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Abstract
The present analysis considers the steady magnetohydrodynamic (MHD) laminar
boundary layer flow of an incompressible electrically conducting fluid caused by a
continuous moving wedge in a parallel free stream with a variable induced magnetic
field parallel to the wedge walls outside the boundary layer. Using a similarity
transformation, the governing system of partial differential equations is first
transformed into a system of ordinary differential equations in the form of a two-point
boundary value problem (BVP) and then solved numerically using a finite difference
scheme known as the Keller box method. Numerical results are obtained for the
velocity profiles and the skin friction coefficient for various values of the moving
parameter λ, the wedge parameter β , the reciprocal magnetic Prandtl number α and
the magnetic parameter S. Results indicate that when the wedge and the fluid move
in the opposite directions, multiple solutions exist up to a critical value λc of the
moving parameter λ, whose value depends on the values of S and β .
MSC: 34B15; 76D10
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1 Introduction
Magnetohydrodynamics (MHD) is a subject that studies the behavior of an electrically
conducting fluid in the presence of an electromagnetic field with applications in many
different fields of engineering as well as geophysics, astrophysics, manufacturing, etc. The
subject of MHD has been applied, for example, in problems associated with the confine-
ment of plasma by magnetic fields and in projects involving thermonuclear generation of
energy. In recent years it has beenwidely used inmetallurgy industries involving sheet-like
materials such as production of paper, polymer sheets and wire drawing and in horizontal
continuous casting of hollow billets. For examples of these applications, see Li et al. []
and Yan et al. []. Historically, the study of the hydrodynamic behavior of the boundary
layer on a semi-infinite flat plate in the presence of a uniform transversemagnetic field has
been first considered by Rossow []. Since then, the study of MHD flow and heat transfer
fields past moving surfaces has drawn considerable attention with variations in types of
geometrical surfaces and types of fluids.
The steady laminar flow of a viscous and incompressible fluid passing a fixed wedge was

first analyzed in the early s by Falkner and Skan [] to illustrate the application of
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Prandtl’s boundary layer theory, in which a similarity transformation was used to reduce
the boundary layer equations to an ordinary differential equation known as the Falkner-
Skan equation. The Falkner-Skan equation also represents the boundary layer flow with
stream-wise pressure gradient. The general cases with β =  were numerically studied by
Fang [] andWeidman et al. [] independently. There aremany references on the solutions
of Falkner-Skan equations; for example, see Hartree [], Hastings [], Brodie and Banks
[], Pantokratoras [], Alizadeh et al. [], Yao [], andAbbasbandy andHayat []. Simi-
larity solutions for pressure gradient driven flow over a stretching boundarywere analyzed
by Riley and Weidman [] for the case of external velocity and boundary velocity being
proportional to the same powers of the downstream coordinate. Very interesting and ex-
tensive results were reported demonstrating a rich variety of solutions available, including
the existence of multiple solutions, and an exact solution was also presented for β = –.
Fang and Zhang [] studied a special case of the Falkner-Skan equation with β = – in
the presence of wall suction and injection. An exact solution was presented for the bound-
ary conditions with both wall mass transfer and wall movement, with different solution
behavior identified in different solution regions. On the other hand, Ishak et al. [] con-
sidered the steady MHD boundary layer flow in a conducting fluid flowing transverse to a
variable magnetic field along a moving wedge in a free stream. The results reported were
consistent with those found by Riley and Weidman [] and with earlier studies by the
same authors Ishak et al. [, ]. More recent studies on similar problems were done by
Van Gorder and Vajravelu [], Postelnicu and Pop [] and Parand et al. [].
The presentwork aims to study the boundary layer flowover amovingwedge in a parallel

free stream of an electrically conducting fluid with the inducedmagnetic field. It considers
an extension of the results reported by Riley andWeidman [] and Ishak et al. [] on the
flow characteristics of a moving wedge in a parallel free stream. Both studies reported
the existence of multiple solutions when the fluid and the wedge move in the opposite
directions within a specific range of moving parameter λ and a critical value λc beyond
which the solution is non-existent. The present study considers the corresponding MHD
flow of the paper by Ishak et al. [], but with the induced magnetic field, and investigates
how this magnetic field affects the flow and the critical value λc. The induced magnetic
field is assumed to be applied parallel to the wedge walls at the outer edge of the boundary
layer. Such an inducedmagnetic field has been also considered byDavies [], Apelblat [,
], Kumari et al. [], Takhar et al. [] and more recently by Kumari and Nath []. To
obtain the solutions, the governing partial differential equations are first transformed into
ordinary differential equations using a similarity transformation. The ordinary differential
equations obtained are then solved numerically by a very efficient finite difference scheme
known as the Keller box method for some values of the selected parameters. The effect of
the induced magnetic field on the flow field for different values of the wedge parameter β

is included in the analysis. Particular cases of the present results are compared with those
reported by Riley and Weidman [] and Ishak et al. [, ].

2 Basic equations
Consider the steady laminar flow of an incompressible electrically conducting fluid caused
by a continuous moving wedge in a parallel free stream with a variable induced magnetic
field applied parallel to the wedge walls outside the boundary layer (inviscid flow). Follow-
ing Apelblat [] or Cowling [], the basic equations for the flow of a viscous, electrically
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conducting, incompressible fluid can be written in a vectorial form as follows:

∇ ·V = , ∇ ·H = , ()

(V · ∇)V –
μ

πρ
(H · ∇)H = –


ρ

∇P + ν∇V, ()

∇ × (V×H) + ς∇H =  ()

where V is the fluid velocity vector, H is the induced magnetic field vector, P = (p +
μ|H|/π ) is the magneto-hydrodynamic pressure, p is the fluid pressure, μ, ν , σ , ρ and
ς = (πμσ )– denote the magnetic permeability, kinematic viscosity, electric conductiv-
ity, fluid density and magnetic diffusivity, respectively. We take the Cartesian coordinates
x measured along the surface of the wedge and y normal to it, respectively. If (u, v) and
(H,H) are the velocity and magnetic components in (x, y) directions, respectively, sub-
ject to the boundary layer approximations, equations ()-() for the problem under con-
sideration can be reduced to

∂u
∂x

+
∂v
∂y

= ,
∂H

∂x
+

∂H

dy
= , ()

u
∂u
∂x

+ v
∂u
∂y

–
μ

πρ

(
H

∂H

∂x
+H

∂H

∂y

)
=Ue

dUe

dx
–

μHe

πρ

dHe

dx
+ ν

∂u
∂y

, ()

u
∂H

∂x
+ v

∂H

∂y
–H

∂u
∂x

–H
∂u
∂y

= ς
∂H

∂y
()

where Ue(x) and He(x) are the x-velocity and magnetic field at the edge of the boundary
layer, respectively.We assume here thatUe(x) =U∞xm andHe(x) =Hxm, whereU∞ is the
constant velocity at the outer edge of the boundary layer and H is the value of He(x) at
x = . Further,m is also a constant, which varies in the range ≤ m≤ .
We will take the boundary conditions of equations ()-() to be

v = , u = uw(x) =Uwxm, H =H =  at y = ,

u =Ue(x) =U∞xm, H =He(x) =Hxm as y → ∞
()

where Uw is a positive or a negative constant. By applying the similarity variables

ψ =
[
νxUe(x)
(m + )

]/

f (η), H =Hxmg ′(η), η =
[
(m + )Ue(x)

νx

]/

y, ()

equations ()-() can be reduced to the following system of nonlinear ordinary differential
equations:

f ′′′ + ff ′′ + β
(
 – f ′) = S

[
gg ′′ + β

(
 – g ′)], ()

αg ′′′ + fg ′′ – f ′′g =  ()

subject to the boundary conditions () which are now transformed to

f () = , f ′() = λ, f ′(∞) = ,

g() = , g ′() = , g ′(∞) = 
()
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where primes denote differentiation with respect to η. Further, λ is the moving parameter,
α is the reciprocal magnetic Prandtl number, β is the wedge parameter and S, the ratio
of the magnetic to dynamic pressure, is the magnetic parameter. These parameters are
defined as

λ =
Uw

U∞
, α =


πνμσ

, β =
m
m + 

, S =
μH

/π
ρU∞/

. ()

Wenotice that different values of β characterize a number ofmain-streamflows. For β = ,
equations () and () are reduced to the MHD Blasius problem. The values β =  and
 < β <  are equivalent to the flow past a wedge placed symmetrically in a stream. For
MHD boundary layers, we take the values of the parameters S and α to be in the range
S ≤  and α ≥ ; see Davies [] and Kumari et al. []. This is the same range of mag-
netic parameter adopted by Takhar et al. [] and several earlier researchers investigating
similar problems. It is also consistent with the existence of the steady-state solution of the
‘super Alfven’ flow.
The physical quantity of interest is the skin friction coefficient which is defined as

Cf =
τw

ρU
e
, ()

where the wall shear stress is given by τw = μ(∂u/∂y)y=. Using the similarity variables (),
we obtain

Re/x Cf =
[
( +m)

]/f ′′() ()

where Rex =Ue(x)x/ν is the local Reynolds number.
We also notice that for λ =  the present problem corresponds to the MHD boundary

layer flow over a static wedge, which has been considered by Apelblat [], in which the
MHD wedge problem was solved using the Laplace transform method to give an infinite
series approximation solution for f ′′() and g ′′(). On the other hand, it may be noted
that for S =  (without a magnetic field), equation () reduces to that of Ishak et al. [].
Therefore, as S =  implies the absence of a magnetic field, equation () governing the
induced magnetic field is no longer necessary.

3 Results and discussion
Nonlinear ordinary differential equations () and () subject to the boundary conditions
() form a two-point boundary value problem (BVP) and are solved numerically using the
Keller box method as described in the book by Cebeci and Bradshaw []. In this method,
the solution is obtained using the following four steps:

(i) Reduce equations () and () to a first-order system.
(ii) Write the difference equations using centered differences.
(iii) Linearize the resulting algebraic equations by Newton’s method and write them in

the matrix-vector form.
(iv) Solve the linear systems by the block-tridiagonal-elimination technique.
The numerical method is then programmed using MATLAB Ra software. To ob-

tain a numerical solution, it is required to make an appropriate guess for the step size of η,
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Table 1 Values of f ′′(0) for λ = 0, S = 0 and various β

β Rajagopal et al. [30] Kuo [31] Ishak et al. [16] Present

0.0 0.469600 0.4696 0.4696
0.1 0.587035 0.587880 0.5870 0.5871
0.3 0.774755 0.775524 0.7748 0.7748
0.5 0.927680 0.927905 0.9277 0.9277
1.0 1.232585 1.231289 1.2326 1.2326

Table 2 Values of f ′′(0) for λ = –0.4, β = 0.05

Riley andWeidman [14] Present

First solution f ′′(0) = 0.3862 f ′′(0) = 0.3864
Second solution f ′′(0) = 0.1396 f ′′(0) = 0.1396
Third solution f ′′(0) = 0.1001 f ′′(0) = 0.1000

�η and the thickness of the boundary layer η∞ (typically a finite number between  to 
is chosen). Beginning with some initial guess value of η∞, equations () and () subject to
the boundary conditions () together with some particular set of parameters are solved
to obtain the velocity profiles f ′(η) and the induced magnetic profiles g ′(η). The solution
process is repeated until further changes (increment) in η∞ do not lead to any changes in
the values of f ′′() and g ′′() or, in other words, the results are independent of the value
of η∞. The initial step size employed is h = �η = .. The skin friction coefficient f ′′(),
the velocity profiles f ′(η), the induced magnetic profiles g ′(η) and the rate of change of
the induced magnetic field, which we will henceforth call the induced magnetic gradient,
g ′′() are obtained for various values of the governing parameters, namely the moving pa-
rameter λ, the wedge parameter β and the magnetic parameter S. In order to assess the
accuracy of the numerical method used, we have compared some of our results for the
non-magnetic case (S = ) with those obtained by Riley and Weidman [], Rajagopal et
al. [], Ishak et al. [] and Kuo []. Table  presents values of the skin friction coeffi-
cient f ′′() for λ =  and various values of the wedge parameter β for the non-magnetic
case (S = ). Table  compares the values of the skin friction f ′′() for the set of triple solu-
tions computed when λ = –., β = . with those obtained by Riley andWeidman [].
We observed that the results obtained for the present study are found to be in very good
agreement with those obtained by earlier researchers. Therefore, the developed code can
be used with confidence for the magnetic case ( < S < ).
Variations of the velocity profiles f ′(η) and the induced magnetic profiles g ′(η) with the

moving parameter λ, the wedge parameter β , the magnetic parameter S and the recip-
rocal magnetic Prandtl number α are presented in Figures  to . All the sample profiles
satisfy the far field boundary conditions () asymptotically, thus supporting the numeri-
cal results obtained. From these figures, we see that as the values of λ and β increase, both
the fluid velocity f ′(η) and the inducedmagnetic field g ′(η) also increase while the velocity
boundary layer thickness decreases. In contrast, as the values of S and α increase, the fluid
velocity and the induced magnetic decrease while the velocity boundary layer thickness
increases. We also notice that the effect of the reciprocal magnetic Prandtl number α is
more pronounced on g ′(η) compared to f ′(η).
Figure  presents the variation of the skin friction coefficient f ′′() as a function of λ for

various values of S when the wedge parameter and reciprocal magnetic Prandtl number
are fixed at β = . and α = , respectively. It was found that for all values of the magnetic
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Figure 1 Variation of velocity profiles f ′(η) and induced magnetic profiles g′(η) with the moving
parameter λ.

Figure 2 Variation of velocity profiles f ′(η) and induced magnetic profiles g′(η) with the wedge
parameter β .

parameter S, with  ≤ S < , the solution is unique for all values of λ ≥ λc, where λc is the
minimum value of λ for which the solution exists. The critical value |λc| decreases as the
value of S increases. In our calculation for the case β = ., the solution stops to exist when
the value of the induced magnetic gradient reaches g ′′() = . As is evident from Figure ,
the value of the skin friction coefficient f ′′() also decreases as the value of the magnetic
parameter S increases. Furthermore, this decrease becomes more rapid for higher values
of S.
Figure  presents the variation of the skin friction coefficient f ′′() and the induced

magnetic gradient g ′′() as a function of λ for various values of the magnetic parame-
ter S when the wedge parameter is fixed at β = .. The figure indicates that for all values
of S ( ≤ S < ), the solution is unique for all values of λ ≥ , while dual solutions exist
for some range of values of λc ≤ λ < . Furthermore, the skin friction coefficient f ′′(),
the induced magnetic gradient g ′′() and the critical value |λc| decrease as the value of S
increases. As evident from Table , the critical value λc for β =  and β =  in the non-
magnetic case (S = ) that we computed in this study shows an excellent agreement with
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Figure 3 Variation of velocity profiles f ′(η) and induced magnetic profiles g′(η) with the magnetic
parameter S.

Figure 4 Variation of velocity profiles f ′(η) and induced magnetic profiles g′(η) with the reciprocal
magnetic Prandtl number α.

previously reported result by Klemp and Acrivos [] and Hussaini et al. []. The case of
β =  corresponds to the flat plate, while β =  refers to the stagnation point flow.
Figure  shows the velocity profiles f ′(η) at the critical values of λ (= λc), prior to separa-

tion, for various values of S when β = .. We observe that as the value of S increases, the
critical value |λc|, the inducedmagnetic gradient g ′′() and the skin friction f ′′() decrease,
thus supporting our previous observation from Figure . We also notice that the induced
magnetic gradient g ′′() varies almost linearly with the moving parameter λ, with most
of the second solution having a very small value of |g ′′()| < –. Figure  shows velocity
f ′(η) and induced magnetic field g ′(η) profiles supporting the existence of a dual solution
when β = ., S = . and λ = –..
Figure  illustrates the variation of the skin friction coefficient f ′′() and the induced

magnetic gradient g ′′() as a function of λ for various values of the magnetic parameter
S when the wedge parameter is fixed at β = .. The figure indicates that for all values

http://www.boundaryvalueproblems.com/content/2013/1/20
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Figure 5 Skin friction coefficient f ′′(0) as a function of λ for various values of Swhen β = 0.5, α = 1.

Figure 6 Skin friction coefficient f ′′(0) and induced magnetic gradient g′′(0) as a function of λ for
various values of Swhen β = 0.7, α = 1.

Table 3 Values of λc for different values ofmwhen S = 0

β Klemp and
Acrivos [32]

Hussaini et al. [33] Riley and
Weidman [14]

Ishak et al. [16] Present

0 –0.3541 –0.3541078 –0.3541 –0.3541 –0.35492
1 –1.246 –1.2466 –1.2466

of S ( ≤ S < ), the solution is unique for all values of λ ≥ , while triple solutions exist
for some range of values of λc ≤ λ < . Similar to the previous considered cases, the skin
friction coefficient f ′′(), the induced magnetic gradient g ′′() and the critical value |λc|
also decrease as the value of S increases. Here, we also found that for the second and
third solutions, the values of the induced magnetic gradient are also usually very small
|g ′′() < –|.
Figure  presents the variation of the skin friction coefficient f ′′() as a function of λ for

various values of the wedge parameter β when the magnetic parameter is fixed at S = ..
Here the value of the reciprocal magnetic Prandtl number is also fixed at α = . The re-
sult exhibits similar characteristics as those obtained in the non-magnetic case (S = )
reported by Riley and Weidman []. We can see that the value of f ′′() increases as β

increases, and there is a critical value λc of the moving parameter beyond which the sim-
ilarity solutions do not exist. The magnitude of the critical value |λc| also increases as the

http://www.boundaryvalueproblems.com/content/2013/1/20
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Figure 7 Velocity profiles at critical values λ = λc for various values of Swhen β = 0.7.

Figure 8 Velocity profile f ′(η) and induced magnetic profile g′(η) for (a) the first and (b) the second
branch of solutions when β = 0.7, S = 0.3 and λ = –0.85.

wedge parameter β increases. Figure  also indicates a rich variety of solutions depending
on the value of the wedge parameter β . Following Riley and Weidman [] for the non-
magnetic case (S = ), we draw particular attention to the following interesting features of
the solution set in the presence of themagnetic field with S = .. For . < β ≤ , there is a
unique solution for λ ≥  and dual solutions for some range of λc < λ < ; for . < β ≤ .,
the solution is unique for all λ ≥ λc; for  ≤ β ≤ ., triple solutions are available for some
range of values of the parameter λ. To be more specific, our computation shows that for
β = ., a unique solution has been found for the range –. ≤ λ ≤ –. and
λ ≥ –., while triple solutions have been found for the range –. ≤ λ ≤ –..
This result is qualitatively consistent with the result reported by Riley and Weidman
[], where triple solutions were found for  < β < ., a unique solution for all λ when
. < β < . and dual solutions for some range of λ when . < β < . We mention here
that Riley and Weidman [] reported that for the non-magnetic case (S = ), all solution
curves for β >  have the point (, ) as a limit point. In the present study, our computation
shows that the solution curves terminate near the point (–., ), as it is evident from

http://www.boundaryvalueproblems.com/content/2013/1/20
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Figure 9 Skin friction coefficient f ′′(0) and induced magnetic gradient g′′(0) as a function of λ for
various values of Swhen β = 0.03, α = 1.

Figure 10 Skin friction coefficient f ′′(0) as a function of λ for various values of β when S = 0.3, α = 1.

Figure . Riley andWeidman [] explained the significance of this limit point in terms of
the ‘edge’ ηe of the boundary layer. Further, the value of ηe increases as f ′′() decreases,
until the limit point is approached, ηe = ∞. We expect this limit point to move further
right if the value of the parameter S is increased. Figures , ,  present samples of ve-
locity profiles and induced magnetic profiles supporting the existence of triple solutions
for β = , β = . and β = ., respectively.
Figure  shows the variation of the inducedmagnetic gradient g ′′() as a function of the

moving parameter λ with the wedge parameter β . We observe that the induced magnetic
gradient g ′′() increases as the wedge parameter β increases for smaller values of λ but
varies very little with β for larger values of λ.
Following the convention adopted by earlier researchers, we define the first two upper

branches of solutions as those for which f ′′() is greater for a given value of β , while the
third branch is that with the smallest value of f ′′(). We notice that the velocity profiles
f ′(η) for the first two upper branches of solutions exhibit the same monotonic behavior.
The boundary layer for the first branch is usually very thin and the velocity profile f ′(η)
rapidly attains the value f ′(∞) = . In general, the third branch of solutions usually in-
volves a much larger boundary layer thickness compared to the other two branches. It is
usually characterized by starting off with a rather small value of f ′′() > , with a non-
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Figure 11 (a) Velocity profiles f ′(η) and (b) induced magnetic profiles g′(η) showing the existence of
triple solutions when β = 0, S = 0.3 and λ = –0.107.

Figure 12 (a) Velocity profiles f ′(η) and (b) induced magnetic profiles g′(η) showing the existence of
triple solutions when β = 0.03, S = 0.5 and λ = –0.222.

monotonic behavior in the development of the velocity profiles f ′(η), before assuming its
final asymptotic value f ′(∞) = . Similar non-monotonic behavior was reported by Riley
and Weidman [] when they considered the velocity profiles f ′(η) of the upper branch
solution for – ≤ β < –.. Following Ishak et al. [], we postulate that the upper branch
of solutions with the highest value of f ′′() (first solutions) are physically stable and occur
in practice since it is the only solution for λ > , i.e., when the fluid and the solid surface
move in the same direction.
A reduction in the skin friction f ′′() implies a reduction in the drag force. Thus, the

magnetic field reduces the drag force and speeds up the separation. On the other hand,
increasing the included angle of the wedge will increase the drag force, hence delaying the
separation. This result is consistent with that reported by Ishak et al. [].
According to the Lorenz law, the induced magnetic field will oppose the change in the

original magnetic field rather than the field itself. If, for example, the original field is de-
creasing, then the inducedmagnetic fieldmust be in the same direction as the original field
to oppose the decrease. From Figures  and , we see that the induced magnetic gradient
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Figure 13 (a) Velocity profiles f ′(η) and (b) induced magnetic profiles g′(η) showing the existence of
triple solutions when β = 0.1, S = 0.3 and λ = –0.429.

Figure 14 Inducedmagnetic gradient g′′(0) as a function of λ for various values of β when S = 0.3,
α = 1.

g ′′() increases monotonically with the increasing value of λ. This increase is supposedly
opposing a decrease in the original magnetic field. Furthermore, the induced magnetic
gradient also decreases with the increase in S, which is consistent with the Lorenz law.We
also notice that the effect of both S and β is more pronounced on the skin friction f ′′()
compared to the induced magnetic gradient g ′′().

4 Conclusions
In this paper, we have considered similarity solutions for the steady MHD boundary layer
flow due to a continuous moving wedge in a parallel free stream with the induced mag-
netic field. We investigated the effects of the moving parameter λ, the ratio of magnetic
to dynamic pressure S, the wedge parameter β and the reciprocal magnetic Prandtl num-
ber α on the flow field and the induced magnetic field characteristics. It has been found
that increasing the values of the moving parameter λ and the wedge parameter β speeds
up the fluid flow. In contrast, increasing the ratio of magnetic to dynamic pressure S and
the reciprocal magnetic Prandtl number α slows down the fluid flow. Furthermore, the
skin friction or the surface shear stress f ′′() and the induced magnetic gradient g ′′() de-
crease with the increase of the ratio of magnetic to dynamic pressure S, but increase with
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the wedge parameter β . We have also demonstrated the existence of a rich variety of so-
lutions by varying the value of the wedge parameter β . We have also found that when the
wedge and the fluid move in the same direction, the solution is unique for all values of the
parameters β and S. However, when the wedge and the free stream move in the opposite
directions, multiple solutions exist for some range of values of the moving parameter λ

as soon as the value of the moving parameter is greater than a critical value λ = λc. This
critical value of λ is dependent on both parameters β and S. It has been found that in-
creasing the wedge parameter β will increase the value of |λc|, while increasing the ratio
of magnetic to dynamic pressure S will reduce it. Thus, increasing the ratio of magnetic
to dynamic pressure speeds up the boundary layer separation, while increasing the wedge
parameter β delays it.
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