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Abstract
The authors of this paper study a nonlinear viscoelastic equation with variable
exponents. By using the Faedo-Galerkin method and embedding theory, the
existence of weak solutions is given to the initial and boundary value problem under
suitable assumptions.

Keywords: existence; weak solutions; viscoelastic; variable exponents

1 Introduction
Let � ⊂R

N (N ≥ ) be a bounded Lipschitz domain and  < T < ∞. Consider the follow-
ing nonlinear viscoelastic hyperbolic problem:

⎧⎪⎪⎨
⎪⎪⎩
utt –�u –�utt +

∫ t
 g(t – τ )�u(τ )dτ + |ut|m(x)–ut = |u|p(x)–u, (x, t) ∈QT ,

u(x, t) = , (x, t) ∈ ST ,

u(x, ) = u(x), ut(x, ) = u(x), x ∈ �,

(.)

where QT = � × (,T], ST denotes the lateral boundary of the cylinder QT .
It will be assumed throughout the paper that the exponents m(x), p(x) are continuous

in � with logarithmic module of continuity:

 <m– = inf
x∈�

m(x)≤ m(x)≤ m+ = sup
x∈�

m(x) < ∞, (.)

 < p– = inf
x∈�

p(x) ≤ p(x)≤ p+ = sup
x∈�

p(x) <∞, (.)

∀z, ξ ∈ �, |z – ξ | < ,
∣∣m(z) –m(ξ )

∣∣ + ∣∣p(z) – p(ξ )
∣∣ ≤ ω

(|z – ξ |), (.)

where

lim sup
τ→+

ω(τ ) ln

τ
= C < +∞.

And we also assume that
(H) g :R+ → R+ is C function and satisfies

g() > ,  –
∫ ∞


g(s)ds = l > ;
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(H) there exists η >  such that

g ′(t) < –ηg(t), t ≥ .

In the case when m, p are constants, there have been many results about the existence
and blow-up properties of the solutions, we refer the readers to the bibliography given in
[–].
In recent years, much attention has been paid to the study of mathematical models of

electro-rheological fluids. Thesemodels include hyperbolic, parabolic or elliptic equations
which are nonlinear with respect to gradient of the thought solution and with variable
exponents of nonlinearity; see [–] and references therein. Besides, another important
application is the image processing where the anisotropy and nonlinearity of the diffusion
operator and convection terms are used to underline the borders of the distorted image
and to eliminate the noise [, ].
To the best of our knowledge, there are only a few works about viscoelastic hyperbolic

equations with variable exponents of nonlinearity. In [] the authors studied the finite
time blow-up of solutions for viscoelastic hyperbolic equations, and in [] the authors
discussed only the viscoelastic hyperbolic problem with constant exponents. Motivated
by the works of [, ], we shall study the existence and energy decay of the solutions to
Problem (.) and state some properties to the solutions.
The outline of this paper is the following. In Section , we introduce the function spaces

of Orlicz-Sobolev type, give the definition of the weak solution to the problem and prove
the existence of weak solutions for Problem (.) with Galerkin’s method.

2 Existence of weak solutions
In this section, the existence of weak solutions is studied. Firstly, we introduce some Ba-
nach spaces

Lp(x)(�) =
{
u(x) : u is measurable in �,Ap(·)(u) =

∫
�

|u|p(x) dx < ∞
}
,

‖u‖p(·) = inf
{
λ > ,Ap(·)(u/λ) ≤ 

}
.

Lemma . [] For u ∈ Lp(x)(�), the following relations hold:
() ‖u‖p(·) <  (= ; > ) ⇔ Ap(·)(u) <  (= ; > );
() ‖u‖p(·) <  ⇒ ‖u‖p+p(·) ≤ Ap(·)(u) ≤ ‖u‖p–p(·); ‖u‖p(·) >  ⇒ ‖u‖p+p(·) ≥ Ap(·)(u) ≥ ‖u‖p–p(·);
() ‖u‖p(·) →  ⇔ Ap(·)(u) → ; ‖u‖p(·) → ∞ ⇔ Ap(·)(u) → ∞.

Lemma . [, ] For u ∈ W ,p(·)
 (�), if p satisfies condition (.), the p(·)-Poincaré in-

equality

‖u‖p(x) ≤ C‖∇u‖p(x)

holds, where the positive constant C depends on p and �.

Remark . Note that the following inequality
∫

�

|u|p(x) dx ≤ C
∫

�

|∇u|p(x) dx

does not in general hold.
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Lemma . [] Let � be an open domain (that may be unbounded) in R
N with cone

property. If p(x) : � → R is a Lipschitz continuous function satisfying  < p– ≤ p+ < N
k and

r(x) :� →R is measurable and satisfies

p(x) ≤ r(x)≤ p∗(x) =
Np(x)

N – kp(x)
a.e. x ∈ �,

then there is a continuous embedding Wk,p(x)(�) ↪→ Lr(x)(�).

The main theorem in this section is the following.

Theorem . Let u,u ∈ H
(�), the exponents m(x), p(x) satisfy conditions (.)-(.).

Then Problem (.) has at least one weak solution u :� × (,∞)→R in the class

u ∈ L∞(
,∞;H

(�)
)
, u′ ∈ L∞(

,∞;H
(�)

)
, u′′ ∈ L

(
,∞;H

(�)
)
.

And one of the following conditions holds:
(A)  < p– < p+ <max{N , Np–

N–p– },  <m– <m+ < p–;
(A) max{, N

N+ } < p– < p+ < ,  <m– <m+ < p––
p– < .

Proof Let {wj}∞j= be an orthogonal basis of H
(�) with wj

–�wj = λjwj, x ∈ �, wj = , x ∈ ∂�.

Vk = span{wi, . . . ,wk} is the subspace generated by the first k vectors of the basis {wj}∞j=. By
normalization, we have ‖wj‖ = . Let us define the operator

〈Lu,�〉 =
∫

�

[
utt� +∇u∇� –

∫ t


g(t – τ )∇u∇�dτ + |ut|m(x)–ut�

– α|u|p(x)–u�

]
dx, � ∈ Vk .

For any given integer k, we consider the approximate solution

uk =
k∑
i=

cki (t)wi,

which satisfies

⎧⎨
⎩

〈Luk ,wi〉 = , i = , , . . .k,

uk() = uk , ukt() = uk ,
(.)

here uk =
∑k

i=(u,wi)wi, uk =
∑k

i=(u,wi)wi and uk → u, uk → u in H
(�).

Here we denote by (·, ·) the inner product in L(�).
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Problem (.) generates the system of k ordinary differential equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(cki (t))′′ = –λicki (t) + λi
∫ t
 g(t – τ )cki (τ )dτ

+ |(∑k
i=(c

k
i (t))′,wi)|m(x)–(

∑k
i=(c

k
i (t))′,wi)

– α|(∑k
i= c

k
i (t),wi)|p(x)–(∑k

i= c
k
i (t),wi),

cki () = (u,wi), (cki ())′ = (u,wi), i = , , . . . ,k.

(.)

By the standard theory of the ODE system, we infer that problem (.) admits a unique
solution cki (t) in [, tk], where tk > . Then we can obtain an approximate solution uk(t) for
(.), in Vk , over [, tk). And the solution can be extended to [,T], for any given T > , by
the estimate below. Multiplying (.) (cki (t))′ and summing with respect to i, we conclude
that

d
dt

(


∥∥u′

k
∥∥
 +



∥∥∇u′

k
∥∥
 –

∫ t


g(t – τ )

∫
�

(∇uk(τ )∇u′
k(t)

)
dxdτ

)
+

∫
�

∣∣u′
k
∣∣m(x) dx

– α
d
dt

(∫
�


p(x)

|uk|p(x) dx
)
= . (.)

By simple calculation, we have

–
∫ t


g(t – τ )

∫
�

(∇uk(τ ),∇u′
k(t)

)
dxdτ

=


d
dt

(g � ∇uk)(t) –


(
g ′ � ∇uk

)
(t) –



d
dt

∫ t


g(s)ds‖∇uk‖

+


g(t)‖∇uk‖, (.)

here

(ϕ � ∇ψ)(t)�
∫ t


ϕ(t – τ )

∥∥∇ψ(t) –∇ψ(τ )
∥∥
 dτ .

Combining (.)-(.) and (H)-(H), we get

d
dt

(


∥∥u′

k
∥∥
 +



∥∥∇u′

k
∥∥


+



(
 –

∫ t


g(s)ds

)
‖∇uk‖ +



(g � ∇uk)(t) – α

∫
�


p(x)

|uk|p(x) dx
)

=


(
g ′ � ∇uk

)
(t) –



g(t)‖∇uk‖ –

∫
�

∣∣u′
k
∣∣m(x) dx. (.)

Integrating (.) over (, t), and using assumptions (.)-(.), we have



∥∥u′

k
∥∥
 +



∥∥∇u′

k
∥∥
 +




(
 –

∫ t


g(s)ds

)
‖∇uk‖

+


(g � ∇uk)(t) – α


p(x)

|uk|p(x) ≤ C,

where C is a positive constant depending only on ‖u‖H

, ‖u‖H


.
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Hence, by Lemma ., we also have



∥∥u′

k
∥∥
 +



∥∥∇u′

k
∥∥
 +




(
 –

∫ t


g(s)ds

)
‖∇uk‖ +



(g � ∇uk)(t)

–max

{
α


p–

‖uk‖p
–

p(x),α

p–

‖uk‖p
+

p(x)

}
≤ C. (.)

In view of (H)-(H) and (A)-(A), we also have

∥∥u′
k
∥∥
 +

∥∥∇u′
k
∥∥
 + ‖∇uk‖ + (g � ∇uk)(t) ≤ C, (.)

where C is a positive constant depending only on ‖u‖H

, ‖u‖H


, l, p–, p+. It follows

from (.) that

uk is uniformly bounded in L∞(
,T ;H

(�)
)
, (.)

u′
k is uniformly bounded in L∞(

,T ;H
(�)

)
. (.)

Next, multiplying (.) by (cki (t))′′ and then summing with respect to i, we get that the
following holds:

∫
�

∣∣u′′
k
∣∣
 dx +

∥∥∇u′′
k
∥∥
 +

d
dt

(


m(x)
∣∣u′

k
∣∣m(x)

)

= –
∫

�

∇uk∇u′′
k dx +

∫ t


g(t – τ )

∫
�

∇uk(τ )∇u′′
k (t)dxdτ

+ α

∫
�

|uk|p(x)–uku′′
k dx. (.)

Note that
∣∣∣∣–

∫
�

∇uk∇u′′
k dx

∣∣∣∣ ≤ ε
∥∥∇u′′

k
∥∥
 +


ε

‖∇uk‖, ε > , (.)

∣∣∣∣
∫ t


g(t – τ )

∫
�

∇uk(τ )∇u′′
k (t)dxdτ

∣∣∣∣
≤ ε

∥∥∇u′′
k
∥∥
 +


ε

∫
�

(∫ t


g(t – τ )∇uk(τ )dτ

)

dx

≤ ε
∥∥∇u′′

k
∥∥
 +


ε

∫ t


g(s)ds

∫ t


g(t – τ )

∫
�

∣∣∇uk(τ )
∣∣ dxdτ

≤ ε
∥∥∇u′′

k
∥∥
 +

( – l)g()
ε

∫ t



∥∥∇uk(τ )
∥∥
 dτ , (.)

α
∥∥|uk|p(x)–uku′′

k
∥∥ ≤ αε

∥∥u′′
k
∥∥
 +

α

ε

∥∥|uk|p(x)–uk
∥∥


≤ αε
∥∥u′′

k
∥∥
 +

α

ε

∫
�

(|uk|p(x)–uk) dx.

From Lemma ., we have

∥∥u′′
k
∥∥
 ≤ C∥∥∇u′′

k
∥∥
, (.)

http://www.boundaryvalueproblems.com/content/2013/1/208
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∫
�

(|uk|p(x)–uk) dx =
∫

�

|uk|(p(x)–) dx

≤ max

{∫
�

|uk|(p––) dx,
∫

�

|uk|(p+–) dx
}

≤ max
{
C∗ 

(p––) ‖∇uk‖


(p––) ,C∗ 
(p+–) ‖∇uk‖


(p+–)

}
, (.)

where C, C∗ are embedding constants. From (.)-(.), we obtain that

∫
�

∣∣u′′
k
∣∣ dx + ( – ε – αεC)

∥∥∇u′′
k
∥∥
 +

d
dt

(


m(x)
∣∣u′

k
∣∣m(x)

)

≤ 
ε

‖∇uk‖ +
( – l)g()

ε

∫ t



∥∥∇uk(τ )
∥∥
 dτ

+max
{
C∗ 

(p––) ‖∇uk‖


p–– ,C∗ 
(p+–) ‖∇uk‖


p+–

}
. (.)

Integrating (.) over (, t) and using (.), Lemma ., we get

∫ t



∥∥u′′
k
∥∥ dτ + ( – ε – αεC)

∫ t



∥∥∇u′′
k
∥∥
 dτ +

∫
�


m(x)

∣∣u′
k
∣∣m(x) dx

≤ 
ε

(
C + ( – l)g()T

)
+C, (.)

where C is a positive constant depending only on ‖u‖H

.

Taking α, ε small enough in (.), we obtain the estimate

∫ t



∥∥u′′
k
∥∥ dτ +

∫
�


m(x)

∣∣u′
k
∣∣m(x) dx ≤ C.

Hence, by Lemma ., we have

∫ t



∥∥u′′
k
∥∥ dτ +min

{

m+

∥∥u′
k
∥∥m–

m(x),

m+

∥∥u′
k
∥∥m+

m(x)

}
≤ C, (.)

where C is a positive constant depending only on ‖u‖H

, ‖u‖H


, l, g(), T .

From estimate (.), we get

u′′
k is uniformly bounded in L

(
,T ;H

(�)
)
. (.)

By (.)-(.) and (.), we infer that there exist a subsequence {ui} of {uk} and a function
u such that

ui ⇀ u weakly star in L∞(
,T ;H

(�)
)
, (.)

ui ⇀ u weakly in Lp
–(
,T ;W ,p(x)(�)

)
, (.)

u′
i ⇀ u′ weakly star in L∞(

,T ;H
(�)

)
, (.)

u′′
i ⇀ u′′ weakly in L

(
,T ;H

(�)
)
. (.)

Next, we will deal with the nonlinear term. From the Aubin-Lions theorem, see Lions [,
pp.-], it follows from (.) and (.) that there exists a subsequence of {ui}, still

http://www.boundaryvalueproblems.com/content/2013/1/208
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represented by the same notation, such that

u′
i → u′ strongly in L

(
,T ;L(�)

)
,

which implies u′
i → u′ almost everywhere in � × (,T). Hence, by (.)-(.),

|ui|p(x)–ui ⇀ |u|p(x)–u weakly in � × (,T), (.)
∣∣u′

i
∣∣m(x)–u′

i →
∣∣u′∣∣m(x)–u′ almost everywhere in � × (,T). (.)

Multiplying (.) byφ(t) ∈ C(,T) (which C(,T) is the space ofC∞ functionwith compact
support in (,T)) and integrating the obtained result over (,T), we obtain that

〈
Luk ,wiφ(t)

〉
= , i = , , . . . ,k. (.)

Note that {wi}∞i= is a basis of H
(�). Convergence (.)-(.) is sufficient to pass to the

limit in (.) in order to get

utt –�u –�utt +
∫ t


g(t – τ )�u(τ )dτ + |ut|m(x)–ut = |u|p(x)–u, in L

(
,T ;H–(�)

)

for arbitrary T > . In view of (.)-(.) and Lemma .. in [], we obtain

uk() ⇀ u() weakly in H
(�), u′

k()⇀ u′() weakly in H
(�).

Hence, we get u() = u, u() = u. Then, the existence of weak solutions is established.
�
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