈ L

(
R

N)
and u ∈ L

∗(
R

N)}
.

We say that a function u ∈Hε is a weak solution of the problem (.) if
∫
RN

(
ε∇u∇v +V (x)uv – |u|∗–uv – f (x,u)v

)
dx = , ∀v ∈Hε .

In view of (f) and (f), we have that the associated functional Iε :Hε →R given by

Iε(u) =



∫
RN

(
ε|∇u| +V (x)|u|)dx – 

∗

∫
RN

|u|∗
dx –

∫
RN

F(x,u)dx
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is well defined. Moreover, Iε ∈ C(Hε) with the following derivative:

〈
I ′ε(u), v

〉
=

∫
RN

(
ε∇u∇v +V (x)uv – |u|∗–uv – f (x,u)v

)
dx.

Hence, the weak solutions of (.) are exactly the critical points of Iε .
Let us recall some known facts about the limiting problem, namely the problem

–�u +V (a)u = |u|∗–u + f (a,u) in R
N , (.)

here a ∈R
N acts as a parameter instead of an independent variable. Solutions of (.) will

be sought in the Sobolev space H(RN ) as critical points of the functional

Ja(u) =



∫
RN

(|∇u| +V (a)|u|)dx – 
∗

∫
RN

|u|∗
dx –

∫
RN

F(a,u)dx.

The least positive critical value G(a) can be characterized as

G(a) := inf
u∈Ma

Ja(u),

where

Ma :=
{
v ∈H(

R
N) \ {} : 〈J ′a(u),u〉

= 
}
. (.)

An associated critical point w actually solves equation (.) and is called a ground state
solution or the least energy solution, i.e., w satisfies

Ja(w) = inf
u∈Ma

Ja(u).

Moreover, there exist C >  and δ >  such that

w(x)≤ e–δ|x|, ∇w(x) ≤ e–δ|x| for all x ∈R
N . (.)

For more details, please see [, ].
Set

c := inf
a∈RN

G(a), 	 :=
{
a ∈R

N :G(a) = c
}
.

For any δ > , we denote 	δ = {x ∈ R
N : dist(x,	) ≤ δ}. We need to estimate the super

bound of c. In order to do this, we estimate G(a). We shall use a family of radial function
defined by

Uε(x) =
(
N(N – )

)N–


(
ε

ε + |x|
)N–


.

It is known [] that

–�Uε =U (N+)/(N–)
ε in R

N .

http://www.boundaryvalueproblems.com/content/2013/1/199
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Moreover, we have

∫
RN

|∇Uε| dx =
∫
RN

|Uε|∗
dx = SN/.

Set uε(x) = φ(x)Uε(x), where φ ∈ C is a cut-off function satisfying φ(x) ≡  if |x| ≤ δ/,
φ(x) ≡  if |x| ≥ δ and  ≤ φ(x) ≤ . After a detailed calculation, we have the following
estimates:

∫
RN

∣∣∇(φUε)
∣∣ dx = SN/ +O

(
εN–), (.)

∫
RN

∣∣φUε

∣∣∗
dx = SN/ +O

(
εN

)
, (.)

∫
RN

∣∣φUε

∣∣ dx = α(ε) :=

⎧⎨
⎩
Cε| log ε| +O(ε) if N = ,

Cε +O(εN–) if N ≥ .
(.)

Since F(t)≥ , from (.)-(.), we conclude

G(a) ≤ max
t>

Ja(tuε)

≤ max
t>

(
t



∫
RN

(|∇uε| +V (a)|uε|
)
dx –

t∗

∗

∫
RN

|uε|∗
dx

)
, (.)

then the maximum value of the right-hand side is achieved at

τ =
(∫

RN (|∇uε| +V (a)|uε|)dx∫
RN |uε|∗ dx

)N–


(.)

and

max
t>

Ja(tuε) ≤ 
N

(
∫
RN (|∇uε| +V (a)|uε|)dx)N/

(
∫
RN |uε|∗ dx)(N–)/

=

N

(∫
RN (|∇uε| +V (a)|uε|)dx

(
∫
RN |uε|∗ dx)/∗

)N/

≤ 
N

(
SN/ +V (a)α(ε) +O(εN–)

S(N–)/ +O(εN–)

)N/

<

N
SN/. (.)

Hence we have

c <

N
SN/. (.)

We denote the Nehari manifold of Iε by

Nε =
{
u ∈Hε,A \ {} : 〈I ′ε(u),u〉

= 
}
.

http://www.boundaryvalueproblems.com/content/2013/1/199
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3 Compactness result
Proposition . Let εn →  as n → ∞. Assume that (un) ⊂ Nεn satisfies ε–Nn Iεn (un) → c
as n → ∞. Then uniformly in a ∈ 	, there exist a subsequence of vn(y) := un(εny + a) (still
denoted by vn), and tn >  such that wn := tnvn ∈ Ma. Furthermore, wn converges strongly
in H(RN ) to w, the positive ground state solution of equation (.).

Proof Let (un) ⊂ Nεn be such that ε–Nn Iεn (un) → c. Then, by a change of variable
x = εny + a, we have

c +  ≥ ε–Nn

(
Iεn (un) –


θ

〈
Iεn (un),un

〉)

≥ ε–Nn

(


–

θ

)
‖un‖εn

=
(


–

θ

)∫
RN

(∣∣∇un(εny + a)
∣∣ +V (εny + a)

∣∣un(εny + a)
∣∣)dy. (.)

This implies that (un) is bounded in H(RN ). Noting that

c + o() =



∫
RN

(|∇un +V (εny + a)|un|
)
dy –


∗

∫
RN

|un|∗
dy

–
∫
RN

F(x,un)dy, (.)

hence

m := lim
n→∞

∫
RN

(|∇un +V (εny + a)|un|
)
dy > , (.)

since c > . Now we prove that there exists a sequence (zn) ⊂ R
N and constants R,γ > 

such that

lim inf
n→∞

∫
BR(zn)

|un| dy≥ γ > . (.)

Indeed, if this is not true, then the boundedness of (un) in H(RN ) and a lemma due to
Lions [, Lemma I.] imply that un →  in Ls(RN ) for all  < s < ∗. Given δ > , we can
use (f), (f) and un ∈ Nεn to get

∫
RN

f (x,un)un dy ≤ δ

∫
RN

|un| dy +Cδ

∫
RN

|un|q dy.

Moreover,

∫
RN

(|∇un +V (εny + a)|un|
)
dy =

∫
RN

|un|∗
dy

as n→ ∞. Therefore

m = lim
n→∞

∫
RN

|un|∗
dy > , (.)

http://www.boundaryvalueproblems.com/content/2013/1/199
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and consequently (.) yields

c =
m

–
m
∗ =

m
N
,

i.e.,

m =Nc < SN/ (see (.)). (.)

However, recall the definition of S in (.),

m = lim
n→∞

∫
RN

(|∇un +V (εny + a)|un|
)
dy≥ S lim

n→∞

(∫
RN

|un|∗
dy

)/∗

= Sm/∗
,

equivalent to m ≥ SN/, contradicting (.). Thus, (.) holds. Using the idea of [, ],
along a subsequence as n → ∞, we may assume that

vn(y) := un(εny + a) ⇀ v �=  weakly in H(
R

N)
.

We now consider tn >  such that wn := tnvn ∈ Ma (see (.)). By a change of variable
x = εny + a, it follows that

c ≤ Ja(wn) = Ja(tnvn) ≤ sup
t>

Ja(tvn) ≤ sup
t>

ε–Nn Iεn (tun) + o() = ε–Nn Iεn (un) + o()

= c + o(). (.)

Hence Ja(wn) → c, from which it follows that wn �  in H(RN ).
Since (vn) and (wn) are bounded in H(RN ) and vn �  in H(RN ), the sequence (tn) is

bounded. Thus, up to a subsequence, tn → t ≥ . If t = , then ‖wn‖H(RN ) → , which
does not occur. Hence t > , and therefore the sequence (wn) satisfies

Ja(wn) → c,wn ⇀ w := tv �=  weakly in H(
R

N)
. (.)

For fixed v ∈ H(RN ), define

b(w) =
∫
RN

∇w∇vdy for all w ∈ H(
R

N)
.

By the Hölder inequality,

∣∣b(w)∣∣ ≤ |∇w||∇v| ≤ ‖w‖H(RN )‖v‖H(RN ).

Hence b ∈ H–, the dual space of H(RN ). Consequently, as n → ∞, wn ⇀ w in H(RN )
implies b(wn) → b(w), i.e.,

∫
RN

∇wn∇vdx =
∫
RN

∇w∇vdx + o(). (.)

Since wn converges weakly to w in H(RN ), wn is bounded in L∗ (RN ). Thus |wn|∗–wn is
bounded in L(∗)′ (RN ). It then follows that there is a subsequence of (wn), still denoted by

http://www.boundaryvalueproblems.com/content/2013/1/199
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(wn), such that |wn|∗–wn converges weakly to some w̃ in L(∗)′ (RN ). Next we will show
w̃ = |w|∗–w. Choose a sequence (Km)m≥ of open relatively compact subsets, with reg-
ular boundaries, of RN covering R

N , i.e., RN =
⋃

m≥Km. It is easy to see that, by com-
pact embedding, wn → w in Lq(Km) for any q < ∗. Hence wn → w a.e. on Km. Hence
|wn|∗–wn → |w|∗–w a.e. on Km. By the Brezis and Lieb lemma [], we conclude that
|wn|∗–wn → |w|∗–w strongly in L(∗)′ (Km). Thus w̃ = |w|∗–w a.e. on each Km, and then
the diagonal rule implies a.e. on R

N . Hence

∫
RN

|wn|∗–wnvdx =
∫
RN

|w|∗–wvdx + o(). (.)

Similarly, we have

∫
RN

V (a)wnvdx =
∫
RN

V (a)wvdx + o(). (.)

By (f) and (f),

∫
RN

∣∣f (x,wn)v
∣∣dx ≤ δ

∫
RN

|wn||v|dx+Cδ

∫
RN

|wn|q–|v|dx ≤ δ|wn||v| +Cδ|wn|q–q |v|q.

Hence when R is large enough, we get

∫
BcR(zn)∩RN

∣∣f (a,wn)v
∣∣dx = o().

Noting that wn → w in Lq(BR(zn)), ≤ q < ∗. Therefore we have

∫
BR(zn)∩RN

f (a,wn)vdx =
∫
BR(zn)∩RN

f (a,w)vdx + o().

Hence
∫
RN

f (a,wn)vdx =
∫
RN

f (a,w)vdx + o(). (.)

By (.)-(.), we derive that

–�w +V (a)w = |w|∗–w + f (a,w) in R
N , (.)

i.e., J ′a(w) = .
For any n ∈ N let us consider the measure sequence μn defined by

∫
RN

μn(dy) =
∫
RN

(|wn|∗
+ |wn| + |wn|q

)
dy.

We assume
∫
RN

μn(dy)→ l.

http://www.boundaryvalueproblems.com/content/2013/1/199
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By the concentration-compactness lemma [], there exists a subsequence of (μn) (de-
noted in the same way) satisfying one of the three following possibilities.
Compactness: There exists a sequence zn ∈ R

N such that for any δ >  there is a radius
R >  with the property that

lim
n→∞

∫
BR(zn)

μn(dy) ≥ l – δ.

Vanishing: For all R > ,

lim
n→∞

(
sup
z∈RN

∫
BR(z)

μn(dy)
)
= .

Dichotomy: There exists a number ã,  < ã < l, such that for any δ >  there is a number
R >  and a sequence (zn) with the following property: Given R′ > R there are non-negative
measures μ

n, μ
n such that

(i)  ≤ μ
n +μ

n ≤ μn,
(ii) supp(μ

n) ⊂ BR(zn), supp(μ
n) ⊂R

N \ BR′ (zn),
(iii) lim supn→∞(|ã – ∫

RN μ
n(dy)| + |(l – ã) –

∫
RN μ

n(dy)|) ≤ δ.
We are going to rule out the last two possibilities so that compactness holds. Our first

goal is to show that vanishing cannot occur. Otherwise,

‖wn‖H(RN ) =
∫
RN

|wn|∗
dy +

∫
RN

f (x,wn)wn dy

≤
∫
RN

|wn|∗
dy + δ

∫
RN

|wn| dy +Cδ

∫
RN

|wn|q dy→ .

Hence J(wn) → , contradicting c > .
Now for the harder part. Let η be a smooth nonincreasing cut-off function, defined in

[,∞), such that η =  if  ≤ t ≤ ; η =  if t ≥ ;  ≤ η ≤  and |η′(t)| ≤ . Also, let ηr(·) =
η( ·

r ). We define

ξ (t) =  – η(t),

a nondecreasing function on [,∞). Denote by ξr(·) = ξ ( ·
r ). We show now that dichotomy

does not occur. Otherwise there exists ã ∈ (, l) such that for some R′ > R → ∞ and zn ∈
R

N the function μn splits into μ
n and μ

n with the following properties:
∫
RN

μ
n(dy)→ ã,

∫
RN

μ
n(dy) → l – ã. (.)

If we denote

w
n = ηR(x – zn)wn(x), w

n = ξR′ (x – zn)wn(x),

(.) becomes
∫
RN

(∣∣w
n
∣∣∗

+
∣∣w

n
∣∣ + ∣∣w

n
∣∣q)dy→ ã,

∫
RN

(∣∣w
n
∣∣∗

+
∣∣w

n
∣∣ + ∣∣w

n
∣∣q)dy→ l – ã.

(.)

http://www.boundaryvalueproblems.com/content/2013/1/199
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Denote by �′ := BR′ (zn) \ BR(zn), then

 =
〈
J ′a(wn),χ�′wn

〉
=

∫
�′

(|∇wn| +V (a)|wn|
)
dy –

∫
�′

|wn|∗
dy –

∫
�′
f (a,wn)wn dy.

Using Dichotomy (iii), we get

∫
�′

μn(dy) =
∫
RN

μn(dy) –
∫
BR(zn)

μn(dy) –
∫
BcR′ (zn)

μn(dy)

≤
∫
RN

μn(dy) –
∫
BR(zn)

μ
n(dy) –

∫
BcR′ (zn)

μ
n(dy) → ,

which implies

∫
�′

|wn|∗
dy→ ,

∫
�′

|wn| dy→ ,
∫

�′
|wn|q dy→ .

Hence

∫
�′

(|∇wn| +V (a)|wn|
)
dy =

∫
�′

|wn|∗
dy +

∫
�′
f (a,wn)wn dy

≤
∫

�′
|wn|∗

dy + δ

∫
�′

|wn| dy +Cδ

∫
�′

|wn|q dy→ .

Now we observe that supp w
n ∩ supp w

n = ∅, therefore
∫
RN

(|∇wn| +V (a)|wn|
)
dy

=
∫
RN

(∣∣∇w
n
∣∣ +V (a)

∣∣w
n
∣∣)dy +

∫
RN

(∣∣∇w
n
∣∣ +V (a)

∣∣w
n
∣∣)dy + o(), (.)

∫
RN

|wn|∗
dy =

∫
RN

∣∣w
n
∣∣∗

dy +
∫
RN

∣∣w
n
∣∣∗

dy + o(), (.)
∫
RN

F(a,wn)dx =
∫
RN

F
(
a,w

n
)
dy +

∫
RN

F
(
a,w

n
)
dy + o(), (.)

and

∫
RN

f (a,wn)wn dy =
∫
RN

f
(
a,w

n
)
w
n dy +

∫
RN

f
(
a,w

n
)
w
n dy + o(), (.)

where o() →  as n→ ∞.
Recall that (wn) ⊂ Ma (see (.)), which implies

〈
J ′a(wn),wn

〉
=

∫
RN

(|∇wn| +V (a)|wn|
)
dy –

∫
RN

|wn|∗
dy –

∫
RN

f (a,wn)wn dy

= o(). (.)

http://www.boundaryvalueproblems.com/content/2013/1/199
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Then using w
n and w

n in place of wn, respectively, we get

〈
J ′a(wn),w

n
〉
=

∫
RN

(∣∣∇w
n
∣∣ +V (a)

∣∣w
n
∣∣)dy –

∫
RN

∣∣w
n
∣∣∗

dy –
∫
RN

f
(
a,w

n
)
w
n dy

= o(),

〈
J ′a(wn),w

n
〉
=

∫
RN

(∣∣∇w
n
∣∣ +V (a)

∣∣w
n
∣∣)dy –

∫
RN

∣∣w
n
∣∣∗

dy –
∫
RN

f
(
a,w

n
)
w
n dy

= o().

(.)

There exists tn >  such that tnw
n ∈ M, i.e.,

(
tn

) ∫
RN

(∣∣∇w
n
∣∣ +V (a)

∣∣w
n
∣∣)dy –

∫
RN

∣∣tnw
n
∣∣∗

dy

–
∫
RN

f
(
x, tnw


n
)
tnw


n dy = . (.)

By (f) and (f), f (a,wn)wn ≤ δ|wn| +Cδ|wn|q, we see tn cannot go zero, that is, tn ≥ t > .
If tn → ∞, by (.), (.) and (f), we get

∫
RN

∣∣w
n
∣∣∗

dy +
∫
RN

f
(
x,w

n
)
w
n dy =

∫
RN

(∣∣∇w
n
∣∣ +V (a)

∣∣w
n
∣∣)dy

=
∫
RN

|tnw
n|∗ + f (x, tnw

n)tnw
n

(tn)
dy→ ∞, (.)

since (f). By (.),

∫
RN

∣∣w
n
∣∣∗

dy +
∫
RN

f
(
x,w

n
)
w
n dy

≤
∫
RN

∣∣w
n
∣∣∗

dy + δ

∫
RN

∣∣w
n
∣∣ dy +Cδ

∫
RN

∣∣w
n
∣∣q dy

≤ C
∫
RN

(∣∣w
n
∣∣∗

+
∣∣w

n
∣∣ + ∣∣w

n
∣∣q)dy≤ C

(
ã + o()

)
, (.)

a contradiction. Thus  < t ≤ tn ≤ C. Assume that tn → t, we will show t = . By (.)
and (.), we have

o() =
(
tn

)∗–
∫
RN

∣∣w
n
∣∣∗

dy +
∫
RN

f (x, tnw
n)w

n
tn

dy –
∫
RN

∣∣w
n
∣∣∗

dy –
∫
RN

f
(
x,w

n
)
w
n dy

=
((
tn

)∗– – 
)∫

RN

∣∣w
n
∣∣∗

dy +
∫
RN

(
f (x, tnw

n)
tn

– f
(
x,w

n
))

w
n dy.

Hence by the Lebesgue dominated convergence theorem, we get

((
t

)∗– – 
)∫

RN

∣∣w∣∣∗
dy +

∫
RN

(
f (x, tw)

t
– f

(
x,w))w dy = .

http://www.boundaryvalueproblems.com/content/2013/1/199
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By (f), we have t = . Similarly, tn → t = . Using this together with (.), (.), (.)
and (.), we obtain

c + o() = Ja(wn) = Ja
(
w
n
)
+ Ja

(
w
n
)
+ o() = Ja

(
tnw


n
)
+ Ja

(
tnw


n
)
+ o() ≥ c + o().

Contradiction! Thus dichotomy does not occur.
With vanishing and dichotomy ruled out, we obtain the compactness of a sequence μn,

i.e., there exist zn ∈R
N and for each δ > , there exists R >  such that

∫
BcR(zn)

(|wn|∗
+ |wn| + |wn|q

)
dy≤ δ. (.)

Then (zn) must be bounded, for otherwise (.) would imply, in the limit n→ ∞,

∫
RN

(|w|∗
+ |w| + |w|q)dy ≤ Cδ (.)

for some positive constants C, independent of δ, which implies w ≡ , contrary to (.).
From the foregoing, it follows that there exist bounded nonnegative measures μ̃, ν̃ on

R
N such that |∇wn| ⇀ μ̃ weakly and |wn|∗

⇀ ν̃ tightly as n → ∞. Lemma I. in []
declares that there exist sequences (xj)⊂R

N
+ , (μ̃j), (ν̃j) ⊂ (,∞) such that

() μ̃ ≥ |∇w| +
∑
j∈J̃

μ̃jδxj ,

() ν̃ = |w|∗
+

∑
j∈J̃

ν̃jδxj ,

() μ̃j ≥ Sν̃/∗
j ,

(.)

where δxj denotes a Dirac measure, j ∈ J̃ . Take xj ∈ R
N
+ in the support of the singular part

of μ̃, ν̃ . We consider φ ∈ C∞
c (RN ) such that

φ =  on B(xj, ε), φ =  on B(xj, ε)c, |∇φ| ≤ /ε. (.)

Choosing the test function φwn, from 〈I ′ε(wn),φwn〉 → , we have

∫
RN

φμ̃(dx) +
∫
RN

φV (a)|w| dx –
∫
RN

φν̃(dx) –
∫
RN

φf (x,w)wdx

= lim
n→∞

∫
RN

∇wnwn∇φ dx ≤ C lim
n→∞

(∫
B(xj ,ε)

|wn| dx
)/

–––→
ε→

. (.)

This reduces to

μ̃j = ν̃j,

hence (.)() states

Sν̃/∗
j ≤ ν̃j,

http://www.boundaryvalueproblems.com/content/2013/1/199
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i.e.,

ν̃j =  or ν̃j ≥ SN/.

Consequently,

ν̃ ≥ |w|∗
+ SN/

∑
j∈J

δxj ,

and hence
∫
RN

|wn|∗
dx→

∫
RN

ν̃(dx)≥
∫
RN

|w|∗
dx + SN/Card J , (.)

which implies that the set J is at most finite. Here Card J is the cardinal numbers of set J .
Hence

Ja(wn) –


〈
J ′a(wn),wn

〉
=

(


–


∗

)∫
RN

|wn|∗
dy +

∫
RN

(
f (a,wn)wn – F(a,wn)

)
dy

≥ 
N

∫
RN

|wn|∗
dy, (.)

since

f (x, t)t ≥ θF(t)≥ F(t) > .

When n is large enough, recall c < 
N S

N/ (see (.)), together with (.) and (.), we
obtain


N
SN/ > c ≥ 

N

∫
�

|w|∗
dx +


N

∑
j∈J

νj ≥ 
N
SN/,

a contradiction. Therefore J is empty, that is, |wn|∗
∗ → |w|∗

∗ as n→ ∞. By the Brezis and
Lieb lemma [] again, we get

|wn –w|∗
∗ → . (.)

Equation (.) and compact embedding theorem imply

∫
RN

f (a,wn)wn dx =
∫
RN

f (a,w)wdx + o(). (.)

This together with (.), (.) and (.) allows us to deduce easily

‖wn‖H(RN ) = ‖w‖H(RN ) + o().

Since H(RN
+ ) is a uniformly convex Banach space, hence

‖wn –w‖H(RN ) → . (.)

http://www.boundaryvalueproblems.com/content/2013/1/199
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From (.), (.) and (.), we can obtain

c = lim
n→∞ Ja(wn) = Ja(w), (.)

i.e., w is the ground state solution of (.) in view of (.). The proof of Proposition . is
complete. �

4 Proof of Theorem 1.1
Proposition . Suppose f satisfies (f)-(f). Then Iε satisfies the (PS)c-condition for all
c < εNSN//N , that is, every sequence (un) inHε such that Iε(un) → c, I ′ε(un) → , as n → ∞,
possesses a convergent subsequence.

Proof Suppose that (un) is a sequence in Hε such that Iε(un) → c < εNSN//N , I ′ε(un) → ,
as n→ ∞. Using (f), by a change of variable x = εy, we obtain that

c + o()‖un‖ε ≥ Iε(un) –

θ

〈
Iε(un),un

〉

=
(


–

θ

)∫
RN

(
ε|∇un| +V (x)|un|

)
dx +

(

θ
–


∗

)∫
RN

|un|∗
dx

+

θ

∫
RN

(
f (x,un)un – θF(x,un)

)
dx

≥
(


–

θ

)
‖un‖ε =

(


–

θ

)
‖un‖. (.)

This implies that (un) is bounded in H. Therefore we may assume un ⇀ u in H and
un → u a.e. Let un = vn + u. Then

∫
RN

(|∇un| +V (εy)|un|
)
dy

=
∫
RN

(|∇vn| +V (εy)|vn|
)
dy +

∫
RN

(|∇u| +V (εy)|u|)dy + o(),
∫
RN

f (x,un)un dy =
∫
RN

f (x, vn)vn dy +
∫
RN

f (x,u)udy + o(),
∫
RN

F(x,un)dy =
∫
RN

F(x, vn)dy +
∫
RN

F(x,u)dy + o(),

and by the Brezis-Lieb lemma [],

∫
RN

|un|∗
dy =

∫
RN

|vn|∗
dy +

∫
RN

|u|∗
dy + o().

For convenience, we denote by

I(u) =



∫
RN

(|∇u| +V (εy)|u|)dy – 
∗

∫
RN

|u|∗
dy –

∫
RN

F(x,u)dy (.)

and

〈
I ′(u), v

〉
=

∫
RN

(∇u∇v +V (εy)uv – |u|∗–uv – f (x,u)v
)
dy. (.)

http://www.boundaryvalueproblems.com/content/2013/1/199
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It is clear that

Iε(u) = εNI(u),
〈
I ′ε(u), v

〉
= εN

〈
I ′(u), v

〉
. (.)

It is easy to verify that 〈I ′(u),u〉 = . Hence we have

o() =
〈
I ′(un),un

〉
=

〈
I ′(vn), vn

〉
+

〈
I ′(u),u

〉
+ o() =

〈
I ′(vn), vn

〉
+ o(),

and thus

lim
n→∞

∫
RN

(|∇vn| +V (x)|vn|
)
dy = lim

n→∞

∫
RN

|vn|∗
dy =: �,

since
∫
RN f (|vn|)|vn| dy →  by (f) and (f). If � = , then ‖vn‖ → , hence ‖vn‖ε =

εN‖vn‖ →  as n → ∞, and we can obtain the desired conclusion. Hence it remains to
show that � = . By a change of variable, from

I(vn) = I(vn) –


〈
I ′(vn), vn

〉 ≥ 
N

∫
RN

|vn|∗
dy≥ 

and

c = I(un) + o() = I(vn) + I(u) + o() ≥ I(vn) + o(),

we get

εN�

N
≤ c <

εNSN/

N
,

i.e.,

� < SN/. (.)

By the Sobolev inequalities,

(∫
RN

|vn|∗
dx

)/∗

≤ S–
∫
RN

(|∇vn| +V (y)|vn|
)
dy.

Letting n → ∞, we get �/
∗ ≤ S–�, so either � ≥ SN/ which contradicts (.) or � = .

�

Let ι >  be fixed. Let η be a smooth nonincreasing cut-off function, defined in [,∞),
such that η =  if  ≤ t ≤ ι; η =  if t ≥ ι;  ≤ η ≤  and |η′(t)| ≤ C for some C > . For any
a ∈ 	, let

ψε(a)(x) = η
(|x – a|)w

(
x – a

ε

)
,

http://www.boundaryvalueproblems.com/content/2013/1/199
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where w is the positive ground state of (.). We may assume that tε >  is the unique
positive number such that

max
t≥

Iε
(
tψε(ξ )(x)

)
= Iε

(
tεψε(ξ )(x)

)
.

Let h(ε) be any positive function tending to  as ε → , we define the sublevel

Ñε :=
{
u ∈ Nε : Iε(u) ≤ εN

(
c + h(ε)

)}
. (.)

By Lemma. below, Ñε is not empty for ε sufficiently small. By noticing that tεψε(ξ ) ∈ Nε ,
we can define φε : ∂� → Ñε as

φε := tεψε(ξ ).

Lemma . Uniformly in a ∈ 	, we have

lim
ε→

ε–NIε
(
φε(a)

)
= c. (.)

Proof Let a ∈ 	. Computing directly, we have

∥∥ψε(a)(x)
∥∥

ε

=
∫
RN

(
ε

∣∣∇ψε(a)(x)
∣∣ +V (x)

∣∣ψε(a)(x)
∣∣)dx

=
∫
RN

(
ε

∣∣∣∣w
(
x – a

ε

)
∇η

(|x – a|) + 
ε
η
(|x – a|)∇w

(
x – a

ε

)∣∣∣∣


+V (x)
∣∣∣∣η(|x – a|)w

(
x – a

ε

)∣∣∣∣
)

dx

=
∫
RN

(
η(|x – a|)

(∣∣∣∣∇w
(
x – a

ε

)∣∣∣∣


+V (x)
∣∣∣∣w

(
x – a

ε

)∣∣∣∣
))

dx

+
∫
RN

(
ε

∣∣∇η
(|x – a|)∣∣

∣∣∣∣w
(
x – a

ε

)∣∣∣∣


+ εη
(|x – a|)w

(
x – a

ε

)
∇η

(|x – a|)∇w
(
x – a

ε

))
dx

=: I + I. (.)

By a change of variable y = x–a
ε
, we obtain

I = εN
∫
RN

η
(

εy
ρ

)(∣∣∇w(y)
∣∣ +V (εy + a)

∣∣w(y)∣∣)dy

= εN
(∫

RN

(|∇w| +V (a)w)dy + o()
)

as ε → , (.)

http://www.boundaryvalueproblems.com/content/2013/1/199
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uniformly for a ∈ 	.

I = εN
∫
RN

(
ε

∣∣∣∣∇η

( |εy|
ρ

)∣∣∣∣


ω(y) + εη
( |εy|

ρ

)
ω(y)∇η

( |εy|
ρ

)
∇ω(y)

)
dy

≤ εN+
∫

{y:ρ/ε≤|y|≤ρ/ε}
C

∣∣ω(y)∣∣ dy

+ εN+
∫

{y:ρ/ε≤|y|≤ρ/ε}
C

∣∣ω(y)∣∣∣∣∇ω(y)
∣∣dy. (.)

By the exponential decay of ω, we get

I = εN
(
o()

)
as ε →  (.)

uniformly for a ∈ 	. Therefore, in the limit that ε is very small, thanks to (.) (.) and
(.), we find

∥∥ψε(a)(x)
∥∥

ε
= εN

(∫
RN

(|∇w| +V (a)w)dy + o()
)
. (.)

On the other hand, following the idea of [, ], from 〈I ′ε(tεψε(ξ )(x)), tεψε(ξ )(x)〉 = , by
the change of variables y := (x – ξ )/ε, we get

∥∥tεψε(ξ )(x)
∥∥

ε
=

∫
RN

∣∣tεψε(ξ )(x)
∣∣∗

dx +
∫
RN

f
(
x, tεψε(ξ )(x)

)
tεψε(ξ )(x)dx

= εN
(∫

RN

∣∣tεηρ(εy)w(y)
∣∣∗

dy

+
∫
RN

f
(
x, tεηρ(εy)w(y)

)
tεηρ(εy)w(y)dy

)
, (.)

ε–N
∥∥ψε(ξ )(x)

∥∥
ε
= |tε|∗–

∫
RN

∣∣ηρ(εy)w(y)
∣∣∗

dy

+
∫
RN

f (x, tεηρ(εy)w(y))
tε

ηρ(εy)w(y)dy

→ ∞ as tε → ∞, (.)

which contradicts (.). Thus, up to a subsequence, tε → t ≥ .
Since f has subcritical growth and tεψε(ξ ) ∈ Nε , it follows that t > . Thus, we can take

the limit in (.) to obtain

∫
RN

∣∣∇(tw)
∣∣ + |tw| dy =

∫
RN

|tw|∗
dy +

∫
RN

f (a, tw)twdy, (.)

from which it follows that tw ∈ Ma. Since w also belongs to Ma, we conclude that t = .
This and Lebesgue’s theorem imply that

∫
RN

∣∣tεψε(ξ )
∣∣∗

dx = εN
(∫

RN
|w|∗

dy + o()
)

(.)

http://www.boundaryvalueproblems.com/content/2013/1/199


Liu and Zhao Boundary Value Problems 2013, 2013:199 Page 18 of 20
http://www.boundaryvalueproblems.com/content/2013/1/199

and
∫

�

F
(
x, tεψε(a)

)
dx = εN

(∫
RN

F(a,w)dy + o()
)

(.)

uniformly for a ∈ 	. Noting tε → , from (.), (.) and (.), we have

ε–NIε
(
φε(ξ )

)
=



∫
RN

(|∇w| +V (a)w)dy + 
∗

∫
RN

|w|∗
dy +

∫
RN

F(a,w)dy + o()

= c + o().

Thus (.) is proved. �

Let β(u) be the center of mass of u ∈ Nε in terms of the L norm:

β(u) :=
∫
RN x|u| dx∫
RN |u| dx , ∀u ∈ Nε .

Lemma . Let εn →  as n→ ∞. Then for un ∈ Ñεn ,

β(un) → a, as n → ∞,

uniformly for a ∈ 	.

Proof By change of variable x = εny + a, we have

β(un) =
∫
RN x|un| dx∫
RN |un| dx =

∫
RN (εny + a)|vn| dy∫

RN |vn| dy = a + εn

∫
RN y|vn| dy∫
RN |vn| dy

= a + εn

∫
RN y|tnvn| dy∫
RN |tnvn| dy .

By Proposition .,wn = tnvn converges strongly inH(RN ) tow, which is a positive ground
state solution of equation (.). Thanks to the exponential decay ofw (see (.)), we obtain
β(un) → a ∈ 	 as n→ ∞. This completes the proof of Lemma .. �

Proof of Theorem . By Proposition ., Iε satisfies the (PS)c-condition for all c <
εNSN//N . Now let us choose a function h(ε) >  such that h(ε) →  as ε →  and such
that εN (c + h(ε)) < εNSN//N is not a critical level for Iε . For such h(ε), let us introduce
the set Ñε ⊂ Nε as in (.). Then the standard Ljusternik-Schnirelmann theory implies
that Iε has at least cat(Ñε) critical points on Ñε (also see []).
By Lemma ., we can assume that for any δ > , there exists εδ >  such that β(Ñε) ⊂ 	δ

for any ε < εδ . For such ε, by Lemma ., we have Iε(φε(a)) ≤ εN (c + h(ε)) uniformly for
a ∈ 	, thus φε(	) ⊂ Ñε . Recall tε → , calculating directly, we get

β
(
φε(a)

)
=

∫
RN x|tεψε(a)(x)| dx∫
RN |tεψε(a)(x)| dx

=
∫
RN x|η(|x – a|)w( x–a

ε
)| dx∫

RN |η(|x – a|)w( x–a
ε
)| dx + o()
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=
∫
RN (εy + a)|η(|εy|)w(y)| dx∫

RN |η(|εy|)w(y)| dx + o()

= a +
∫
RN εy|η(|εy|)w(y)| dx∫
RN |η(|εy|)w(y)| dx = a + o(),

as ε →  uniformly for a ∈ 	. Hence the map β ◦ φε is homotopical equivalence to the
inclusion i : 	 → 	δ for ε small enough. We denote Ñ +

ε = Ñε ∩ {u ∈ Nε : u ≥  in R
N }.

It is easy to verify that cat(Ñ +
ε , Ñε) ≥ cat(	,	δ) and cat(Ñ –

ε , Ñε) ≥ cat(	,	δ) (cf. [,
Lemma .]). Hence we have

cat(Ñε) = cat
(
Ñ +

ε , Ñε

)
+ cat

(
Ñ –

ε , Ñε

) ≥  cat(	,	δ).

Next we show that if u is a critical point of Iε satisfying Iε(u) ≤ εN (c +h(ε)), then u cannot
change sign. Indeed, if u = u+ +u– with u+ �=  and u– �= , then from 〈I ′ε(u),u〉 = , we have

〈
I ′ε

(
u+

)
,u+

〉
= ,

〈
I ′ε

(
u–

)
,u–

〉
= .

By change of variable x = εny + a, we get

〈
J ′a

(
u+

)
,u+

〉
= ,

〈
J ′a

(
u–

)
,u–

〉
= , as εn → ,

i.e.,

u+,u– ∈ Ma.

Also, noting

Iε(u) = εNJa(u), as εn → .

Hence

c + h(ε) ≥ Ja(u) = Ja
(
u+

)
+ Ja

(
u–

) ≥ G(a)≥ c,

which is a contradiction. Therefore there exist at least cat(	,	δ) nonzero critical points
of Iε and thus cat(	,	δ) solutions of equation (.). �
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