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Abstract
Using the Kuratowski measure of noncompactness and progressive estimation
method, we obtain the existence results of mild solutions for impulsive partial neutral
second-order functional integro-differential equations with infinite delay in Banach
spaces. The compactness condition of the impulsive term, some restrictive conditions
on a priori estimation and noncompactness measure estimation have been deleted.
Our conditions are simple and our results essentially improve and extend some
known results. As applications, some examples are provided to illustrate the obtained
results.
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1 Introduction
Consider the following impulsive partial neutral second-order functional integro-differ-
ential systems with infinite delay in a Banach space X:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d
dt [x

′(t) + g(t,xt ,
∫ t
 k(t, s,xs)ds)] = Ax(t) + g(t,xt ,

∫ t
 k(t, s,xs)ds),

t ∈ [,b],

�x(ti) = Ii (xti ), �x′(ti) = Ii (xti ), i = , , . . . ,n,

x = ϕ ∈ ß, x′() = z ∈ X,

()

⎧⎪⎪⎨⎪⎪⎩
d
dt [x

′(t) + g(t,xt ,x′
t)] = Ax(t) +

∫ t
 f (s,xs,x

′
s)ds, t ∈ [,b],

�x(ti) = Ii (xti ,x′
ti ), �x′(ti) = Ii (xti ,x′

ti ), i = , , . . . ,n,

x = ϕ ∈ ß, x′
 = ψ ∈ ß,

()

whereA is the infinitesimal generator of a strongly continuous cosine function of bounded
linear operators, (C(t))t∈R, on X. In both cases, the history xt ,x′

t : (–∞, ] → X, xt(θ ) =
x(t + θ ) and x′

t(θ ) = x′(t + θ ) belongs to some abstract phase space ß defined axiomatically;
g , f , gj, kj, I

j
i (j = , ) are appropriate functions;  = t < t < · · · < tn < tn+ = b are fixed

numbers and the symbol�x(ti) represents the jump of the function x at ti, which is defined
by �x(ti) = x(t+i ) – x(t–i ), i = , , . . . ,n.

© 2013 Xie; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.boundaryvalueproblems.com/content/2013/1/203
mailto:slxie@ahjzu.edu.cn
mailto:xieshengli200@sina.com
http://creativecommons.org/licenses/by/2.0


Xie Boundary Value Problems 2013, 2013:203 Page 2 of 19
http://www.boundaryvalueproblems.com/content/2013/1/203

The study of impulsive functional differential equations is linked to their utility in sim-
ulating processes and phenomena subject to short-time perturbations during their evolu-
tion. The perturbations are performed discretely and their duration is negligible in com-
parison with the total duration of the processes and phenomena. Now impulsive partial
neutral functional differential equations have become an important object of investigation
in recent years stimulated by their numerous applications to problems arising in mechan-
ics, electrical engineering, medicine, biology, ecology, etc. With regard to this matter, we
refer the reader to [–] and references therein. However, in order to obtain the existence
of solutions in these study papers, the compactness condition on the associated family of
operators and the impulsive term, some similar restrictive conditions on a priori estima-
tion,

μ = Kb

n∑
i=

(
Nci +Nci

)
< ,

Kb

 –μ

∫ t



(
Nmg(s) +Nmf (s)

)
ds <

∫ ∞

c

ds
W (s)

, ()

Kb

[
NLgb +

n∑
i=

(
NLi +NLi

)
+N lim inf

ξ→+

Wf (ξ )
ξ

∫ t


mf (s)

]
ds < , ()

are used. In [–], authors used a strict set contraction mapping fixed point theorem
without the compactness assumption on the associated family of operators to obtain the
existence results of system () when gi(t,xt) is not an integral operator and the following
system:

⎧⎪⎪⎨⎪⎪⎩
d
dt [x

′(t) + g(t,xt ,x′(t))] = Ax(t) + f (t,xt ,x′(t)), t ∈ [,b], t �= ti,

�x(ti) = Ii (xti ,x′(ti)), �x′(ti) = Ii (xti ,x′(ti)), i = , , . . . ,n,

x = ϕ ∈ ß, x′() = z,

()

improved and generalized some results in [, ]. However, the compactness condition of
the impulsive terms Iji (·), some similar restrictive conditions on a priori estimation (), ()
and the restrictive condition on measure of noncompactness estimation

Kb

[
NLgb +

n∑
i=

(
NLi + ÑLi

)]
+
∫ b


η(s)ds <  ()

are used in [–]. So far we have not seen the existence results of system ().
In this paper, using the Kuratowski measure of noncompactness and progressive es-

timation method, we obtain the existence results of mild solutions of impulsive partial
neutral second-order functional integro-differential systems () and (). The compactness
condition of impulsive terms Iji (·), some restrictive conditions on a priori estimation and
measure of noncompactness estimation (), () and () have been deleted. Our conditions
are simple and our results essentially improve and extend some corresponding results in
papers [, , , ]. As applications, some examples are provided to illustrate the obtained
results.

2 Preliminaries
In this paper, X is a Banach space with the norm ‖ · ‖ and A is the infinitesimal generator
of a strongly continuous cosine function of bounded linear operators, (C(t))t∈R, on X and
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S(t) is the sine function associated with (C(t))t∈R, which is defined by S(t)x =
∫ t
 C(s)xds,

x ∈ X, t ∈ R. We designate by N , N certain constants such that ‖C(t)‖ ≤ N and ‖S(t)‖ ≤
N for every t ∈ J = [,b]. We refer the reader to [] for the necessary concepts about
cosine functions. Next, we only mention a few results and notations needed to establish
our results. As usual we denote by [D(A)] the domain of A endowed with the graph norm
‖x‖A = ‖x‖+ ‖Ax‖, x ∈D(A). Moreover, the notation E stands for the space formed by the
vector x ∈ X, for which the function C(·)x is of class C. It was proved by Kisyński [] that
the space E endowed with the norm

‖x‖E = ‖x‖ + sup
≤t≤b

∥∥AS(t)x∥∥,x ∈ E,

is a Banach space. The operator-valued functionG(t) =
[ C(t) S(t)
AS(t) C(t)

]
is a strongly continuous

group of linear operators on the space E×X generated by the operatorA =
[  I
A 

]
defined

on D(A)× E. It follows from this that AS(t) : E → X is a bounded linear operator and that
AS(t)x →  (t → ) for each x ∈ E. Furthermore, if x : [,∞) → X is a locally integrable
function, then z(t) =

∫ t
 S(t – s)x(s)ds defines an E-valued continuous function. This is a

consequence of the fact that

∫ t


G(t – s)

[

x(s)

]
ds =

[∫ t
 S(t – s)x(s)ds∫ t
 C(t – s)x(s)ds

]

defines an (E ×X)-valued continuous function. Next, we denote N = supt∈J ‖AS(t)‖L(E,X),
in which L(E,X) stands for the Banach space of bounded linear operators from E into X,
and we abbreviate this notation to L(X) when E = X.
To describe appropriately our system (), we say that the function u : [σ , τ ] → X is

a normalized piecewise continuous function on [σ , τ ] if u is piecewise continuous and
left continuous on (σ , τ ]. We denote by PC([σ , τ ],X) the space formed by the normal-
ized piecewise continuous functions from [σ , τ ] into X. In particular, we introduce the
space PC formed by all functions u : [,b] → X such that u is continuous at t �= ti,
u(t–i ) = u(ti) and u(t+i ) exists for all i = , , . . . ,n. It is clear that PC endowed with the norm
‖x‖pc = supt∈J ‖x(t)‖ is a Banach space.
For x ∈ PC, let

x̃i(t) =

⎧⎨⎩x(t), t ∈ (ti, ti+],

x(t+i ), t = ti, i = , , . . . ,n.

Then x̃ ∈ C([ti, ti+],X). Moreover, forV ⊆ PC and i = , , . . . ,n, we use the notation Ṽi for
Ṽi = {̃xi : x ∈ V }. From Lemma . in [], we know that a set V ⊆ PC is relatively compact
if and only if each set Ṽi = {̃xi : x ∈ V } is relatively compact in C([ti, ti+],X) (i = , , . . . ,n).
For system (), we give the precise meaning of the derivative in (). We say that x ∈

PC is piecewise smooth if x is continuously differentiable at t �= ti, i = , , . . . ,n, and for
t = ti, i = , , . . . ,n, there are the right derivative x′(t+i ) = lims→+

x(ti+s)–x(ti)
s and the left

derivative x′(t–i ) = lims→–
x(ti+s)–x(ti)

s . Furthermore, we denote the space by PC = {x ∈ PC :
x′(t) is continuous at t �= ti,x′(t–i ) and x′(t+i ) exist, i = , , . . . ,n}. Then PC endowed with
the norm ‖u‖ = ‖u‖pc + ‖u′‖pc is a Banach space.
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In this work we employ an axiomatic definition of the phase space ß introduced by Hale
and Kato [] which appropriated to treat retarded impulsive differential equations. For
other abstract phase spaces, we can refer to [, ].

Definition . [] The phase space ß is a linear space of functions mapping (–∞, ] into
X endowed with a seminorm ‖ · ‖ß. We assume that ß satisfies the following axioms.
(A) If x : (–∞,σ + b] → X (b > ) is such that xσ ∈ ß and x|[σ ,σ+b] ∈ PC([σ ,σ + b],X),

then for every t ∈ [σ ,σ + b) the following conditions hold:
(i) xt is in ß,
(ii) ‖x(t)‖ ≤ H‖xt‖ß,
(iii) ‖xt‖ß ≤ K(t – σ ) sup{‖x(s)‖ : σ ≤ s ≤ t} +M(t – σ )‖xσ‖ß, where H >  is a

constant; K ,M : [,∞) → [,∞), K is continuous,M is locally bounded and
H , K ,M are independent of x(·).

(B) The space ß is complete.

In this paper we denote by α(·) the Kuratowskimeasure of noncompactness ofX, by αc(·)
the Kuratowski measure of noncompactness of C([,b],X) and by αpc(·) the Kuratowski
measure of noncompactness of PC.
The following lemma is easy to get.

Lemma. If the cosine function family C(t), t ∈R, is equicontinuous and η ∈ L([,b],R+),
then the set{∫ t


S(t – s)u(s)ds,

∥∥u(s)∥∥ ≤ η(s) for a.e. s ∈ [,b]
}

is equicontinuous for t ∈ [,b].

Lemma . [, ]
() IfW ⊂ PC([,b],X) is bounded, then α(W (t))≤ αpc(W ) for any t ∈ [,b], where

W (t) = {u(t) : u ∈W } ⊆ X .
() IfW is piecewise equicontinuous on [,b], then α(W (t)) is piecewise continuous for

t ∈ [,b] and αpc(W ) = sup{α(W (t)), t ∈ [,b]}.
() IfW ⊂ PC([,b],X) is bounded and piecewise equicontinuous, then α(W (t)) is

piecewise continuous for t ∈ [,b] and

α

(∫ t


W (s)ds

)
≤

∫ t


α
(
W (s)

)
ds, ∀t ∈ [,b],

where
∫ t
 W (s)ds = {∫ t

 x(s)ds : x ∈ W }.
() IfW ⊂ PC([,b],X) is bounded and the elements ofW ′ are equicontinuous on each

Ji = (ti, ti+] (i = , , . . . ,n), then

αpc (W ) =max
{
sup
t∈[,b]

α
(
W (t)

)
, sup
t∈[,b]

α
(
W ′(t)

)}
,

where αpc (·) denotes the Kuratowski measure of noncompactness in the space
PC([,b],X).
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Lemma . [] Let h : [,b] → E be an integrable function such that h ∈ PC. Then the
function v(t) =

∫ t
 C(t – s)h(s)ds belongs to PC, the function s→ AS(t – s)h(s) is integrable

on [, t] for t ∈ [,b] and

v′(t) = h(t) +A
∫ t


S(t – s)h(s)ds = h(t) +

∫ t


AS(t – s)h(s)ds, t ∈ [,b].

Lemma . [] Let V = {xn} ⊂ L([a,b],X). If there is σ ∈ L([a,b],R+) (R+ = [,+∞))
such that ‖xn(t)‖ ≤ σ (t) for x ∈ V and a.e. t ∈ [a,b], then α(V (t)) ∈ L([a,b],R+) and

α

({∫ t

a
xn(s)ds : n ∈N

})
≤ 

∫ t

a
α
(
V (s)

)
ds, t ∈ [a,b].

Lemma . [] (Mónch) Let X be a Banach space, � be a bounded open subset in X
and  ∈ �. Assume that the operator F : � → X is continuous and satisfies the following
conditions:
() x �= λFx, ∀λ ∈ (, ), x ∈ ∂�,
() D is relatively compact if D ⊂ co({} ∪ F(D)) for any countable set D ⊂ �.

Then F has a fixed point in �.

3 Main results
Firstly, we discuss the existence of mild solutions for the impulsive second-order sys-
tem ().

Definition . A function x : (–∞,b] → X is said to be a mild solution of system () if
x = ϕ, x(·)|J ∈ PC and

x(t) = C(t)ϕ() + S(t)
(
z + g(,ϕ, )

)
–
∫ t


C(t – s)g

(
s,xs,

∫ s


k(s, r,xr)dr

)
ds

+
∫ t


S(t – s)g

(
s,xs,

∫ s


k(s, r,xr)dr

)
ds +

∑
<ti<t

C(t – ti)Ii (xti )

+
∑
<ti<t

S(t – ti)Ii (xti ), t ∈ J . ()

For system (), we make the following hypotheses.
(H) The functions gj : J × ß×X → X (j = , ) satisfy the following conditions:
() For every (φ,x) ∈ ß×X , gj(·,φ,x) are strongly measurable and gj(t, ·, ·) are

continuous for every t ∈ J ;
() There are integrable functions pj : J →R

+ (j = , ) such that

∥∥gj(t,φ,x)∥∥ ≤ pj(t)
(‖φ‖ß + ‖x‖), t ∈ J ,φ ∈ ß,x ∈ X;

() For any bounded set V ⊂ PC, there are integrable functions γj : J →R
+ (j = , )

such that

α
(
gj
(
t,Vt ,V (t)

)) ≤ γj(t)
[
α(Vt) + α

(
V (t)

)]
, t ∈ J ,

where Vt = {xt : x ∈ V } ⊂ ß (t ∈ J).

http://www.boundaryvalueproblems.com/content/2013/1/203


Xie Boundary Value Problems 2013, 2013:203 Page 6 of 19
http://www.boundaryvalueproblems.com/content/2013/1/203

(H) kj : � × ß → X (j = , , � = {(t, s) ∈ J × J :  ≤ s ≤ t ≤ }) satisfies the following
conditions:
() For every φ ∈ ß, kj(·, ·,φ) are strongly measurable and kj(t, s, ·) are continuous for

every (t, s) ∈ �;
() There are continuous functions qj :� →R

+ (j = , ) such that

∥∥kj(t, s,φ)∥∥ ≤ qj(t, s)‖φ‖ß, (t, s) ∈ �,φ ∈ ß;

() For any bounded set V ⊂ PC, there are continuous functions μj :� →R
+ (j = , )

such that

α
(
kj(t, s,Vs)

) ≤ μj(t, s)α(Vs), (t, s) ∈ �.

(H) The functions I
j
i : ß → X (i = , . . . ,n, j = , ) are continuous and there are constants

cji ≥ , dj
i >  such that

∥∥Iji (φ)∥∥ ≤ cji‖φ‖ß + dj
i, φ ∈ ß.

Let the function y : (–∞,b]→ X be defined by y = ϕ and

y(t) = C(t)ϕ() + S(t)
(
z + g(,ϕ, )

)
, t ∈ J .

Theorem . Suppose that the cosine function family C(t), t ∈ R, is equicontinuous, g,
g satisfy the condition (H), (H) and (H) are satisfied. Then the impulsive second-order
system () has at least one mild solution.

Proof Let S(b) be the space S(b) = {x : (–∞,b] → X,x = ,x|J ∈ PC} endowed with the
supremum norm ‖ · ‖b. The map F : S(b)→ S(b) is defined by

(Fx)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

, t ≤ ,

–
∫ t
 C(t – s)g(s,xs + ys,

∫ s
 k(s, r,xr + yr)dr)ds

+
∫ t
 S(t – s)g(s,xs + ys,

∫ s
 k(s, r,xr + yr)dr)ds

+
∑

<ti<t C(t – ti)Ii (xti + yti )

+
∑

<ti<t S(t – ti)Ii (xti + yti ), t ∈ J .

()

Clearly, ‖xt + yt‖ß ≤ ‖xt‖ß + supt∈J ‖yt‖ß ≤ Kb‖x‖t + M, where Kb = sup≤t≤b K(t), M =
supt∈J ‖yt‖ß, ‖x‖t = sup≤s≤t ‖x(s)‖. Thus F is well defined with values in S(b). In addition,
from the axioms of phase space, the Lebesgue dominated convergence theorem and the
conditions (H), (H) and (H), we can show that F is continuous (see []). It is easy to see
that if x is a fixed point of F , then x + y is a mild solution of system ().
Firstly, we show that the set

� =
{
x ∈ S(b) : x = λFx for some λ ∈ (, )

}
is bounded. In fact, if x ∈ �, then there exists a λ ∈ (, ) such that x = λFx.

http://www.boundaryvalueproblems.com/content/2013/1/203
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When t ∈ J = [, t], notice that ‖xt‖ß ≤ Kb‖x‖t and ‖x‖t is continuous nondecreasing
on J. We have, by () and (H),

∥∥x(t)∥∥ ≤ N
∫ t


p(s)

(
‖xs + ys‖ß +

∫ s


q(s, r)‖xr + yr‖ß dr

)
ds

+N
∫ t


p(s)

(
‖xs + ys‖ß +

∫ s


q(s, r)‖xr + yr‖ß dr

)
ds

≤ NM
∫ t



(
p(s) +

∫ s


q(s, r)dr

)
ds

+NKb

∫ t



(
p(s) +

∫ s


q(s, r)dr

)
‖x‖s ds

+NM
∫ t



(
p(s) +

∫ s


q(s, r)dr

)
ds

+NKb

∫ t



(
p(s) +

∫ s


q(s, r)dr

)
‖x‖s ds

≤ (N +N)M
∫ t



(
p(s) + p(s) +

∫ s


q(s, r)dr +

∫ s


q(s, r)dr

)
ds

+ (N +N)Kb

∫ t



(
p(s) + p(s) +

∫ s


q(s, r)dr +

∫ s


q(s, r)dr

)
‖x‖s ds. ()

Consequently,

‖x‖t ≤ (N +N)M
∫ t



(
p(s) + p(s) +

∫ s


q(s, r)dr +

∫ s


q(s, r)dr

)
ds

+ (N +N)Kb

∫ t



(
p(s) + p(s) +

∫ s


q(s, r)dr +

∫ s


q(s, r)dr

)
‖x‖s ds. ()

By well-known Gronwall’s lemma and (), there are constants G >  independent of x
and λ ∈ (, ) such that ‖x(t)‖ ≤ G and ‖xt‖ß ≤ KbG, t ∈ J. It follows from this and the
condition (H) that

∥∥Ij(xt + yt )
∥∥ ≤ cj(KbG +M) + dj

 = δj (j = , ),∥∥x(t+ )∥∥ =
∥∥x(t) + I (xt + yt )

∥∥ ≤ G + δ.

Nextly, when t ∈ J = (t, t], let

u(t) =

⎧⎨⎩x(t), t ∈ (t, t],

x(t+ ), t = t.

Then u ∈ C([t, t],X). Similar to (), we get

∥∥u(t)∥∥ ≤ (N +N)M
∫ t



(
p(s) + p(s) +

∫ s


q(s, r)dr +

∫ s


q(s, r)dr

)
ds

+ (N +N)KbG

∫ t



(
p(s) + p(s) +

∫ s


q(s, r)dr +

∫ s


q(s, r)dr

)
ds

http://www.boundaryvalueproblems.com/content/2013/1/203
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+ (N +N)Kb

∫ t

t

(
p(s) + p(s) +

∫ s


q(s, r)dr +

∫ s


q(s, r)dr

)
‖u‖s ds

+N
∥∥I (xt + yt )

∥∥ +N
∥∥I (xt + yt )

∥∥, ()

where ‖x‖t ≤ sup≤s≤t ‖x(s)‖ + supt≤s≤t ‖u(s)‖ =: ‖x‖t + v(t). Equation () implies that

v(t)≤ Nδ +Nδ + (N +N)(M +KbG)
∫ t


a(s)ds

+ (N +N)Kb

∫ t

t
a(s)v(s)ds, t ∈ [t, t], ()

where a(s) = p(s) + p(s) +
∫ s
 q(s, r)dr +

∫ s
 q(s, r)dr. Using Gronwall’s lemma once again

and (), there is a constant G >  independent of v and λ ∈ (, ) such that v(t) ≤ G,
t ∈ [t, t]. Thence ‖x(t)‖ ≤ G and ‖xt‖ß ≤ Kb(G +G) for t ∈ J.
It is similar to the proof above, there is a constant Gi >  independent of x and λ ∈ (, )

such that ‖x(t)‖ ≤ Gi, t ∈ Ji (i = , , . . . ,n). Let G = max{G,G, . . . ,Gn}, then ‖x(t)‖ ≤ G,
t ∈ J , i.e., � is bounded.
Lastly, we verify that all the conditions of Lemma . are satisfied. Let R >G and

�R =
{
x ∈ S(b) : ‖x‖b < R

}
.

Then �R is a bounded open set and  ∈ �. Since R > G, we know that x �= λFx for any
x ∈ ∂�R and λ ∈ (, ).
Nextly, let V ⊂ �R be a countable set and V ⊂ co({} ∪ F(V )). Then

V (t) ⊂ co
({} ∪ F(V )(t)

)
, t ∈ [,b]. ()

It follows from (H)-(H) and Lemma . that F(V ) is equicontinuous on every interval
J i = [ti, ti+] (i = , , . . . ,n), which together with () implies that V is equicontinuous on
every J i (i = , , . . . ,n).
When t ∈ J = [, t], by the property of noncompactness measure, (H)(), (H)() and

Lemma ., we have

α
(
V (t)

) ≤ α
(
F(V )(t)

)
≤ N

∫ t


α

(
g
(
s,Vs + ys,

∫ s


k(s, r,Vr + yr)dr

))
ds

+ N
∫ t


α

(
g
(
s,Vs + ys,

∫ s


k(s, r,Vr + yr)dr

))
ds

≤ (N +N)
∫ t



[(
γ(s) + γ(s)

)
α(Vs) + 

∫ s



(
μ(s, r) +μ(s, r)

)
α(Vr)dr

]
ds

≤ (N +N)Kb

∫ t



[ ∑
k=

γk(s) + 
∫ s



∑
i=

μk(s, r)dr

]
sup
≤τ≤s

α
(
V (τ )

)
ds, ()

http://www.boundaryvalueproblems.com/content/2013/1/203


Xie Boundary Value Problems 2013, 2013:203 Page 9 of 19
http://www.boundaryvalueproblems.com/content/2013/1/203

where α(Vt) ≤ sup≤s≤t α(V (s)). Letm(t) = sup≤s≤t α(V (s)), t ∈ J. Lemma . implies that
m ∈ C(J,R+) and

m(t)≤ (N +N)Kb

∫ t



[
γ(s) + γ(s) + 

∫ s



(
μ(s, r) +μ(s, r)

)
dr

]
m(s)ds, t ∈ J.

From this and Gronwall’s lemma, we know thatm(t) =  and α(V (t)) = , t ∈ J. Therefore
V is a relative compact set in C(J,X). Since

 ≤ α(Vt )≤ αc(V ) = sup
≤t≤t

α
(
V (t)

)
= 

and Ij(·) is continuous, α(Vt + yt ) ≤ α(Vt ) = , α(Ij(Vt + yt )) =  (j = , ).
When t ∈ J = [t, t], similar to (), it is easy to get

α
(
V (t)

) ≤ (N +N)Kb

∫ t


γ (s) sup

≤τ≤s
α
(
V (τ )

)
ds

+Nα
(
I (Vt + yt )

)
+Nα

(
I (Vt + yt )

)
≤ (N +N)Kb

∫ t

t
γ (s) sup

t≤τ≤s
α
(
V (τ )

)
ds, t ∈ J, ()

where γ (s) = γ(s) + γ(s) + 
∫ s
 (μ(s, r) + μ(s, r))dr. Let q(t) = supt≤s≤t α(V (s)), t ∈ J.

Equation () implies that

q(t) ≤ (N +N)
∫ t

t
γ (s)q(s)ds, t ∈ J.

Therefore α(V (t)) = , t ∈ J and V is a relative compact set in C(J,X).
Similarly, we can show that V is a relative compact set in C(J i,X) (i = , , . . . ,n), so V is

a relative compact set in S(b). Lemma . concludes that F has a fixed point in �R. Let x
be a fixed point of F on S(b). Then z = x + y is a mild solution of system (). �

Nextly, we discuss the existence of mild solutions for the impulsive system ().

Definition . A function x : (–∞,b] → X is said to be a mild solution of system () if
x = φ, x′

 = ψ , x(·)|J ∈ PC and

x(t) = C(t)φ() + S(t)
(
ψ() + g(,φ,ψ)

)
–
∫ t


C(t – s)g

(
s,xs,x′

s
)
ds

+
∫ t


S(t – s)

∫ s


f
(
r,xr ,x′

r
)
dr ds +

∑
<ti<t

C(t – ti)Ii
(
xti ,x

′
ti

)
+

∑
<ti<t

S(t – ti)Ii
(
xti ,x

′
ti

)
, t ∈ J . ()
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Differentiate () to get

x′(t) = AS(t)φ() +C(t)
(
ψ() + g(,φ,ψ)

)
– g

(
t,xt ,x′

t
)

–
∫ t


AS(t – s)g

(
s,xs,x′

s
)
ds +

∫ t


C(t – s)

∫ s


f
(
r,xr ,x′

r
)
dr ds

+
∑
<ti<t

AS(t – ti)Ii
(
xti ,x

′
ti

)
+

∑
<ti<t

C(t – ti)Ii
(
xti ,x

′
ti

)
, t ∈ J . ()

Let functions y, y′ : (–∞,b]→ X be defined by y = ϕ, y′
 = ψ and

y(t) = C(t)ϕ() + S(t)ψ(), y′(t) = AS(t)ϕ() +C(t)ψ(), t ∈ J .

Clearly,

‖yt‖ß ≤ Kb‖y‖b +Mb‖ϕ‖ß =M,
∥∥y′

t
∥∥
ß ≤ Kb

∥∥y′∥∥
b +Mb‖ψ‖ß =M′,

where ‖y‖b = sup≤t≤b ‖y(t)‖, ‖y′‖b = sup≤t≤b ‖y′(t)‖.
Let S(b) be the space S(b) = {x : (–∞,b] → X : x = ,x′

 = ,x(·)|J ∈ PC} endowed
with the supremum norm ‖ · ‖b.
We make the following hypotheses for convenience.
(Hf ) f : J × ß× ß→ X satisfies the following conditions:
() For every x ∈ S(b), the function t → f (t,xt ,x′

t) is strongly measurable and f (t, ·, ·) is
continuous for every t ∈ J ;

() There is an integrable function p : J →R
+ such that

∥∥f (t,u, v)∥∥ ≤ p(t)
(‖u‖ß + ‖v‖ß

)
, t ∈ J ,u, v ∈ ß;

() For any bounded set V ⊂ PC, there is an integrable function μ : J →R
+ such that

α
(
f
(
t,Vt ,V ′

t
)) ≤ μ(t)

(
α(Vt) + α

(
V ′
t
))
, t ∈ J ,

where Vt = {xt : x ∈ V }, V ′
t = {x′

t : x′ ∈ V ′} ⊂ ß (t ∈ J), V ′ ⊂ PC.
(Hg ) g : J × ß× ß→ E satisfies the following conditions:
() The function g(·) is continuous, there are constants c > , d ≥  such that cKb <  and

∥∥g(t,u, v)∥∥E ≤ c
(‖u‖ß + ‖v‖ß

)
+ d, t ∈ J ,u, v ∈ ß;

() For every bounded set Q⊂ S(b), the set of functions {(ω̃x)i(t) : x ∈Q} is uniformly
equicontinuous on J i = [ti, ti+] for every i = , , . . . ,n, where ωx(t) = g(t,xt ,x′

t);
() For any bounded set V ⊂ PC, α(g(t,Vt ,V ′

t )) ≤ c(α(Vt) + α(V ′
t )), t ∈ J .

(HI ) The functions Ii : ß× ß → E, Ii : ß× ß → X (i = , . . . ,n) are continuous and there
are constants cji ≥ , dj

i ≥  such that

∥∥Ii (u, v)∥∥E ≤ ci
(‖u‖ß + ‖v‖ß

)
+ d

i ,
∥∥Ii (u, v)∥∥ ≤ ci

(‖u‖ß + ‖v‖ß
)
+ d

i , u, v ∈ ß.

Theorem. Let the conditions (Hf ), (Hg ) and (HI ) be satisfied, the cosine function family
C(t), t ∈R, be equicontinuous and ϕ() ∈ E. Then system () has at least one mild solution.

http://www.boundaryvalueproblems.com/content/2013/1/203
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Proof Let the function z : (–∞, ] → X be defined by z = x′
, z(t) = x′(t), t ∈ J , the map

� = (�,�) : S(b)× S(b)→ S(b) be defined by

�(x, z)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

, t ≤ ,

S(t)g(,ϕ,ψ) –
∫ t
 C(t – s)g(s,xs + ys, zs + y′

s)ds

+
∫ t
 S(t – s)

∫ s
 f (r,xr ,x

′
r)dr ds

+
∑

<ti<t C(t – ti)Ii (xti + yti , zti + y′
ti )

+
∑

<ti<t S(t – ti)Ii (xti + yti , zti + y′
ti ), t ∈ J ,

()

and �(x, z)′(t) = �(x, z)(t),

�(x, z)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, t ≤ ,

C(t)g(,ϕ,ψ) – g(t,xt + yt , zt + y′
t)

–
∫ t
 AS(t – s)g(s,xs + ys, zs + y′

s)ds

+
∫ t
 C(t – s)

∫ s
 f (r,xr ,x

′
r)dr ds

+
∑

<ti<t AS(t – ti)Ii (xti + yti , zti + y′
ti )

+
∑

<ti<t C(t – ti)Ii (xti + yti , zti + y′
ti ), t ∈ J .

()

The product space S(b)× S(b) is endowed with the norm ‖(x, z)‖b = ‖x‖b + ‖z‖b. Then �,
� are well defined and with values in S(b). In addition, from the axioms of phase space,
the Lebesgue dominated convergence theorem and the conditions (Hf ), (Hg ) and (HI ), we
can show that � = (�,�) is continuous. It is easy to see that if (x, z) is a fixed point of �,
then x + y is a mild solution of system ().
Firstly, we show that the set

� =
{
(x, z) ∈ S(b)× S(b) : (x, z) = λ�(x, z) for some λ ∈ (, )

}
is bounded. If x ∈ �, there exists a λ ∈ (, ) such that x = λ�(x, z) and z = λ�(x, z).
When t ∈ J = [, t], it follows from (), () and (Hf )(), (Hg )(), (HI ) that

∥∥x(t)∥∥ ≤ ∥∥�(x, z)(t)
∥∥ ≤ N

∥∥g(,ϕ,ψ)
∥∥
E

+ (N +N)
∫ t



(∥∥g(s,xs + ys, zs + y′
s
)∥∥ + ∫ s



∥∥f (r,xr + yr , zr + y′
r
)∥∥dr)ds

≤ N
∥∥g(,ϕ,ψ)

∥∥
E +N

∫ t



[
c
(‖xs‖ß + ‖zs‖ß +M +M′) + d

]
ds

+N
∫ t



∫ s


p(r)

(‖xr‖ß + ‖zr‖ß +M +M′)dr ds
≤ N

∥∥g(,ϕ,ψ)
∥∥
E +

(
M +M′)∫ t



(
Nc +N

∫ s


p(r)dr

)
ds +Nbd

+ (Nc +N)Kb

∫ t



(
 +

∫ s


p(r)dr

)(‖x‖s + ‖z‖s
)
ds, ()
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∥∥z(t)∥∥ ≤ ∥∥�(x, z)(t)
∥∥ ≤ N

∥∥g(,ϕ,ψ)
∥∥
E + c

(‖xt + yt‖ß +
∥∥zt + y′

t
∥∥
ß

)
+ d

+
(
M +M′)∫ t



(
Nc +N

∫ s


p(r)dr

)
ds +Nbd

+ (Nc +N)Kb

∫ t



(
 +

∫ s


p(r)dr

)(‖x‖s + ‖z‖s
)
ds

≤ N
∥∥g(,ϕ,ψ)

∥∥
E +

(
M +M′)[c + ∫ t



(
Nc +N

∫ s


p(r)dr

)
ds
]

+ (Nb + )d + cKb
(‖x‖t + ‖z‖t

)
+ (Nc +N)Kb

∫ t



(
 +

∫ s


p(r)dr

)(‖x‖s + ‖z‖s
)
ds. ()

Equations () and () imply that

‖x‖t + ‖z‖t ≤ 
 – cKb

[
(N +N)

∥∥g(,ϕ,ψ)
∥∥
E + (Nb +Nb + )d

+
(
M +M′)(c + (N +N)ct + (N +N)

∫ t



∫ s


p(r)dr ds

)]

+
(Nc +N +Nc +N)Kb

 – cKb

∫ t



(
 +

∫ s


p(r)dr

)(‖x‖s + ‖z‖s
)
ds. ()

Since ‖x‖t + ‖z‖t ∈ C(J,X), by Gronwall’s lemma and (), there is a constantG >  such
that ‖x‖t + ‖z‖t ≤ G, t ∈ J. Therefore ‖x(t)‖ + ‖z(t)‖ ≤ G, t ∈ J and ‖xt‖ß ≤ KbG,
‖zt‖ß ≤ KbG, t ∈ J. It follows from this and the condition (HI ) that∥∥Ij(xt + yt , zt + y′

t

)∥∥
E ≤ cj

(
KbG +M +M′) + dj

 =: ηj (j = , ),∥∥x(t+ )∥∥ =
∥∥x(t) + I

(
xt + yt , zt + y′

t

)∥∥ ≤ G + η,∥∥z(t+ )∥∥ = ∥∥z(t) + I
(
xt + yt , zt + y′

t

)∥∥ ≤ G + η.

Nextly, when t ∈ J = (t, t], let

u(t) =

⎧⎨⎩x(t), t ∈ (t, t],

x(t+ ), t = t,
v(t) =

⎧⎨⎩z(t), t ∈ (t, t],

z(t+ ), t = t.

Then u, v ∈ C([t, t],X). Similar to () and (), we get

∥∥u(t)∥∥ ≤ N
∥∥g(,ϕ,ψ)

∥∥
E + (N +N)

∫ t



(
c +

∫ s


p(r)dr

)(‖x‖s + ‖z‖s +M +M′)ds
+Nbd +N

∥∥I(xt + yt , zt + y′
t

)∥∥
E +N

∥∥I (xt + yt , zt + y′
t

)∥∥
≤ N

∥∥g(,ϕ,ψ)
∥∥
E + (N +N)

[(
KbG +M +M′)∫ t



(
c +

∫ s


p(r)dr

)
ds

+Nbd +
(
KbG +M +M′)∫ t

t

(
c +

∫ s


p(r)dr

)
ds
]
+Nη +Nη

+ (N +N)Kb

∫ t

t

(
c +

∫ s


p(r)dr

)(
sup

t≤τ≤s

∥∥u(τ )∥∥ + sup
t≤τ≤s

∥∥v(τ )∥∥)ds, ()
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∥∥v(t)∥∥ ≤ N
∥∥g(,ϕ,ψ)

∥∥
E + c

(‖xt + yt‖ß +
∥∥zt + y′

t
∥∥
ß

)
+ d +Nη +Nη

+Nbd + (N +N)
∫ t



(
c +

∫ s


p(r)dr

)(
Kb‖x‖s +Kb‖z‖s +M +M′)ds

≤ N
∥∥g(,ϕ,ψ)

∥∥
E + c

(
KbG +M +M′) +Nη +Nη + (Nb + )d

+ (N +N)
(
KbG +M +M′)∫ t



(
c +

∫ s


p(r)dr

)
ds

+ (N +N)Kb

∫ t

t

(
c +

∫ s


p(r)dr

)(
sup

t≤τ≤s

∥∥u(τ )∥∥ + sup
t≤τ≤s

∥∥v(τ )∥∥)ds
+ cKb

(
sup

t≤s≤t

∥∥u(s)∥∥ + sup
t≤s≤t

∥∥v(s)∥∥). ()

We have, by () and (),

sup
t≤s≤t

∥∥u(s)∥∥ + sup
t≤s≤t

∥∥v(s)∥∥
≤ e + e

 – cKb
+
(N +N +N)Kb

 – cKb

·
∫ t

t

(
c +

∫ s


p(r)dr

)(
sup

t≤τ≤s

∥∥u(τ )∥∥ + sup
t≤τ≤s

∥∥v(τ )∥∥)ds, t ∈ [t, t], ()

where

e = (N +N)
[∥∥g(,ϕ,ψ)

∥∥
E + η + η +

(
KbG +M +M′)∫ t



(
c +

∫ s


p(r)dr

)
ds
]
,

e =
(
KbG +M +M′)[c + (N +N)

∫ t



(
c +

∫ s


p(r)dr

)
ds
]

+N(bd + η) +N(bd + η).

Using Gronwall’s lemma once again and (), there is a constant G >  such that ‖u(t)‖+
‖v(t)‖ ≤ G, t ∈ [t, t], and so ‖x(t)‖ + ‖z(t)‖ ≤ G, t ∈ J.
It is similar to the proof above, there are constantsGi >  such that ‖x(t)‖+ ‖x′(t)‖ ≤ Gi,

t ∈ Ji (i = , , . . . ,n). Let G =max{G,G, . . . ,Gn}, then ‖(x, z)‖b ≤ G and � is bounded.
Let R >G and

�R =
{
(x, z) ∈ S(b)× S(b) :

∥∥(x, z)∥∥b < R
}
.

Then �R is a bounded open set and (, ) ∈ �. Since R >G, we know that (x, z) �= λ�(x, z)
for any (x, z) ∈ ∂�R and λ ∈ (, ).
Suppose that V ⊂ �R is a countable set and V ⊂ co({(, )} ∪ �(V )). Let

V =
{
x ∈ S(b) : ∃z ∈ S(b), (x, z) ∈ V

}
, V =

{
z ∈ S(b) : ∃x ∈ S(b), (x, z) ∈ V

}
.

Then we have

V ⊂ V ×V ⊂ co
({} ∪ �(V )

)× co
({} ∪ �(V )

)
⊂ co

({} ∪ �(V ×V)
)× co

({} ∪ �(V ×V)
)
. ()
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It follows from (), () and (Hg )() that �j((Ṽ)i × (Ṽ)i) (j = , ) are equicontinuous on
every interval J i (i = , , . . . ,n), which together with () implies that (Ṽk)i (k = , ) are
equicontinuous on every interval J i.
In the following, we verify that the set V, V is relatively compact in PC. Without loss

of generality, we do not distinguish Vk|Ji and Ṽi, where Vk|Ji (k = , ) is the restriction of
Vk on Ji = (ti, ti+].
When t ∈ J = [, t], by the condition (Hf )(), (Hg )() and Lemma ., we have

α
(
V(t)

) ≤ α
(
�(V ×V)(t)

)
≤ N

∫ t


α
(
g
(
s,Vs + ys,Vs + y′

s
))
ds

+ N
∫ t


α

(∫ s


f
(
r,Vr + yr ,Vr + y′

r
)
dr

)
ds

≤ (N +N)
∫ t



(
c + 

∫ s


μ(r)dr

)(
α(Vs + ys) + α

(
Vs + y′

s
))
ds

≤ (N +N)Kb

∫ t



(
c + 

∫ s


μ(r)dr

)
×

(
sup
≤τ≤s

α
(
V(τ )

)
+ sup

≤τ≤s
α
(
V(τ )

))
ds, ()

α
(
V(t)

) ≤ α
(
�(V ×V)(t)

) ≤ α
(
g
(
t,Vt + yt ,Vt + y′

t
))

+ (N +N)Kb

∫ t



(
c + 

∫ s


μ(r)dr

)
×

(
sup
≤τ≤s

α
(
V(τ )

)
+ sup

≤τ≤s
α
(
V(τ )

))
ds

≤ cKb

(
sup
≤s≤t

α
(
V(s)

)
+ sup

≤s≤t
α
(
V(s)

))
+ (N +N)Kb

∫ t



(
c + 

∫ s


μ(r)dr

)
×

(
sup
≤τ≤s

α
(
V(τ )

)
+ sup

≤τ≤s
α
(
V(τ )

))
ds. ()

Sincemj(t) =: sup≤s≤t α(Vj(s)) (j = , ) are continuous nondecreasing on J, () and ()
imply that

m(t) +m(t) ≤ (N +N +N)Kb

 – cKb

∫ t



(
c +

∫ s


μ(r)dr

)(
m(s) +m(s)

)
ds. ()

By Gronwall’s lemma and (), we have α(Vk(t)) =  (k = , ), t ∈ J. Lemma . im-
plies that Vk (k = , ) is relatively compact in C(J,X). Note that α(Vjt + yt ) ≤ α(Vjt ) ≤
Kb sup≤s≤t α(Vj(s)) =  and Ij(·, ·) (j = , ) is continuous, we have

α
(
I
(
Vt + yt ,Vt + y′

t

))
= α

(
I
(
Vt + yt ,Vt + y′

t

))
= .
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When t ∈ J = [t, t], it is similar to () and (), we get

α
(
V(t)

) ≤ (N +N)Kb

∫ t

t

(
c + 

∫ s


μ(r)dr

)
×

(
sup

t≤τ≤s
α
(
V(τ )

)
+ sup

t≤τ≤s
α
(
V(τ )

))
ds, ()

α
(
V(t)

) ≤ (N +N)Kb

∫ t

t

(
c + 

∫ s


μ(r)dr

)
×

(
sup

t≤τ≤s
α
(
V(τ )

)
+ sup

t≤τ≤s
α
(
V(τ )

))
ds

+ cKb

[
sup

t≤s≤t
α
(
V(s)

)
+ sup

t≤s≤t
α
(
V(s)

)]
. ()

Equations () and () imply that

sup
t≤s≤t

α
(
V(s)

)
+ sup

t≤s≤t
α
(
V(s)

)
≤ (N +N +N)Kb

 – cKb

∫ t

t

(
c + 

∫ s


μ(r)dr

)(
sup

t≤τ≤s
α
(
V(τ )

)
+ sup

t≤τ≤s
α
(
V(τ )

))
ds.

Consequently, α(Vk(t)) =  (k = , ), t ∈ J. Lemma . implies that Vk (k = , ) are rela-
tively compact in C(J,X).
Similarly, we can show that Vk (k = , ) are relatively compact in C(J i,X) (i = , , . . . ,n).

So Vk (k = , ) are relatively compact in S(b). In view of Lemma ., we conclude that �

has a fixed point in �R. Let (x, z) be a fixed point of � on S(b). Then x+ y is a mild solution
of system (). �

Theorem . Let the conditions (Hf ), (Hg )() and (HI ) be satisfied, the cosine function
family C(t), t ∈R, be equicontinuous and ϕ() ∈ E. Furthermore, suppose that the following
condition is satisfied:
(Hg )(′) The function g(·) is continuous and g(t, ·) satisfies the Lipschitz condition, that

is, there is a constant c >  such that

∥∥g(t,u, v) – g(t,u, v)
∥∥
E ≤ c

(‖u – u‖ß + ‖v – v‖ß
)
, t ∈ J ,uj, vj ∈ ß (j = , ),

and cKb < . Then system () has at least one mild solution.

Proof We have, by the condition (Hg )(′),

∥∥g(t,u, v)∥∥E ≤ c
(‖u‖ß + ‖v‖ß

)
+
∥∥g(t, , )∥∥E , t ∈ J ,u, v ∈ ß (j = , ),

α
(
g
(
t,Vt ,V ′

t
)) ≤ c

(
α(Vt) + α

(
V ′
t
))
, t ∈ J .

The rest of the proof is similar to the proof of Theorem ., we omit it. �

Remark . The similar restrictive conditions (), () and () were used in [, , , ]
even if cKb < .
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4 Examples
Let X = L([,π ]) and let A be the operator given by Af = f ′′ with the domain

D(A) =
{
f ∈ X : f , f ′ are absolutely continuous, f ′′ ∈ X, f () = f (π ) = 

}
.

It is well known thatA is the infinitesimal generator of a strongly continuous cosine family
C(t), t ∈ R, on X. Moreover, A has discrete spectrum, the eigenvalues are –n,n ∈N, with
corresponding normalized eigenvectors zn(ξ ) :=

√

π
sin(nξ ), and the following properties

hold:
(a) {zn : n ∈N} is an orthonormal basis of X .
(b) For f ∈ X , C(t)f =

∑∞
n= cos(nt)(f ; zn)zn. Moreover, it follows from this expression

that S(t)f =
∑∞

n=
sin(nt)

n (f ; zn)zn, that S(t) is compact for t >  and that ‖C(t)‖ =  and
‖S(t)‖ =  for every t ∈R. Additionally, we observe that the operators C(kπ ),
k ∈N, are not compact.

(c) If � denotes the group of translations on X defined by �(t)x(ξ ) = x̃(ξ + t), where x̃ is
the extension of x with period π , then C(t) = 

 (�(t) +�(–t)); A = B, where B is
the infinitesimal generator of the group � and E = {x ∈H(,π ) : x() = x(π ) = };
see [] for details. In particular, we observe that the inclusion ic : E → X is compact.

In the next application, ß should be the phase space ß = C × L(ρ,X) in [], where ρ :
(–∞, ] →R is a positive Lebesgue integrable function.We can takeH = ,M(t) = γ (–t) 
and K(t) =  + (

∫ 
–t ρ(θ )dθ )  for t ≥ .

Example . Consider the partial neutral functional integro-differential system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂t (

∂
∂t u(t, ξ ) +

∫ t
–∞ h(s – t)u(s, ξ )ds)

= ∂

∂ξ
u(t, ξ ) +

∫ t
–∞ F(t, s – t, ξ ,u(s, ξ ))ds,

u(t, ) = u(t,π ) = , t ∈ [,b],

u(θ , ξ ) = ϕ(θ , ξ ), θ ∈ (–∞, ], ξ ∈ [,π ],
∂
∂t u(, ξ ) = z(ξ ), ξ ∈ [,π ],

�u(ti) =
∫ ti
–∞ qi(s – ti)u(s, ξ )ds,

�u′(ti) =
∫ ti
–∞ qi(s – ti)u(s, ξ )ds, i = , , . . . ,n,

()

where h(·) ∈ L∞(R), ϕ ∈ C × L(ρ,X), z ∈ X,  < t < · · · < tn < b and
(i) The function F :R →R is continuous and there is a continuous function

μ :R →R such that |F(t, s, ξ ,x)| ≤ μ(t, s)|x|, (t, s, ξ ,x) ∈R
.

(ii) The function qi ∈ C(R+,R) and ci = (
∫ 
–∞ qi (θ )ρ–(θ )dθ )  < ∞, i = , , . . . ,n.

(iii) The function qi ∈ C(R+,R) and ci = (
∫ 
–∞ qi (θ )ρ–(θ )dθ )  <∞, i = , , . . . ,n.

(iv) The function ϕ defined by ϕ(θ )(ξ ) =: φ(θ , ξ ) belongs to ß.
Assuming that the conditions (i)-(iv) are satisfied, then system () can be modeled as

the abstract impulsive Cauchy problem () by defining

g(t,ϕ,x)(ξ ) =
∫ –t

–∞
h(s)ϕ(s, ξ )ds + x(ξ ),

g(t,ϕ)(ξ ) =
∫ 

–∞
F
(
t, s, ξ ,ϕ(s, ξ )

)
ds,
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Ii (ϕ)(ξ ) =
∫ 

–∞
qi(s)ϕ(s, ξ )ds (j = , ),

Ii (ϕ)(ξ ) =
∫ 

–∞
qi(s)ϕ(s, ξ )ds (j = , ),

where

x(ξ ) =
∫ t


h(s – t)ϕ(, ξ )ds, k(t, s,ϕ)(ξ ) = h(s – t)ϕ(, ξ ).

Moreover, g(t, ·), Iji(·) (i = , , . . . ,n, j = , ) and k(t, s, ·) are bounded linear operators,
‖Iji‖ ≤ cji (i = , , . . . ,n, j = , ),

∥∥g(t,ϕ,x)∥∥ ≤
(∫ –t

–∞
a(s)ρ–(s)ds

) 
 ‖ϕ‖ß + ‖x‖,∥∥g(t,ϕ)∥∥ ≤ d(t)‖ϕ‖ß,∥∥k(t, s,ϕ)∥∥ ≤ ∥∥a(·)∥∥∞‖ϕ‖ß, t ∈ [,b],

where d(t) = (
∫ 
–∞ μ(t, s)ρ–(s)ds)  . If the cosine function family C(t), t ∈ R, is equicon-

tinuous, all the conditions of Theorem . are satisfied (see [] for details), so system ()
has at least one mild solution. However, if we select ρ(s) = e–s, q(s) = s in (iii), we have
c = (

∫ 
–∞ ses ds)  =

√
. But

[
 +

(∫ 

–b
ρ(t)dt

) 

][

bmax

{(∫ –t

–∞
a(s)ρ–(s)ds

) 

, 
}
+

n∑
i=

(
ci + ci

)]
> ,

the restrictive conditions (), () and () do not hold. Thus, our results are different from
the corresponding known results.

Example . Consider the partial neutral functional integro-differential system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂t (

∂
∂t u(t, ξ ) +

∫ t
–∞

∫ π

 b(s – t,η, ξ )u(s,η)dηds)

= ∂

∂ξ
u(t, ξ ) +

∫ t

∫ 
–∞ μ(s, θ )u′(s + θ , ξ )dθ ds,

u(t, ) = u(t,π ) = , t ∈ J = [,b],

u(θ , ξ ) = ϕ(θ , ξ ), θ ∈ (–∞, ], ξ ∈ [,π ],
∂
∂t u(θ , ξ ) = ψ(θ , ξ ), θ ∈ (–∞, ], ξ ∈ [,π ],

�u(ti) =
∫ 
–∞ qi(θ )u′(ti + θ , ξ )dθ , i = , , . . . ,n,

�u′(ti) =
∫ 
–∞ qi(θ )u(ti + θ , ξ )dθ , i = , , . . . ,n,

()

where ϕ,ψ ∈ C × L(h,X), ϕ(, ·) ∈H([,π ]),  < t < · · · < tn < b and
(v) The functions b(θ ,η, ξ ), ∂

∂ξ
b(θ ,η, ξ ) are measurable, b(θ ,η, ) = b(θ ,η,π ) =  and

c =max

{(∫ π



∫ 

–∞

∫ π




ρ(θ )

(
∂ ib(θ ,η, ξ )

∂ξ i

)

dηdθ dξ

) 

: i = , 

}
< K–

b ,

sup
t∈J

∫ π



∫ t



∫ π



(
∂

∂s
b(s – t,η, ξ )

)

dηdsdξ <∞.

()
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(vi) The function μ :R →R is continuous and
∫ 
–∞ μ(t, θ )ρ–(θ )dθ = d(t) < ∞.

Assuming that the conditions (ii)-(vi) are satisfied, system () can be modeled as the
abstract Cauchy problem () by defining

g(t,ϕ,ψ)(ξ ) =
∫ 

–∞

∫ π


b(θ ,η, ξ )ϕ(θ ,η)dηdθ ,

f (t,ϕ,ψ)(ξ ) =
∫ 

–∞
μ(t, θ )ψ(θ , ξ )dθ ,

Ii (ϕ,ψ)(ξ ) =
∫ 

–∞
qi(θ )ψ(θ , ξ )dθ (j = , ),

Ii (ϕ,ψ)(ξ ) =
∫ 

–∞
qi(θ )ϕ(θ , ξ )dθ (j = , ),

where ϕ,ψ ∈ ß, Iji (·) (i = , , . . . ,n, j = , ), g(t, ·) are bounded linear operators and

∥∥f (t,ϕ,ψ)
∥∥ ≤ d(t)

(‖ϕ‖ß + ‖ψ‖ß
)
, d(t) =

(∫ 

–∞
μ(t, s)ρ–(s)ds

) 

, t ∈ J .

Moreover, for every bounded set Q ⊂ S(b), it follows from () and the proof in [] that
the set of functions {(ω̃x)i(t) : x ∈ Q} is uniformly equicontinuous on J i = [ti, ti+] for every
i = , , . . . ,n. If the cosine function family C(t), t ∈R, is equicontinuous, all the conditions
of Theorem . are satisfied, so system () has at least one mild solution.

Remark . From the results of this paper, we know that the compactness condition of
the impulsive term, the restrictive conditions on a priori estimation and noncompactness
measure estimation can be deleted for the existence results of abstract impulsive func-
tional Volterra integro-differential equations Cauchy problems.
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