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Abstract

In this paper we investigate the existence of positive solutions for the following
nonlinear Schrédinger equation:

“Au+Vu=KulP?u inRY,

where V(x) ~ alx|™® and K(x) ~ Mmix|™as |x|] = cowithO<a,u <+00,b<2,b#0,
0< g <Tandp=2(N-2s/b)/(N-2).
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1 Introduction and statement of results

In this paper, we consider the following semilinear elliptic equation:
—Au+ V(x)u=K@x)|uf2u inRYN, 1.1)

where N > 3. The exponent

p=2(N—%)/(N—2) (1.2)

with the real numbers b and s satisfying
b<2, b0, 0<%<1. (1.3)

By this definition, 2 < p < 2* := 2N/(N - 2).
With respect to the functions V and K, we assume that

(A1) V,K € C(RN) for every x € RN, V(x) > 0 and K(x) > 0.
(Az) There exist 0 <a < 00 and 0 < i < 0o such that

lim [x°V(x)=a and lim |x[°K(x)= u. (1.4)
|| — 00 || — 00
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A typical example for Eq. (1.1) with V and K satisfying (A;) and (A;) is the equation

a 1% -2 . N
—-Au + U= ulP“u inRY. 1.5
™™ W ol a3)

When 0 < b < 2, the potentials are vanishing at infinity and when b < 0, the potentials are
coercive.

Equation (1.1) arises in various applications, such as chemotaxis, population genetics,
chemical reactor theory and the study of standing wave solutions of certain nonlinear
Schrédinger equations. Therefore, they have received growing attention in recent years
(one can see, e.g., [1-6] and [7-10] for reference).

Under the above assumptions, Eq. (1.1) has a natural variational structure. For an open
subset  in R, let C5°(R2) be the collection of smooth functions with a compact support
set in Q. Let E be the completion of C5°(RN) with respect to the inner product

(M,V)E=/ Vqudx+/ Vx)uvdx.
RN RN

From assumptions (A;) and (A,), we deduce that

e 172 ) 1/2
(./RN —(1 Y dx) and (-/]RN Vx)|u| dx)

are two equivalent norms in the space
L2 (RN) {u is measurable in RN‘ / x)|u|? dx < +oo}

Therefore, there exists B; > 0 such that

|M|2 1/2 ) 1/2
</]RN —(1+ )P dx) 531(/]1@’ V(x)|ul dx) .

Moreover, assumptions (A;) and (Ay) imply that there exists B, > 0 such that
K(x) <By(1+1x])”, VxeRV.

Then, by the Holder and Sobolev inequalities (see, e.g., [11, Theorem 1.8]), we have, for

every u € C°(RV),
1
Cul? NP
dx
N (L [x)s

(/ K(x)lulpdx) C(
RN

|M|7 -3 g )
C( o Wl 0T

1

IA
Q

KR Llg_s)
.\ o\
— dx lu|® dx
]RN @+ |x]) RN
s 25 (1-%)
|u|2 b AR
— dx |Vu|? dx
lRN (L +1x0) RN

IA

C
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]2 > b 30-33)
:c(/ — _dx (f |Vu|? dx
gy (1+ |x])b RN
2s
< C(/ V(x)lulzdx)
RN

[T

b 50-%)
(/ |Vu|2dx> ,
RN

where C > 0 is a constant independent of u. It follows that there exists a constant C’ > 0
such that

1/p 1/2 1/2
(/ K(x)|ulP dx) <C (/ |Vu|2dx) +C (/ V(x)|u|2dx) .
RN RN RN

This implies that E can be embedded continuously into the weighted L?-space
LE(RY) = {u is measurable in RN’ / K(x)|ulP dx < +oo}.
RN

Then the functional

1 1
q>(u):—||u||§-—/ K@x)|ulPdx, uckE,
2 p RN

is well defined in E. And it is easy to check that ® is a C? functional and the critical points
of ® are solutions of (1.1) in E.

In a recent paper [12], Alves and Souto proved that the space E can be embedded com-
pactly into L% (RN) if 0 < b < 2 and 2(N - 2s/b)/(N —2) < p < 2* and ® satisfies the Palais-
Smale condition consequently. Then, by using the mountain pass theorem, they obtained
a nontrivial solution for Eq. (1.1). Unfortunately, when p = 2(N — 2s/b)/(N — 2), the em-
bedding of E into L% (RN) is not compact and ® no longer satisfies the Palais-Smale con-
dition. Therefore, the ‘standard’ variational methods fail in this case. From this point of
view, p = 2(N — 2s/b)/(N - 2) should be seen as a kind of critical exponent for Eq. (1.1). If
the potentials V and K are restricted to the class of radially symmetric functions, ‘com-
pactness’ of such a kind is regained and ‘standard’ variational approaches work (see [5]
and [6]). However, this method does not seem to apply to the more general equation (1.1)
where K and V are non-radially symmetric functions.

It is not easy to deal with Eq. (1.1) directly because there are no known approaches that
can be used directly to overcome the difficulty brought by the loss of compactness. How-
ever, in this paper, through an interesting transformation, we find an equivalent equation
for Eq. (1.1) (see Eq. (2.9) in Section 2). This equation has the advantages that its Palais-
Smale sequence can be characterized precisely through the concentration-compactness
principle (see Theorem 5.1), and it possesses partial compactness (see Corollary 5.8). By
means of these advantages, a positive solution for this equivalent equation and then a cor-
responding positive solution for Eq. (1.1) are obtained.

Before stating our main result, we need to give some definitions.

Let

Vi (x) = |25 V(x| 75x) + Cplxl 2, (1.6)


http://www.boundaryvalueproblems.com/content/2013/1/201

Chen Boundary Value Problems 2013, 2013:201
http://www.boundaryvalueproblems.com/content/2013/1/201

where
b b
=-(1-= -2)? L.
Cp 4( 4)(N ) 1.7)
and
Ko(x) = || 25 K (jx] 25 ). (18)

Let HY(R"N) be the Sobolev space endowed with the norm and the inner product

172
llu|| = (/ |Vu|2dx+f u? dx) and (u,v) = / (Vu - Vv +uv)dx,
RN RN RN

respectively, and let L”(RN) be the function space consisting of the functions on RV that
are p-integrable. Since 2 < p < 2*, H'(RN) can be embedded continuously into L7(RV).
Therefore, the infimum

- Jen IVVIPdx + a [ v dx
in

> 0. 1.9
veHL([RN)\(0) (Jgn IvIP dx)?/p 19)

We denote this infimum by S,,.
Our main result reads as follows.

Theorem 1.1 Under assumptions (A1) and (Ay), if b, s and p satisfy (1.3) and (1.2) and

Jon IVuldx + (% = b) frn BV dx + [ Vi ()|l dox

. B
mn
ueH (RN)\(0} (fan K (x) || dx) /P
P2 2
<(1=b/2) 7P u'rSs,, (1.10)

then Eq. (1.1) has a positive solution u € E.

Remark 1.2 We should emphasize that condition (1.10) can be satisfied in many situa-
tions. For r > 0, let R, = {x € RN | r/2 < |x| < r} and H}(R,) be the closure of C{°(R,) in
HY(RYN). Under assumptions (A;) and (A,), we have

Jo IVul?dx

inf — 0, asr— +oo.
ueH3 @R\ 0} ([ K () ua]? dx) P

Then, for any € > 0, there exist 7. > 0 and u, € Hy(R,) \ {0} such that

er |Vuc|? dx
(g, Kl e =

|- Ve |*
x|

It follows from this inequality and |, s dx < [, &, Ve |*dx that if supp V, is small

enough such that

Jo, Vi@l dx
<E€,
(o, Ko o) 127 d)?

Page 4 of 30
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then

Iz, |Vue|? dx + (% =b) [, Vil g Iz, Vi ()| ue | dx

%2

(fr, Koo @) |uac | )P
b

< (2 +|—-b )e.
4

2
This implies that (1.10) is satisfied if € is chosen such that (2 + | % -b)e<(1- 19/2)107 ;[!% Sp.

2

Notations Let X be a Banach space and ¢ € C!(X,R). We denote the Fréchet derivative
of ¢ at u by ¢'(u). The Gateaux derivative of ¢ is denoted by (¢'(u),v), Vu,v € X. By —
we denote the strong and by — the weak convergence. For a function u, u* denotes the
functions max{u(x), 0}. The symbol §; denotes the Kronecker symbol:

1, i=j,
= !
0, i#j.
We use o(h) to mean o(h)/|h| — 0 as || — 0.
2 An equivalent equation for Eq. (1.1)
For x € RN, let y = |x|*2x. To u, a C? function in RN, we associate a function v, a C?
function in RY \ {0}, by the transformation

u(x) = |x|’%(N’2)V(|x|’%x1, e |x|’%xN). (2.1)

Lemma 2.1 Under the above assumptions,

N
_b(N+2) B ov Cp
A u(x) = |y| 2C-D — <At'()/)—> s B (2:2)
4 }X; ay "0y ) P
where
b2 Vi
Az‘i(y)=3ii+<z_b)flyé' ij=1,...,N. (2.3)
y

Proof Let r = |x|. By direct computations,

0 bN-2) b OV b _biN-2) wv b b(N-2)
S R R B inij—v——(N—Z)r_%_zxiv (2.4)
0x; ay, 2 P ay, 4
and
2 2 N 2
8_1: = _b_Nr_M_%_inﬂ + r_w_ba_]; _br_w_b_Zijxil
0x; 2 ay; ay; P dy; 0y;
By ep) e 3 O
Z (N - r i
i Iay]
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HN-2) b(N-2)
——r 2E ,—+—r R b42§x,xk

k=1 3)/,3)1/(

+Z(N—2)<b(N 2)+2) N2>“ b(N )4 N-2-2,,

Then

QJQJ
“M

N
i=1
b2
=rb(N2) Ayv+|—-b Zxx,
4 ay; By]

ij=1

+(b—2—b>(N l)r"zix———(l——>(N 2)2b2} (25)
4 "y '

l

. 2 b .
Since y = |x|7?/%x, we have r = |y|2% and x; = |y|2%;, 1 <i < N. Then

3%y Ny
Zx,x,a ot (N - l)r"Zina—
yi 3y — "9y,

ij=1 g

=yl 22%%8 PN Dlyl” 22%—

ij=1 i

N

-y 9 (W/ ﬂ). (2.6)

. 2 .
i3 9y \yI* 9y

Substituting (2.6) and r = |y|2%b into (2.5) results in

b(N+2) b2 N g i 0 C
Agu(x) = |y| 20 Av+< b)Z—(yy;—V>——b2v
4 — 9y \1yI* 9y: ) Iyl

ij=1

N
_bN+2) 0] av Cp
= [yl 2D —<At'()/)—)——v .
4 (Z ay \ " oy ) b 0

ij=1

Let
Hj,(RY)

= {u| for every bounded domain © C RN,/ |Vul? dx + / u? dx < +oo}. (2.7)
Q Q

From the classical Hardy inequality (see, e.g., [13, Lemma 2.1]), we deduce that for every
bounded C! domain © C RY, there exists Cq > 0 such that, for every u € H. _(RY),

/dex CQ(/Q|Vu|2dx+/;2u2dx>. (2.8)
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Theorem 2.2 Ifv e H. (RYN) is a weak solution of the equation

loc

ad
5 (4,02 ) vty inY, (2.9)
ay; ay;

ij=1

i.e., for every ¥ € C°(RN),

av 31# _
f Z 1005, f Vo) dy = / K.)vIP2vy dy, (2.10)
RN RN
and u is defined by (2.1), then u € HIIOC(RN) and it is a weak solution of (1.1), i.e., for every
¢ € C&°(RN),
/ VuVodx + / V(x)updx = / K(x)|ulP2ugp dx. (2.11)
RN RN RN

Proof Using the spherical coordinates
x| =rcosoy,
Xo = r'Sin 07 COS 09,

xj =rsino;sinoy - --sinoj_jcoso;, 2=<j<N-1,

XN =rsinoy sinoy - - - sinon_s sinoy_1,
where 0 <oj<m,j=1,2,...,N-2,0 < oyn_; <27, we have

= erlf(a)drdal --don_1,

where f(o) = sinV 2 o7 5inN "2 oy - - - sinoy_y. Recall that y = |x|‘gx. Let R = |y|. Then r =
R7% and
- rN-lf(o) drdoy - -doy_y = R°27 f(0)d(RZ5) doy - - doyy
2 1 2 bN
= ——R2>b" dRdoy -+ -don_1 = —|y|2-5 dy. 2.12
2-b f( ) o1 ON-1 2_b|y|2 ) (2.12)

Here, we used dy = RN"\f (o) dR do, - - - doy_, in the last inequality above. From (2.4), (2.12)
and (2.8), we deduce that there exists C > 0 such that for every bounded domain  C RY,

9 2
f i < c/ o b( (e Ib/zx)) dx
Q 3)&

2
+C/ NZ)_b 4<xlle |x| -b/2 ) dx
Q

ou
Bx,
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+C/ r- H2 2 2(|x|_b/2x)dx
Q
2 N 2
_2c (av(y)) s 26/ RS
2=bJo\ 0y ) VT 2w S\ S b1 oy
c ~4,2 2
2—b/9|y| Jiv
2
§C”</ |VV|2dy+/ e dy)<+oo.
Q

Moreover,

2
/uzdx:/ |x|_§(N‘2)V2(|xIJ2')x)dx:—/ |y|%vz(y)dy<+oo.
Q Q 2-b Q

Therefore, u € HJ, (RN). Then, to prove that u satisfies (2.11) for every ¢ € C3°(RY), it
suffices to prove that (2.11) holds for every ¢ € C°(RN \ {0}). For ¢ € CP(RN \ {0}), let
¥ € C°(RN \ {0}) be such that

o) =[x TV Dy (jx| %)

By using the divergence theorem and Lemma 2.1, we get that

f VuVedx
RN

=—/ ulg dx
RN

N
vy (N aNe
=— | wu- |y @D 2 —(Ai‘ )_>__ dx
/RN g ( AT AT

ij=1

N
b(N+2) 0 C
= — x__NZ x‘%x . T 202-D) < ; ) )_ b d
/R Dy (1~ x) - Iy > (4005 ) - v

ij=1

N
_b(N-2) _b(N+2) Cp
- _ ly|”2CD) y(y) - |y|” 20D 2 ( ; ) ) — —| |2bd
/RN ’ )by 3y, 05y ) TP e

ij=1

2 N Cp
"2 b (Zay,( lf”’w)‘w?‘”)dy

ij=1

av 0 2C
/ Z i0) 5~ - lﬁ - V—wzdy
dyi ay; 2-b Jry Iyl

Moreover,

/ V(x)ug dx
RN

2
=53 V(Iy125 ) u(ly1 25 y) ¢ (191 259) 191 25 dy
b Jon

Page 8 of 30
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2 2b b b(N-2) b b(N-2) b
=573 f 1V (12 y) - 191200 u(ly275y) - 1y 22 oIyl 25 y) dy
- R

2

=5 | VI 0v 0)dy

and
/ K )| ulP2ugp dx
]RN
. 2
=f K(Iy1259) (1125 9) [ u(Iy1 25 9) o (Iy1 25 y) —— 191 25 dy
]RN 2—b
2 ’ .
=5 | WIE K75 o)l vo)v 6 dy
b Jox

Therefore,

/ Vqudx+/ V(x)mpdx—/ K(x)|ulP2up dx
RN RN RN

81/ Blﬁ vy
2b b
; / 15 V(19125901 0) dy
RN

- A; K (175) o) v ) dy)

0
-2 b(/ >y ears [ vowvar- [ Nmnwﬂvwdy)
=0.

This completes the proof. O

This theorem implies that the problem of looking for solutions of (1.1) can be reduced

to a problem of looking for solutions of (2.9).

3 The variational functional for Eq. (2.9)
The following inequality is a variant Hardy inequality.

Lemma 3.1 Ifve H(RYN), then

RV _9)2 2
f e VA e B =2) / W 4. (3.0)
RN |x[? 4 Jn |x?

Proof We only give the proof of (3.1) for v € C°(RN) since CS°(RY) is dense in H'(RN).
For v € C3°(RN), we have the following identity:

v@)[* = -floo %|v(kx)|2dk - _2/100V(M) (% Vv()) dr

Page 9 of 30
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By using the Holder inequality, it follows that

|v( x)|2 (Ax)
/}RN || / /RN e (2 Vv(rx)) dx dr
v(x)
/ T o a7 VY0
v(x)
T N- Z/N |x|2 (- V() dx
2 ( 2(x >1/2(/ |x,vv|2d >1/2
N RN |x|2 v x| .
Then we conclude that

.V 2 N-=2 2 2
/ |x 2vl dx> ( ) / %dx. -
RN %] 4 RN ||

From the definition of A;(x) (see (2.3)), it is easy to verify that for u € H'(RY),

N

du 0 b? - Vul?
RN = Xi 0X;j RN RN X
ij=1

Lemma 3.2 There exist constants C, > 0 and C, > 0 such that for every u € H L(RN),
b? - Vul?
Cllull? < / \Vuldx+ (= —b / - Vul® dx+/ V. () |ul? dx
RN 4 RN |x[? RN
< Collul®.

Proof From conditions (A;) and (A;), we deduce that there exists a constant C > 0 such
that

1wl 25 V (Jx25x) < C(1+ 2]2), Vax e RV \ {0}, (3.3)

Since

|ul?

/ V*(x)lulzdx:/ x| 75 V(|x|z‘%bx)|u|2dx+cbf W,
RN RN RN %2

by (3.3) and the classical Hardy inequality (see, e.g., [13])

N_22 2
( )/ |u—|dx§/ \Vul*dx, YueH'(RY),
4 RN |¥[? RN

we deduce that there exists a constant C > 0 such that

/ V. ()|l dx < Cllull”
]RN
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o Vi |2
x|

This together with the fact that [y
stant Cy > 0 such that

bZ .V 2
f IVul?dx+ | —-b / lx- Vul dx+/ V(%) |u|? dx
RN 4 BN [xf? RN

<Gllull®>, VueH'(RV). (3.4)

dx < [ |Vul?* dx yields that there exists a con-

If0<b<2,then%—b<0and

b2 Vul? b2
/ \Vuldx+ (2= —b / -Vl dxz/ \Vuldx+ (= —b f \Vul? dox
RN 4 RN |x|2 RN 4 RN

= (1-b/2)? / |Vul* dx. (3.5)
RN

In this case, C, = 2(1 - £)(N - 2)? > 0 and

|ul?

f V*(x)|u|2dx=f |x|%V(|x|fbbx)|u|2dx+Cb/ LN
RN RN RN |x|2

2/ IxIZZTbe(lx|ZT%x)|u|2dx. (3.6)
RN
Conditions (A;) and (A;) imply that there exists a constant C > 0 such that

f |Vu|2dx+/ |x|%v(|x|%x)u2dxch u? dx. (3.7)
RN RN

RN

Combining (3.5)-(3.7) yields that there exists a constant C; > 0 such that

b? - Vul?
/ |Vu|2dx+<——b>/ lx- Vul dx+/ Vi ()|u)? dx
RN 4 RN x| RN

> Cillul®, YueH'(RY). (3.8)

If b < 0, (3.7) still holds. From Lemma 3.1 and (3.7), we deduce that there exists a constant
C, > 0 such that for every u € H'(RV),

b2 .V 2
/ IVul*dx+ | — -b / w- Vil dx+/ Vi (x)|u)? dx
RN 4 RN X2 RN
b2 .V 2 N_22 2
=/ |Vu|2dx+(——b>(/ x- Vil dx—( ) / ﬂdx)
RN 4 RN x? 4 RN %2

2b b
- / || 275 V (|%] 25 ) |us]* dx
RN

3/ |Vu|2dx+f e 25 V(| 225 ) ]2 e > C|ue]. (3.9)
RN RN

Then the desired result of this lemma follows from (3.4), (3.8) and (3.9) immediately.
O
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This lemma implies that

b2 v/ 2 1/2
4 = / \Vuldx+ (= —b / -Vl dx+/ V() dx (3.10)
RN 4 RN |x|? RN

is equivalent to the standard norm || - || in H'(RN). We denote the inner product associated

with ” : ”A bY ('ﬁ ')A! i'e')

(u,v)a :/ VuVde+/ Vi (xX)uvdx
RN RN

b? (x- Vu)(x- Vv)
. (Z _ b> /R VT 4 (3.11)

By the Sobolev inequality, we have

Sy = % (3.12)
ueH ®@N\(0) ([ |4l dx)?P
and
1 1/p
lllla = S; (/ )P dx) , YueH'(RV). (3.13)
RN

By conditions (A;) and (A,), if 0 < b < 2, then K, is bounded in RN, Therefore, by (3.13),
there exists C > 0 such that

( /R Ka) (u)’ dx)up <Cllulla, VueH'(RY). (3.14)
However, if b < 0, K, has a singularity atx = 0, i.e.,

K.(x) ~ |x| 75 K(0), as |x| = O. (3.15)
Recall that p = 2(N — 2s/b)/(N - 2) and 2s/(2 — b) > —2s/b if b < 0. Then, by the Hardy-

Sobolev inequality (see, for example, [14, Lemma 3.2]), we deduce that there exists C > 0
such that (3.14) still holds. Therefore, the functional

J(u) = %Hu”i - % /R K@) (u)’ dx, ueH(RN) (3.16)

isa C? functional defined in H*(RN). Moreover, it is easy to check that the Gateaux deriva-

tive of J is

(7' (w), h) = (u, )4 — A{N K*(x)(u")pAh dx, Vu,heH'(RV)

and the critical points of J are nonnegative solutions of (2.9).

Page 12 of 30
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4 Some minimizing problems
For 6 = (01,...,0x) € RN with |8] =1, let
2

b
BL](Q) = 8,']' + <Z - b)@ﬁl, l,] =1,...,N. (41)

By this definition, we have, for u € H'(RYN),

al ou du b?
RN 2=~ i Oy R R
ij=1

p? p?
—-bD/ |Vu|2dxzf |Vu|2dx+<——b>/ 16 - Vu|? dx
4 RN RN 4 RN

(1-b/2)? [on |Vul*dx, 0<b<2,
Jen | Vul? dx, b<0,

(s

we deduce that the norm defined by

b2 1/2
llullp := / IVul?dx+ [ —-b / |9-Vu|2dx+a/ lu|? dx (4.3)
RN 4 ]RN ]RN

is equivalent to the standard norm | - || in H!(RY). The inner product corresponding to
- o is
2

(22, v)g :/ VuVde+a/ uvdx + (b— —b)/ @ -Vu)® - Vv)dx.
RN RN 4 RN

Lemma 4.1 The infimum

lluel|?

W (4.4)
ueH ®N\(0) ([ [u|? dx)?'P

is independent of 6 € RN with |6] = 1.

Proof In this proof, we always view a vector in R as a 1 x N matrix, and we use A7 to
denote the conjugate matrix of a matrix A.

For any 6,6’ € RN with |8] = |#'| = 1, let G be an N x N orthogonal matrix such that
0’ - G = 0. For any u € H(RY), let v(x) = u(xG), x € RY. The assumption that G is an
N x N orthogonal matrix implies that GGT = I, where I is the N x N identity matrix.
Then it is easy to check that

/ |v|2dx:/ |u|* dx, / |v|1’dx:/ |ul? dx. (4.5)
RN RN RN RN

Note that

Vv(x) = (Vu)(xG) - G. (4.6)
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By GGT =1, we have

|Vv(ac)|2 = Vy(x) - (Vv(x))T
= (Vu)xG) - G- GT - (Vu)(xG))" = |(Vu)(xG)|*.

It follows that
f | Vv()|* dx = / (Vi) (xG)|* dx = f |Vul)| dax. (4.7)
RN RN RN
By (4.6) and 0 - GT = 6, we get that

Ze?% =6 (Vu)xG)-G) =6'-G" - (Vu)xG))" =6 - (Vu)(xG))"

N

ou
- ;ei(y%)(xe).

It follows that

N 2
, 2, , v
/RNIQ .Vv| dx—/RN ;Giaxi

:/RNZG( )(xG)2

_/ Bu
_RN‘ 8

i=1

dx

dx = / 16 - Vu|? dx. (4.8)
N

By (4.5), (4.7) and (4.8), we get that ||v|2, = |[u|3. This together with (4.5) leads to the

result of this lemma. O
Since the infimum (4.4) is independent of § € RN with |6] = 1, we denote it by S.
-2
Lemma 4.2 Let S, be the infimum in (1.9). Then S = (1 - b/2)pT Sp.

Proof Choosing 6 = (1,0,...,0) in || - [lo, we have

b 2
- (0) [ [
llllg ( 2) -

By Lemma 4.1, we have

dx+Z/N

dx + a/ u? dx.
axl RN

3961

¢ - (1—é)szN|axl|2dx+zl2 v |2 |2dx+afRNu dx
= mn .

ueH! ®RN)\(0) (Jn |ul? dx)?p

Let

v(x) = u((1 - b/2)xr, %2,...,%x), xRN

Page 14 of 30
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Then

(1_ )ZflRN|c)x1|2dx+Zsz]RN| |2dx+af]RNu dx

./.]RN |L{ |p dx)z/p

2 [on IVVPdx +a [on Vi dx
(fan IVIP dx)?P

=(1- b/2)

It follows that

—(1-b2)7  inf Jon [VVIdx + a Jy vV dx

p-2
1-b/2 7 -
veH1®N)\(0) (fgn IvIP dx)?/P = ) .

Since the functionals ||«|? and f]RN |u|? dx are invariant by translations, the same argu-
ment as the proof of [11, Theorem 1.34] yields that there exists a positive minimizer Uy
for the infimum S. Moreover, from the Lagrange multiplier rule, it is a solution of

—Z (z‘j(G)g—u>+au:S(z¢+)P—1 in RV,
ij=1 i

and (u/S)™¥-21, is a solution of

- Z %, ( ) +au = ,u(zf)pi1 in RN, (4.9)

ij=1

In the next section, we shall show that Eq. (4.9) is the ‘limit’ equation of

- + Vi)u = Ko(x)(u*)’™  inRN. (4.10)
Z (w)"

ij=1

It is easy to verify that
1 2 M +\2 1 (N
Jo(u) = = llull; - —/ (u ) dx, ueH (R ) (4.11)
2 p RN
is a C? functional defined in H'(RY), the Gateaux derivative of Jy is

(]é(u),h) = (u,h)y — M/N(M)p_lhdx, Yu,h e HI(RN),

R

and the critical points of this functional are solutions of (4.9).

Lemma 4.3 Let 6 € RN satisfy |0| = 1. If u # 0 is a critical point of Jy, then

1 1 2 p
Jo () > (— - 1;)/[1’-2 Sz, (4.12)

Proof Since u is a critical point of Jy, we have

0 = (J (), u) = l|ull} - M/]RN (u*)’ dx. (4.13)
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It follows that

Jo(u) = (% - %’)M/RN (u*)p dx. (4.14)

Since u # 0, by [lull = p fen () dx and [|u)|Z = S(fn (") dx)*?, we get that

f (u) dx > (S/uy' =2,
RN
This together with (4.14) yields the result of this lemma. O

5 The Palais-Smale condition for the functional J
Recall that J is the functional defined by (3.16). By a (PS). sequence of J, we mean a se-
quence {u,} C HY(RN) such that J(u,) — ¢ and J'(u,,) — 0 in HY(RN) as n — oo, where
H™Y(RN) denotes the dual space of H'(RYN). J is called satisfying the (PS), condition if every
(PS), sequence of ] contains a convergent subsequence in H'(RV).

Our main result in this section reads as follows.

Theorem 5.1 Under assumptions (A1) and (A,), let {u,} C H'(RN) be a (PS), sequence
of ]. Then replacing {u,} if necessary by a subsequence, there exist a solution uy € H'(RN)
of Eq. (4.10), a finite sequence {6; € RN | |6;] = 1,1 < [ < k}, k functions {u; |1 <i <k} C
HY(RN) and k sequences {y',} C RN satisfying:

(i) =Y Na aiyj(Bly(Hz)g—;f) +auy = p(uf P~ in RN,

(ii |J/£,| — 00, Iyﬁ,—yZI — 00, [ £, n— o0,

)
(ifi) 120 — 110 = Yopq (- = ¥ = O,
(iv) J(uo) + 3y Jo, () = c.

This theorem gives a precise representation of the (PS). sequence for the functional J.
Through it, partial compactness for J can be regained (see Corollary 5.8).

To prove this theorem, we need some lemmas. Our proof of this theorem is inspired by
the proof of [11, Theorem 8.4].

Lemma 5.2 Let u € H'(RN). Then, for any sequence {y,} C RV,

R—o00 4

lim sup/ K, (x + y,)|ul? dx = 0.
|x|>R

If |ly,| = 00, n — 00, then

n—00

lim ‘K*(x+yn)—,u| - |ulP dx = 0.
RN

Proof 1f2 > b > 0, then K, is bounded in R¥. In this case, the result of this lemma is ob-
vious. If b < 0, then K, (x) ~ |x| ZZTSbK(O) as |x| — 0. Since 2s/(2 — b) > —2s/b, by Lemma 3.2
of [14], the map v — K ?v from H'(RN) — L} (RN) is compact. Therefore, for any € > 0,
there exists 8. > 0 such that

sup/ I(*(x)|u(x —y,,)|p dx <e.
] <de

n
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And there exists D(¢) > 0 depending only on € such that K, (x) < D(¢), |x| > .. Then, for

every n,

/ Ko+ y)lul? dx
%>R

5/ K*(x+y,,)|u|pdx+/ K. (x +y,)|ulf dx
{xllx+yn| <8¢, |x[>R}

{xllx+yn|>e,|x|>R}

§G+C(e)/ |ul? dx.
|x|>R

It follows that lim supg_, o supnf‘ K (x + y,)|ul’ dx < €. Now let e — 0.

x|>R
Using the same argument as above, for any € > 0, there exist §. and D(¢) such that

sup/ |K*(x+yn)—u| ulPdx<e
[x+yn| <8¢

n
and
|Ko( + y) — | - [l doc < (D(€) + ) [ul?,  |x+ 3| = Se.
Since y, — 00, we have lim K, (x + y,) = ;. Then, using the Lebesgue theorem and the

above two inequalities, we get that

lirnsupf |K*(x + V) — u| ulP dx <e.
n—00 RN
Let € — 0. Then we get the desired result of this lemma. IZI

Lemma 5.3 Let p > 0. If {u,} is bounded in H'(RN) and

sup / > dx — 0, n— oo, (5.1)
B(J/,p)

yeRN
then Ki/pun — 0 in LP(RN).

Proof Since 2s/(2 — b) > —2s/b, by Lemma 3.2 of [14], the map v — K;'’v from H'(RN) —

LﬁC(RN ) is compact. Therefore, for any € > 0, there exists 8. > 0 such that

sup/ K. (%)|u,|P dx < e.
%] <de

n

And there exists D(¢) > 0 depending only on € such that K. (x) < D(¢), |x| > J.. By (5.1)
and the Lions lemma (see, for example, [11, Lemma 1.21]), we get that

/ I(*(x)|un|de§D(e)/ lu, P dx — 0, n— oo.
[x][>8e RN

Therefore, limsup,,_, o, f]RN K, (%)|u,l? dx < €. Now let € — 0. O
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Lemma 5.4 Let {y,} CRN. If u,, — u in H'(RN), then
K.(x +y,q)(u;)p_1 — Ky (x + y,) (0 — u)*)p_1 — K. (x +y,,)(u+)p_1 —0 inH™* (RN).

One can follow the proof of [11, Lemma 8.1] step by step and use Lemma 5.2 to give the
proof of this lemma.

The following lemma is a variant Brézis-Lieb lemma (see [15]) and its proof'is similar to
that of [11, Lemma 1.32].

Lemma 5.5 Let {u,} C H'(RN) and {y,} C RN. If
(@) {u,) is bounded in H'(RN),
(b) u, — ua.e.onRN, then

lim K. (x+y,) - ’(u*)p - ((un - u)*)p - (u*)p| dx=0.

n—>00 JpN n

Proof Let

Y, t>0,
0, t<O.

j@t) =

Then j is a convex function. From [15, Lemma 3], we have that for any € > 0, there exists
C(€) > 0 such that for all ¢, b € R,

’j(a +b) —j(b)‘ <¢j(a) + C(e)j(b). (5.2)

Hence

= (Kt ) - [ ()" = (@t = 0)")" = ()" = €Ki+ 9) - (= 0)")")”
< (1+ CO)Klx+3,) - (')

By Lemma 3.2 of [14], the map v KYPy from H'RN) — [7

loc

(RYN) is compact. We get
that there exists é. > 0 such that for any #,

/ fidx<e. (5.3)

[x+yn|<de

And there exists D(¢) > 0 depending only on € such that K,.(x) < D(e), |x| > é.. Then
fE<(@+C@E)De) - (), 1x+yul = be.

By the Lebesgue theorem, flx+yn|z scJn 4% — 0, n — oo. This together with (5.3) yields

lim sup fidx <e.
RN

n—0o0

The left proof is the same as the proof of [11, Lemma 1.32]. O
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Lemma 5.6 If

Uy —u in HI(RN),
u,—u ae onRY,

J(u,) — ¢,

J'(uy) =0 in H'(RY),
then J'(u) = 0 in HY(RN) and v, := u, — u is such that

vallZ = et = lll3 +0(1),
](VVI) —C —](M),
J(va) >0 in H(RV).

Proof (1) Since u, — u in H'(RN), we get that as n — oo,
1Vl 2 = NetnllZ = (i — 4 14 — 1) 4 = |5 = o)y = 2, ) = — el
Therefore,
vallZ = et = ll2l3 + 0(1). (5.4)

(2) Lemma 5.5 implies

/ K*(x)(v;)pdxzf K*(x)(u;)pdx—/ I@(x)(u*)p dx +o(1). (5.5)
RN RN N

R

By (5.4), (5.5) and the assumption J(u,) — ¢, we get that
J(n) > c~J(), n— oo.

(3) Since J'(u,) — 0 in HY(RN) and u,, — u, it is easy to verify that J'(«) = 0. For & €
H'(RN),

') 1) = (v 1)a = A;{N K. (V) hdx

=mwrwwr/

Ko)(v2) " hdx. (5.6)
RN

By Lemma 5.4, we have

sup
llAl <1

/ K@)(vy) - / K@) () hdx + / K (o) ()
RN RN RN

— 0, n— oo. (5.7)

Combining (5.6) and (5.7) leads to J'(v,) = J'(u,) — J'(u) + o(1). Then, by J'(u,) — 0 in
HYRY) and J' () = 0, we obtain that J'(v,) — 0 in H}(RY). O
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Lemma 5.7 If |y,| — oo and as n — oo,

(- +y,) =~ u in Hl(RN),
Uy(-+y,) = u ae onRY,

J(u,) — ¢,

J'(uy) — 0 in H(RN),
then there exists 0 € RN with |0] = 1 such that J,(u) = 0 and v, = u, — u(- - y,) is such that

vall® = lleeall® = 2el* + 0(1),
](VVI) —C —]g(u),
J(va) =0 in H'(RY).

Proof We divide the proof into several steps.
(1) Since u,(- + y,) — u in HY(RN), it is clear that

1Vl = [vaC + 90 | = 200G+ 3 |* + 18801 = 22t + 3), ) = Natl1® = aal)? + 0(1).

(2) For any & € H'(RYN),

(') (- = y)) = (s B = ) , — /RN K@) ()" h(- = y,) dix. (5.8)

By the definition of the inner product (-,-)4 (see (3.11)), we have

(un: h(- - yn))A

_ b (- Ve, ) - V(- = y,))
= ./11;N Vu,Vh(--y,)dx + (Z —b) /}RN ®E dx

+ /RN Vi@)unh(- — y,) dx

=f Vu,,(-+y,,)Vhdx+a/ uy(- +y,) - hdx
]RN RN

+ / (V*(x + V) — a)u,,(~ +y,)-hdx
RN

+ b—z—b / 7';_"'+'§_Z'-Vu(~+y) 7‘;_”'+'§_:'.Vh dx
4 RN ||L+y_”| n n |L+}V_n|
vl lynl lynl lynl

=T+ 11 +11I. (5.9)

Since u,(- + y,) — u in HY(RY), we have

I= / Vi, (- +y,)Vhdx + af Un(- +yn) - hdx = (un(- + ya), h)
RN RN

— VuVhdx + a/ uhdx, n— oo. (5.10)
RN RN
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By assumption (A;) and the definition of V, we have lim_, Vi(x) = a. This yields

sup/ |V*(x)—a|-|h(x—yy,)|2dx—> 0, R— .
[x[>R

n

Moreover, together with (2.8) and the fact that |y,| — oo yields that for any fixed R > 0,

[ v -al- -y ax
|x|<R

< C(/M(R|Vh(- —yn)|2dx+/|

x|<R

|h(: —yn)|2dx> -0, n— oo
Combining the above two limits leads to
AN|V*(x+yn)—a| |hPPdx— 0, n— oo. (5.11)
By (5.11) and the Holder inequality, we have

|| =

/ (Vilx + yn) = @)t (- + y) - hdx
RN

1
3 2
< (f ’V*(x+yn)—a|ufl(~+yn)dx) (/ |V*(x+yn)—a|h2dx>
RN RN
3
§C</ ]V*(x+yn)—a]h2dx> -0, n—> oo. (5.12)
RN

Since Vi € L2(RN), for any € > 0, there exists R, > 0 such that

/ |Vh?dx <e.
RN\ {|x|<Rc }

It follows that

|(\y it W Vh|2 2
/ —”zdxff |Vh|”dx < €. (5.13)
RN\(hl<Re) o + 2] RN\ {lxl<Re)

Then

x4 In_ Xy In_
/ ( " nl gy (o yn))( I Vh) d
RN\(lxl<Re) \ I 5,7 + Ty ol ol

|\yn\ \yn ||yn\ \yn

(5 + 25) - Vi (- + 90>\ 2
E(/ bl + Dl ”2 n dx)
]RN\{|x|<R€} |U’n\ b’n||
Iy | Iyn ) Vh|2 %
x —2 dx
RN\(l<Re) |51 + 1]

1/2 1/2
( / |Vit,| dx) ( / |Vh|2dx) < Ce, (5.14)
RN RN\ {|x|<Re }
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where the constant C is independent of € and n. There exists a subsequence of y,/|y,|,
denoted by itself for convenience, and 6 € RN with |#| = 1 such that y,,/|y,| — 6 asn — 0.

Then, by |y,| — oo, we get that as n — oo,

x
+ I -0 aeonRY,
[Yal 1Yl
and ‘y"—”‘ + \;_ZI converges to 6 uniformly for |x| < R.. Therefore, there exists N, such that,

when n > N,
l/ (& i 'W’“('+y”)><|yinI %] 'Vh>dx
{el<Re) \ 57 + Tl Dl T Tl

_/{| - }(9 -Vu,(- +y,,))(9 -Vh)dx| <e. (5.15)

Since u,(- + y,) — u in HY(RN), we have Vu, (- + y,) = Vu in L2(RN). It implies that

/ (0 - Viu,(- +yn))(0 -Vh)dx
{lxl<Re}

— @ -Vu)© -Vh)dx, n— oo.
{lx|<Re}

This together with (5.14), (5.15) and

f |0-Vh|2dx§[ |Vh|?dx < €
RN\ {|x|<Re } RN\ {|x|<Re }

yields that there exists N > 0 such that, when n > N/,

& &,

[ (4' Vi w) (4' . w) dr- [ -V I0d

RN |w+w| |W+W| RN
<4+ Qe.
Thus

bz

I — (Z - b) / @ -Vu)©-Vh)dx, n— oc. (5.16)

RN

Combining (5.10), (5.12) and (5.16) leads to

(un: h(- _yn))A

2
:/ Vthdx+a/ uhdx + (b——b>/ 6 -Vu)© -Vh)dx +o(1)
RN RN 4 RN

= (u,h)g + o(1). (5.17)
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We obtain, by the Holder inequality and Lemma 5.2, that as n — oo,

‘/ Ko(x + ) (s (- +yn))p_1h dx — ,u/ (u*)p_lh dx
RN

RN

1
</N|K*(x+yn)—u|p~ Ihl”dx)p
R

< C(/ |K*(x +yn)—u|p . |h|pdx>p — 0,
RN

P

< O(/RN(IMHC +yn)[” + [ul?) dx)

where C’ and C are positive constants independent of # and /4. This together with (5.8)
and (5.17) yields

(/' @), (- = yu)) = T (w), ) + 0(1). (5.18)
Then, by the assumption J'(u,,) — 0 in H}(RN), we get (J (1), h) = 0, Vh € HY(RN). There-

fore, J(u) = 0.
(3) From the definition of v,

1valZ = ot = = y) |5 = NotalZ + |l = 3) |5 = 2 (1t (- = 3) - (5.19)

By the definition of the norm || - ||4 (see (3.10)), we have

b |- V(- — )|
it -l = [ (Vute= s (5 ) [ BT g,

|x|2

+fRN V)|t — y,)

B2 (2 + 28) . Vyl?
— / |lel|2 de+ | =—-b / lynl lynl dx
RN 4 RN |\;—n\ + J’_n|2

[yl

+/ V(o + y,) | u|* dx. (5.20)
RN

Since Vu € L*(RYN) and ot §—Z| — 6 a.e. on RY, using the Lebesgue convergence theo-

rem, we get that

dx — 0 - Vul?>dx, n— oo. (5.21)
|L + y_”|2 RN
[ynl lynl

/ (G + 25) - Vul?
R
By (5.11), (5.20) and (5.21), we get that
2 2 b’ 2 2
||u(-—yn)||A= |Vuldx+ | —-> |0 -Vul“dx+a |u|”dx + o(1)
RN 4 RN RN

= [lull§ +o(1). (5.22)

Combining (5.19), (5.22) and (5.17) leads to

1Vall% = Nl = Null} +o(1). (5.23)
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Note that

/ K@)(v;) dx
RN
) / K.(x +yn)((”n(' +Yn) = u)+)p dx
RN
1 1
B / (K (e + yn)ttn(- + ) = KL (x4 y,)u) ") d.
RN
We obtain from Lemma 5.5 that
1 1
/RN((I<f (x +yn)un(' +yn) - K (x +yn)u)+)p dx
1 1
i /RN (K G+ )t -+ 9)) o — / (K G+ ym)u”) de -+ 0(1)

RN
= | K)(u)) dx- /

K. (x +yy,)(u+)p dx +o(1).
RN RN

By Lemma 5.2,

/ Ko +y,)(u?) dx = /,L/ (u*)’ dx + 0(1).
RN

RN

Combining (5.24)-(5.26) yields

f K*(x)(V;)p dx = / K. (x) (u;)p dx — //,/ (u*)p dx + o(1).
RN RN RN
Combining (5.23), (5.27) and the assumption J(u,) — ¢ leads to
J(vn) = () = Jo(u) + 0(1) = ¢ = Jo(u) + o(1).
(4) For h e H'(RN),
Vb= s = [ K() b
RN

= (un, M)a — (u(- = yu) 1) , — /RN K*(x)(v;)p_lh dx.

We shall give the limits for (u(- — y,), 1)1 and f]RN K (x)(v}, )P hdx as n — oo.

First, as (5.9), we have

(- =yu)h) ,
:/ Vth(-+yn)dx+a/ u-h(-+y,)dx
RN RN

+ / (Vix +y,) —a)u - h(- +y,) dx
RN

X

bz _+y_” L_',y_”
+<——b>/ < Bl * D _VM)< Bl * D -Vh(-+y,,)>dx.
4 RN |W+_| |w+ |

[¥nl Tynl
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By the Holder inequality and (5.11), we get that if || || <1, then

/ (V*(x + V) — a)u “h(-+y,)dx
RN

1/2 1/2
(e[ -

172
§C(/ |V*(x+yn)—tl|~u2dx) —0, n— o0
RN

Thus, as n — 00,
[t )=y )=o)
RN

holds uniformly for ||%2|| < 1. Moreover, a similar argument as the proof of (5.16) yields that

asn— oo,

ol * T ol * T

Vn Vn Vn n

Vu)( -Vh(-+y ))dx
/RN(|—|;;| + 2| o + oy "

¥l Tynl

= / @ - Vu)(9 -Vh(- +yy,)) dx +o0(1)
RN
holds uniformly for ||| <1. Therefore, as n — oo,
(u(- —y,,),h)A = (u, h(- +yn))9 +0(1) (5.29)

holds uniformly for || 4| <1.
Second, from u,(- + y,) — u in H*(R") and Lemma 5.4, we deduce that as 7 — oo,

/JI;N Ki(x "’yn)((”n(' +Yn) = u)+)p_1h(' +Yn) dx
- / Ko (x + ) (g (- +y,,))p_1h(- +y,)dx
RN

+ / K@+ 9,0 (Y R +y,) dx| — 0 (5.30)
RN

holds uniformly for ||/|| < 1. By the Holder inequality, (3.14) and Lemma 5.2, we get that
if ||#]l <1, then

/ K+ 3,0 () 7 B +y,) dx
|¥|>R

» 1%1 1/p
< Ki(x+y,)(u*) dx / K. (x + y,) |1 dx
x|>R x|>R

b\
<C K.(x+y)(w")'dx) —0, R— oo (5.31)
[x|>R
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By Lemma 5.2, we get that for every R > 0, as n — 00,

sup
llAl<1

/ ) (Y + 9, dx

p-1

% 1/p
< sup (/ |K*(x + V) — pc|(u+)pdx) (/ |K*(x) - M| . |h|de)
IA1<1 \J |x|<R RN

p-

§C(/ |K*(x+yy,)—u|(u+)pdx> ’ — 0.
|| <R

—

Combining (5.31) and (5.32) yields that

/ K.(x +yn)(u+)p_1h(- +y,) dx — /,L/ (u*)p_lh(~ +y,)dx — 0
RN

RN

holds uniformly for ||4|| <1. Then, by (5.30), (5.33) and
/ K@) (v) " hdx = / K+ y) (- +y,) — ) ) ",
RN RN

we get that as n — oo,

/ Ko@) (v hdx - / Ko@) ()" hdx + / (Y 7R +y,) dx
RN RN

RN

—0

holds uniformly for || 4| <1.
Finally, combining (5.28), (5.29) and (5.34) leads to

') ) = (T (), B) + (T (@), (- + 3,)) = O

(5.32)

(5.33)

(5.34)

holds uniformly for ||/]| < 1. This together with the fact that J;(x) = 0 and J'(x,,) — 0 in

H™Y(RN) yields J'(v,) — 0 in HL(RYN). O
Proof of Theorem 5.1 We divide the proof into two steps.
(1) For n big enough, we have
—1/7 1 1 2
e+ 1+ gl = J(un) = p~ I (), ) = 27 24115 (5.35)
As mentioned in Section 3, the norm || - || 4 is equivalent to the norm || - ||. Therefore, there

exists a constant C > 0 such that [|u|4 > C|lull, Yu € H'(RY). Then by (5.35) there exists

a constant C’ > 0 such that for # big enough,
e+ 1+ ull = C'llugll®.

It follows that ||| is bounded.
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1l (N N / _
" > L. . .6, =
(2) Assume that u ug in H*(RVY) and u, up a.e. on RY. By Lemma 5.6, (1) =0

and u! = u, — u is such that

k]2 = et = Nusoll% + 0(0),
J() = ¢=J(w) (5.36)
J'(up) >0 in H'(RN).

n

Let us define

§:= lim supf |ui|2dx.
lv—yl=1

neooyeRN

If § = 0, Lemma 5.3 implies that 1<i/"u1, — 0 in LP(RN). Since J'(ul) — 0 in HY(RYN), it
follows that

Js 5= (k) + [ K((2)")" s — 0
RN

and the proof is complete. If § > 0, we may assume the existence of {y1} C R¥ such that

f | laxson
X=Ynl=

Let us define v, := ul(- + y1). We may assume that v}, — #; in HY(RN) and v}, — u; a.e.
on R¥. Since

f WL dx > 12,
lx|<1

it follows from the Rellich theorem that

/ || dx = 5/2
lx[<1

and u; # 0. But u} — 0 in HY(RN), so that {|y}|} is unbounded. We may assume that
|yL] — oc. Finally, by (5.36) and Lemma 5.7, there exists 6; € R with |6;| = 1 such that
Ji, (1) = 0 and u;, := u;, — (- — y,,) satisfies

|2 ]|* = |k |* = a1 + 0(D),

](ui) —C _]01 (ul),

J () —0 inH'(RY).

n

Moreover, Lemma 4.3 implies that

1 1\ _2 »
Joy(u1) > | = — — | P2SP2.
2 p
Iterating the above procedure, we construct sequences {6;}, {«#;} and {yﬁl}. Since for ev-
2
ery I, Jo,(u;) > (% - }9);[%’*2 SP-2 | the iteration must terminate at some finite index k. This
finishes the proof of this theorem. d
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The following corollary is a direct consequence of Theorem 5.1 and Lemma 4.3. It im-
2 p
plies that the functional J satisfies the (PS), condition if ¢ < (% - }1—7) W p28p2,

Corollary 5.8 Under assumptions (A1) and (A,), any sequence {u,} C H'(RN) such that

P

1 1Y _2
J(u,) = c< (5——),4/, 28502, J'(uy) —> 0 in H(RN)
p
contains a convergent subsequence.

6 Proof of Theorem 1.1

Recall that the critical points of J are nonnegative solutions of (2.9). By Corollary 2.2, to
prove that Eq. (1.1) has a positive solution, it suffices to prove that J has a nontrivial critical
point. Moreover, by Corollary 5.8, it suffices to apply the classical mountain pass theorem

_2 p
(see, e.g., [11, Theorem 1.15)) to J with the mountain pass value ¢ < (3 — L) 72572,

2 p
By assumption (1.10) and Lemma 4.2, there exists a nonnegative uo € H'(RN) \ {0} such
that
ol (A= b/2)7 7S, = 7S
<(1- = .
(Jaw Ko (e)id dx? SR
‘We obtain
0 < maxJ(tu) = max ﬁllu 1% - z Ko () ()" dx
=0 0 >0 \ 2 OApRN* 0
11 2p\ 72
(575 (it /([ wtas) )
1 1\ _2 »
< (— - —),u 2852, (6.1)
2 p

By (3.14), we get
1 cr
ﬂmziwﬁ—;wwi

Therefore, there exists » > 0 such that

b:= inf J(u)>0=J(0).

lullg=r

Moreover, there exists ty > 0 such that ||[tougll4 > ¥ and J(foug) < 0. It follows from (6.1)
that

1 1 _2 p
max J(ttoug) < | = — — |u P28P2,
te[0,1] 2 p

By Corollary 5.8 and the mountain pass theorem (see [11, Theorem 1.15]), / has a critical
2
value ¢ such that b < c < (% - %)u_m SP%Z and Eq. (2.9) has a positive solution v € H'(RV).
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Then, by Theorem 2.2, the function « defined by (2.1) is a positive solution of (1.1). To com-

plete the proof, it suffices to prove that u € E. Using the divergence theorem, Lemma 2.1

and (2.12), we get that
/ |Vu|? dx
RN
=—/ uludx
RN
N
_b(N+2) 0 Cb
=— u-y| 2@h < () )——v dx
/]RN Y ; ay\ 7 ly[?
[ty a1 ) S o (a5 ) - v
=— x| % vilx|” 2 x) - y - i X
RN AN e
N
d v Cp
=- v — A )—>——v dy
/]RN ;ay;( D ay) " b
V)2 G
=/ |V1/|2+u+—bv2 dy
RN |x[2 |x[?
Moreover, by Lemma 2.1 and (2.12), we get that
/ V(x)uzdxzf V(x)|x|’%(N’2)v2(|x|J7’x) dx:/ Vi (y)? dy. (6.2)
RN RN RN

Therefore, ||u|7 = |[v]|3 < co.
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