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Abstract
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1 Introduction
A boundary value problem is said to be a resonance one if the corresponding homoge-
neous boundary value problem has a non-trivial solution. Resonance problems can be
expressed as an abstract equation Lx =Nx, where L is a noninvertible operator. When L is
linear, Mawhin’s continuation theorem [] is an effective tool in finding solutions for these
problems, see [–] and references cited therein. But it does not work when L is non-
linear, for instance, p-Laplacian operator. In order to solve this problem, Ge and Ren []
proved a continuation theorem for the abstract equation Lx = Nx when L is a noninvert-
ible nonlinear operator and used it to study the existence of solutions for the boundary
value problems with a p-Laplacian:

⎧⎨
⎩(ϕp(u′))′ + f (t,u) = ,  < t < ,

u() =  =G(u(η),u()),

where ϕp(s) = |s|p–s, p > ,  < η < . ϕp(s) is nonlinear when p �= .
As far as the boundary value problems on unbounded domain are concerned, there are

many excellent results, see [–] and references cited therein.
To the best of our knowledge, there are few papers that study the p-Laplacian boundary

value problem at resonance on the half-line. In this paper, we investigate the existence of
solutions for the boundary value problem

⎧⎨
⎩(ϕp(u′))′ + f (t,u,u′) = ,  < t < +∞,

u() = , ϕp(u′(+∞)) =
∑n

i= αiϕp(u′(ξi)),
(.)

where αi > , i = , , . . . ,n,
∑n

i= αi = .
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In order to obtain our main results, we always suppose that the following conditions
hold.

(H)  < ξ < ξ < · · · < ξn < +∞, αi > ,
∑n

i= αi = .
(H) f : [, +∞) × R

 → R is continuous, f (t, , ) �= , t ∈ (,∞) and for any r > , there
exists a nonnegative function hr(t) ∈ L[, +∞) such that

∣∣f (t,x, y)∣∣ ≤ hr(t), a.e. t ∈ [, +∞),x, y ∈R,
|x|
 + t

≤ r, |y| ≤ r.

2 Preliminaries
For convenience, we introduce some notations and a theorem. For more details, see [].

Definition . [] Let X and Y be two Banach spaces with the norms ‖ · ‖X , ‖ · ‖Y , re-
spectively. A continuous operatorM : X ∩ domM → Y is said to be quasi-linear if

(i) ImM :=M(X ∩ domM) is a closed subset of Y ,
(ii) KerM := {x ∈ X ∩ domM :Mx = } is linearly homeomorphic to R

n, n <∞, where
domM denote the domain of the operatorM.

Let X = KerM and X be the complement space of X in X, then X = X ⊕ X. On the
other hand, suppose that Y is a subspace of Y , and that Y is the complement of Y in Y ,
i.e., Y = Y ⊕Y. Let P : X → X andQ : Y → Y be two projectors and � ⊂ X an open and
bounded set with the origin θ ∈ �.

Definition . [] Suppose that Nλ : � → Y , λ ∈ [, ] is a continuous operator. Denote
N by N . Let 	λ = {x ∈ � : Mx = Nλx}. Nλ is said to be M-compact in � if there exist a
vector subspace Y of Y satisfying dimY = dimX and an operator R : � × [, ] → X

being continuous and compact such that for λ ∈ [, ],
(a) (I –Q)Nλ(�) ⊂ ImM ⊂ (I –Q)Y ,
(b) QNλx = θ ,λ ∈ (, ) ⇔QNx = θ ,
(c) R(·, ) is the zero operator and R(·,λ)|	λ

= (I – P)|	λ
,

(d) M[P + R(·,λ)] = (I –Q)Nλ.

Theorem . [] Let X and Y be two Banach spaces with the norms ‖ · ‖X , ‖ · ‖Y , respec-
tively, and � ⊂ X an open and bounded nonempty set. Suppose that

M : X ∩ domM → Y

is a quasi-linear operator and Nλ :� → Y , λ ∈ [, ]M-compact. In addition, if the follow-
ing conditions hold:

(C) Mx �=Nλx, ∀x ∈ ∂� ∩ domM, λ ∈ (, ),
(C) deg{JQN ,� ∩KerM, } �= ,

then the abstract equation Mx =Nx has at least one solution in domM∩�, where N =N,
J : ImQ →KerM is a homeomorphism with J(θ ) = θ .
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3 Main result
Let X = {u|u ∈ C[, +∞),u() = , supt∈[,+∞)

|u(t)|
+t < +∞, limt→+∞ u′(t) exists} with norm

‖u‖ = max{‖ u
+t‖∞,‖u′‖∞}, where ‖u‖∞ = supt∈[,+∞) |u(t)|. Y = L[, +∞) with norm

‖y‖ =
∫ +∞
 |y(t)|dt. Then (X,‖ · ‖) and (Y ,‖ · ‖) are Banach spaces.

Define operatorsM : X ∩ domM → Y and Nλ : X → Y as follows:

Mu =
(
ϕp

(
u′))′, Nλu = –λf

(
t,u,u′), λ ∈ [, ], t ∈ [, +∞),

where

domM =

{
u ∈ X

∣∣∣ϕp
(
u′) ∈ AC[, +∞),

(
ϕp

(
u′))′ ∈ L[, +∞),

ϕp
(
u′(+∞)

)
=

n∑
i=

αiϕp
(
u′(ξi)

)}
.

Then the boundary value problem (.) is equivalent toMu =Nu.
Obviously,

KerM = {at|a ∈R}, ImM =

{
y
∣∣∣y ∈ Y ,

n∑
i=

αi

∫ +∞

ξi

y(s)ds = 

}
.

It is clear that KerM is linearly homeomorphic to R, and ImM ⊂ Y is closed. So,M is a
quasi-linear operator.
Define P : X → X, Q : Y → Y as

(Pu)(t) = u′(+∞)t, (Qy)(t) =
∑n

i= αi
∫ +∞
ξi

y(s)ds∑n
i= αie–ξi

e–t ,

where X =KerM, Y = ImQ = {be–t|b ∈R}.We can easily obtain that P : X → X,Q : Y →
Y are projectors. Set X = X ⊕X, Y = Y ⊕ Y.
Define an operator R : X × [, ] → X:

R(u,λ)(t) =
∫ t


ϕq

[∫ +∞

τ

λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

+ ϕp
(
u′(+∞)

)]
dτ – u′(+∞)t,

where 
p +


q = , ϕq = ϕ–

p . By (H) and (H), we get that R : X × [, ] → X is continuous.

Lemma . [] V ⊂ X is compact if { u(t)+t |u ∈ V } and {u′(t)|u ∈ V } are both equicontinu-
ous on any compact intervals of [, +∞) and equiconvergent at infinity.

Lemma . R : X × [, ] → X is compact.

Proof Let� ⊂ X be nonempty and bounded. There exists a constant r >  such that ‖u‖ ≤
r, u ∈ �. It follows from (H) that there exists a nonnegative function hr(t) ∈ L[, +∞)

http://www.boundaryvalueproblems.com/content/2013/1/207
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such that

∣∣f (t,u(t),u′(t)
)∣∣ ≤ hr(t), a.e. t ∈ [, +∞),u ∈ �.

For any T > , t, t ∈ [,T], u ∈ �, λ ∈ [, ], we have

∣∣∣∣R(u,λ)(t) + t
–
R(u,λ)(t)
 + t

∣∣∣∣
≤

∣∣∣∣ 
 + t

∫ t


ϕq

[∫ +∞

τ

λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

+ ϕp
(
u′(+∞)

)]
dτ

–


 + t

∫ t


ϕq

[∫ +∞

τ

λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

+ ϕp
(
u′(+∞)

)]
dτ

∣∣∣∣ +
∣∣∣∣ t
 + t

–
t

 + t

∣∣∣∣∣∣u′(+∞)
∣∣

≤
∣∣∣∣ 
 + t

∫ t

t
ϕq

[∫ +∞

τ

λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

+ ϕp
(
u′(+∞)

)]
dτ

∣∣∣∣ +
∣∣∣∣ 
 + t

–


 + t

∣∣∣∣
×

∣∣∣∣
∫ t


ϕq

[∫ +∞

τ

λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

+ ϕp
(
u′(+∞)

)]
dτ

∣∣∣∣ +
∣∣∣∣ t
 + t

–
t

 + t

∣∣∣∣r
≤ ϕq

[
‖hr‖

(
 +

∑n
i= αie–ξi

)
+ ϕp(r)

][
|t – t| + T

∣∣∣∣ 
 + t

–


 + t

∣∣∣∣
]

+
∣∣∣∣ t
 + t

–
t

 + t

∣∣∣∣r.

Since {t, 
+t ,

t
+t } are equicontinuous on [,T], we get that {R(u,λ)(t)+t ,u ∈ �} are equicontin-

uous on [,T].

∣∣R(u,λ)′(t) – R(u,λ)′(t)
∣∣

=
∣∣∣∣ϕq

[∫ +∞

t
λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

+ ϕp
(
u′(+∞)

)]

– ϕq

[∫ +∞

t
λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

+ ϕp
(
u′(+∞)

)]∣∣∣∣.
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Let

g(t,u) =
∫ +∞

t
λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds + ϕp

(
u′(+∞)

)
.

Then

∣∣g(t,u)∣∣ ≤ ‖hr‖
(
 +

∑n
i= αie–ξi

)
+ ϕp(r) := k, t ∈ [,T],u ∈ �. (.)

For t, t ∈ [,T], t < t, u ∈ �, we have

∣∣g(t,u) – g(t,u)
∣∣ = ∣∣∣∣

∫ t

t
λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

∣∣∣∣
≤

∫ t

t
hr(s) +

‖hr‖∑n
i= αie–ξi

e–s ds.

It follows from the absolute continuity of integral that {g(t,u),u ∈ �} are equicontinu-
ous on [,T]. Since ϕq(x) is uniformly continuous on [–k,k], by (.), we can obtain that
{R(u,λ)′(t),u ∈ �} are equicontinuous on [,T].
For u ∈ �, since

∣∣∣∣
∫ +∞

τ

λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

∣∣∣∣
≤

∫ +∞

τ

hr(s) +
‖hr‖∑n
i= αie–ξi

e–s ds,

lim
τ→+∞

∫ +∞

τ

hr(s) +
‖hr‖∑n
i= αie–ξi

e–s ds = ,

and ϕq(x) is uniformly continuous on [–r – rp–, r + rp–], for any ε > , there exists a con-
stant T >  such that if τ ≥ T, then

∣∣∣∣ϕq

[∫ +∞

τ

λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds + ϕp

(
u′(+∞)

)]

– u′(+∞)
∣∣∣∣ < ε


, ∀u ∈ �. (.)

Since

∣∣∣∣
∫ T


ϕq

[∫ +∞

τ

λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

+ ϕp
(
u′(+∞)

)]
dτ – u′(+∞)T

∣∣∣∣
≤

{
ϕq

[
‖hr‖

(
 +

∑n
i= αie–ξi

)
+ ϕp(r)

]
+ r

}
T, (.)

http://www.boundaryvalueproblems.com/content/2013/1/207
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there exists a constant T > T such that if t > T , then


 + t

{
ϕq

[
‖hr‖

(
 +

∑n
i= αie–ξi

)
+ ϕp(r)

]
+ r

}
T <

ε


. (.)

For t > t > T , by (.), (.) and (.), we have

∣∣∣∣R(u,λ)(t) + t
–
R(u,λ)(t)
 + t

∣∣∣∣
=

∣∣∣∣ 
 + t

∫ t



{
ϕq

[∫ +∞

τ

λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

+ ϕp
(
u′(+∞)

)]
– u′(+∞)

}
dτ

–


 + t

∫ t



{
ϕq

[∫ +∞

τ

λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

+ ϕp
(
u′(+∞)

)]
– u′(+∞)

}
dτ

∣∣∣∣
≤

∣∣∣∣ 
 + t

∫ T



{
ϕq

[∫ +∞

τ

λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

+ ϕp
(
u′(+∞)

)]
– u′(+∞)

}
dτ

∣∣∣∣
+

∣∣∣∣ 
 + t

∫ t

T

{
ϕq

[∫ +∞

τ

λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

+ ϕp
(
u′(+∞)

)]
– u′(+∞)

}
dτ

∣∣∣∣
+

∣∣∣∣ 
 + t

∫ T



{
ϕq

[∫ +∞

τ

λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

+ ϕp
(
u′(+∞)

)]
– u′(+∞)

}
dτ

∣∣∣∣
+

∣∣∣∣ 
 + t

∫ t

T

{
ϕq

[∫ +∞

τ

λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

+ ϕp
(
u′(+∞)

)]
– u′(+∞)

}
dτ

∣∣∣∣ < ε,

and

∣∣R(u,λ)′(t) – R(u,λ)′(t)
∣∣

≤
∣∣∣∣ϕq

[∫ +∞

t
λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

+ ϕp
(
u′(+∞)

)]
– u′(+∞)

∣∣∣∣
+

∣∣∣∣ϕq

[∫ +∞

t
λ

(
f
(
s,u(s),u′(s)

)
–

∑n
i= αi

∫ +∞
ξi

f (r,u(r),u′(r))dr∑n
i= αie–ξi

e–s
)
ds

http://www.boundaryvalueproblems.com/content/2013/1/207
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+ ϕp
(
u′(+∞)

)]
– u′(+∞)

∣∣∣∣
< ε.

By Lemma ., we get that {R(u,λ)|u ∈ �,λ ∈ [, ]} is compact. The proof is completed.
�

In the spaces X and Y , the origin θ = . In the following sections, we denote the origin
by .

Lemma . Let � ⊂ X be nonempty, open and bounded. Then Nλ is M-compact in �.

Proof By (H), we know that Nλ : � → Y is continuous. Obviously, dimX = dimY. For
u ∈ �, since Q(I – Q) is a zero operator, we get (I – Q)Nλ(u) ∈ ImM. For y ∈ ImM, y =
Qy+ (I –Q)y = (I –Q)y ∈ (I –Q)Y . So, we have (I –Q)Nλ(�) ⊂ ImM ⊂ (I –Q)Y . It is clear
that

QNλu = , λ ∈ (, ) ⇔ QNu = 

and R(u, ) = , ∀u ∈ X. u ∈ 	λ = {u ∈ � : Mu = Nλu} means that Nλu ∈ ImM and
(ϕp(u′))′ + λf (t,u,u′) = , thus,

R(u,λ)(t) =
∫ t


ϕq

[∫ +∞

τ

–
(
ϕp

(
u′))′ ds + ϕp

(
u′(+∞)

)]
dτ – u′(+∞)t

= u(t) – u′(+∞)t = (I – P)u(t).

For u ∈ X, we have

M
[
P + R(u,λ)

]
(t) = –λf

(
t,u(t),u′(t)

)
+

∑n
i= αi

∫ +∞
ξi

λf (r,u(r),u′(r))dr∑n
i= αie–ξi

e–t

= (I –Q)Nλu(t).

These, together with Lemma ., mean that Nλ is M-compact in �. The proof is com-
pleted. �

In order to obtain our main results, we need the following additional conditions.

(H) There exist nonnegative functions a(t), b(t), c(t) with ( + t)p–a(t),b(t), c(t) ∈ Y and
‖( + t)p–a(t)‖ + ‖b(t)‖ <  such that

∣∣f (t,x, y)∣∣ ≤ a(t)
∣∣ϕp(x)

∣∣ + b(t)
∣∣ϕp(y)

∣∣ + c(t), a.e. t ∈ [, +∞).

(H) There exists a constant d >  such that if |d| > d, then one of the following inequal-
ities holds:

df (t,x,d) < , (t,x) ∈ [, +∞)×R;

df (t,x,d) > , (t,x) ∈ [, +∞)×R.

http://www.boundaryvalueproblems.com/content/2013/1/207
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Lemma . Assume that (H) and (H) hold. The set

� =
{
u|u ∈ domM,Mu =Nλu,λ ∈ [, ]

}
is bounded in X.

Proof If u ∈ �, thenQNλu = , i.e.,
∑n

i= αi
∫ +∞
ξi

f (r,u(r),u′(r))dr = . By (H), there exists
t ∈ [, +∞) such that |u′(t)| ≤ d. It follows fromMu =Nλu that

ϕp
(
u′(t)

)
= –

∫ t

t
λf

(
s,u(s),u′(s)

)
ds + ϕp

(
u′(t)

)
.

Considering (H), we have

∣∣ϕp
(
u′(t)

)∣∣ ≤
∫ +∞



[
a(t)

∣∣ϕp
(
u(t)

)∣∣ + b(t)
∣∣ϕp

(
u′(t)

)∣∣ + c(t)
]
dt + ϕp(d)

≤ ∥∥a(t)( + t)p–
∥∥
ϕp

(∥∥∥∥ u
 + t

∥∥∥∥∞

)
+ ‖b‖ϕp

(∥∥u′∥∥∞
)
+ ‖c‖ + ϕp(d). (.)

Since u(t) =
∫ t
 u

′(s)ds, we get
∣∣∣∣ u(t) + t

∣∣∣∣ ≤ t
 + t

∥∥u′∥∥∞ ≤ ∥∥u′∥∥∞.

Thus,∥∥∥∥ u
 + t

∥∥∥∥∞
≤ ‖u′‖∞. (.)

By (.), (.) and (H), we get

∥∥ϕp
(
u′)∥∥∞ ≤ ‖c‖ + ϕp(d)

 – ‖a(t)( + t)p–‖ – ‖b‖ .

So,

∥∥u′∥∥∞ ≤ ϕq

( ‖c‖ + ϕp(d)
 – ‖a(t)( + t)p–‖ – ‖b‖

)
.

This, together with (.), means that � is bounded. The proof is completed. �

Lemma . Assume that (H) holds. The set

� =
{
u|u ∈KerM,QNu = 

}
is bounded in X.

Proof u ∈ � means that u = at, a ∈ R and QNu = , i.e.,

n∑
i=

αi

∫ +∞

ξi

f (s,as,a)ds = .

By (H), we get that |a| ≤ d. So, � is bounded. The proof is completed. �
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Theorem . Suppose that (H)-(H) hold. Then problem (.) has at least one solution.

Proof Let � = {u ∈ X|‖u‖ < d′
}, where d′

 = max{d, supu∈� ‖u‖, supu∈� ‖u‖} + . It fol-
lows from the definition of � and � that Mu �= Nλu, λ ∈ (, ), u ∈ ∂� and QNu �= ,
u ∈ ∂� ∩KerM.
Define a homeomorphism J : ImQ → KerM as J(ke–t) = kt. If df (t,x,d) <  for |d| > d,

take the homotopy

H(u,μ) = μu + ( –μ)JQNu, u ∈ � ∩KerM,μ ∈ [, ].

For u ∈ � ∩KerM, we have u = kt. Then

H(u,μ) = μkt – ( –μ)
∑n

i= αi
∫ +∞
ξi

f (s,ks,k)ds∑n
i= αie–ξi

t.

Obviously, H(u, ) �= , u ∈ ∂� ∩KerM. For μ ∈ [, ), u = kt ∈ ∂� ∩KerM, if H(u,μ) = ,
we have

∑n
i= αi

∫ +∞
ξi

kf (s,ks,k)ds∑n
i= αie–ξi

=
μ

 –μ
k ≥ .

A contradiction with df (t,x,d) < , |d| > d. If df (t,x,d) > , |d| > d, take

H(u,μ) = μu – ( –μ)JQNu, u ∈ � ∩KerM,μ ∈ [, ],

and the contradiction follows analogously. So, we obtain H(u,μ) �= , μ ∈ [, ], u ∈ ∂� ∩
KerM.
By the homotopy of degree, we get that

deg(JQN ,� ∩KerM, ) = deg
(
H(·, ),� ∩KerM, 

)
= deg

(
H(·, ),� ∩KerM, 

)
= deg(I,� ∩KerM, ) = .

By Theorem ., we can get that Mu = Nu has at least one solution in �. The proof is
completed. �

4 Example
Let us consider the following boundary value problem at resonance

⎧⎨
⎩(|u′|– 

 u′)′ + e–t√
+t sin

√|u| + e–t|u′|– 
 u′ + 

e
–t = ,  < t < +∞,

u() = , |u′(+∞)|– 
 u′(+∞) =

∑n
i= αi|u′(ξi)|– 

 u′(ξi),
(.)

where  < ξ < ξ < · · · < ξn < +∞, αi > ,
∑n

i= αi = .
Corresponding to problem (.), we have p = 

 , f (t,x, y) =
e–t√
+t sin

√|x| + e–t|y|– 
 y +


e

–t .
Take a(t) = e–t√

+t , b(t) = e–t , c(t) = 
e

–t , d = . By simple calculation, we can get that
conditions (H)-(H) hold. By Theorem ., we obtain that problem (.) has at least one
solution.
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