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Abstract
In this paper, we consider a discontinuous Sturm-Liouville operator with
parameter-dependent boundary conditions and two interior discontinuities. We
obtain eigenvalues and eigenfunctions together with their asymptotic approximate
formulas. Then, we give some uniqueness theorems by using Weyl function and
spectral data, which are called eigenvalues and normalizing constants for solution of
inverse problem.
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1 Introduction
It is well known that the theory of Sturm-Liouville problems is one of the most actual
and extensively developing fields of theoretical and applied mathematics, since it is an
important tool in solving many problems in mathematical physics (see [–]). In recent
years, there has been increasing interest in spectral analysis of discontinuous Sturm-
Liouville problems with eigenvalue-linearly and nonlinearly dependent boundary condi-
tions [, –]. Various physics applications of such problems can be found in [, , ,
–] and corresponding bibliography cited therein.
Some boundary value problems with discontinuity conditions arise in heat and mass

transfer problems, mechanics, electronics, geophysics and other natural sciences (see
[] also [–]). For instance, discontinuous inverse problems appear in electronics for
building parameters of heterogeneous electronic lines with attractive technical charac-
teristics [, , ]. Such discontinuity problems also appear in geophysical forms for
oscillations of the earth [, ]. Furthermore, discontinuous inverse problems appear in
mathematics for exploring spectral properties of some classes of differential and integral
operators.
Inverse problems of spectral analysis form recovering operators by their spectral data.

The inverse problem for the classical Sturm-Liouville operatorwas studied first byAmbar-
sumian in  [] and then by Borg in  []. After that, direct and inverse problems
for Sturm-Liouville operator have been extended to so many different areas.
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We consider a discontinuous Sturm-Liouville problem L with function ρ(x)

ly := –ρ(x)y′′(x) + q(x)y(x) = λy(x), x ∈ [a, δ)∪ (δ, δ)∪ (δ,b] = �, ()

where

ρ(x) =

⎧⎪⎪⎨
⎪⎪⎩

ρ–
 , a ≤ x < δ,

ρ–
 , δ < x < δ,

ρ–
 , δ < x ≤ b,

and ρ, ρ, and ρ are given positive real numbers; q(x) ∈ L[�,R]; λ ∈ C is a complex
spectral parameter; boundary conditions at the endpoints

ly := λ
(
θ ′
y(a) – θ ′

y
′(a)

)
–

(
θy(a) – θy′(a)

)
= , ()

ly := λ
(
γ ′
y(b) – γ ′

y
′(b)

)
+

(
γy(b) – γy′(b)

)
=  ()

with discontinuity conditions at two points x = δ, x = δ

ly := y(δ + ) – θy(δ – ) – γy′(δ – ) = , ()

ly := y′(δ + ) – θy(δ – ) – γy′(δ – ) = , ()

ly := y(δ + ) – θy(δ – ) – γy′(δ – ) = , ()

ly := y′(δ + ) – θy(δ – ) – γy′(δ – ) = , ()

where θi, γi and θ ′
j , γ ′

j (i = , , j = , ) are real numbers and

α =

∣∣∣∣∣θ γ

θ γ

∣∣∣∣∣ > , α =

∣∣∣∣∣θ γ

θ γ

∣∣∣∣∣ > , β =

∣∣∣∣∣θ
′
 θ

θ ′
 θ

∣∣∣∣∣ >  and

β =

∣∣∣∣∣γ
′
 γ

γ ′
 γ

∣∣∣∣∣ > .

In the present paper, we construct a linear operator T in a suitable Hilbert space such
that problem ()-() and the eigenvalue problem for operator T coincide. We investigate
eigenvalues and eigenfunctions together with their asymptotic behaviors of operator T .
Besides, we study some uniqueness theorems according to Weyl function and spectral
data, which are called eigenvalues and normalizing constants.

2 Operator formulation and spectral properties
We make known the inner product in the Hilbert space H := H ⊕ C

, where H =
(L(�), 〈·, ·〉),C denotes theHilbert space of complex numbers and a self-adjoint operator
T defined onH such that ()-() can be dealt with as the eigenvalue problem of operatorT .
We define an inner product in H by

〈F ,G〉 := ααρ



∫ δ

a
f (x)g(x)dx + αρ




∫ δ

δ

f (x)g(x)dx + ρ


∫ b

δ

f (x)g(x)dx

+
αα

β
fg +


β

fg ()
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for

F =

⎛
⎜⎝
f (x)
f
f

⎞
⎟⎠ ∈H , G =

⎛
⎜⎝
g(x)
g
g

⎞
⎟⎠ ∈H .

Consider the operator T defined by the domain

D(T) =
{
F ∈H : f (x), f ′(x) ∈ ACloc(�), lf ∈H, l = l = l = l = , f = θ ′

f (a) – θ ′
f

′(a)

f = γ ′
 f (b) – γ ′

f
′(b)

}

such that TF := (lf , θf (a) – θf ′(a), –(γf (b) – γf ′(b))) for F = (f , θ ′
f (a) – θ ′

f ′(a),γ ′
 f (b) –

γ ′
f ′(b)) ∈D(T) and also l-l are satisfied for f .
Thus, we can rewrite the considered problem ()-() in the operator form as TF = λF .

Theorem  The operator T is symmetric in H .

Proof Let F ,G ∈D(T). By two partial integrations, we get

〈TF ,G〉 = 〈F ,TG〉 + αα
(
W (f , ḡ, δ – ) –W (f , ḡ,a)

)
+ α

(
W (f , ḡ, δ – ) –W (f , ḡ, δ + )

)
+W (f , ḡ,b) –W (f , ḡ, δ + )

+
αα

β

(
θf (a) – θf ′(a)

)(
θ ′
ḡ(a) – θ ′

ḡ
′(a)

)

–

β

(
γf (b) – γf ′(b)

)(
γ ′
 ḡ(b) – γ ′

ḡ
′(b)

)
–

αα

β

(
θḡ(a) – θḡ ′(a)

)(
θ ′
f (a) – θ ′

f
′(a)

)

+

β

(
γḡ(b) – γḡ ′(b)

)(
γ ′
 f (b) – γ ′

f
′(b)

)
,

where byW (f , g;x), we denote the Wronskian of the functions f and g as

f (x)g ′(x) – f ′(x)g(x).

Since f and g satisfy the boundary conditions ()-() and transmission conditions ()-
(), we obtain

αα

β

[(
θf (a) – θf ′(a)

)(
θ ′
ḡ(a) – θ ′

ḡ
′(a)

)
–

(
θḡ(a) – θḡ ′(a)

)(
θ ′
f (a) – θ ′

f
′(a)

)]
= ααW (f , ḡ,a)

× 
β

[(
γḡ(b) – γḡ ′(b)

)(
γ ′
 f (b) – γ ′

f
′(b)

)
–

(
γf (b) – γf ′(b)

)(
γ ′
 ḡ(b) – γ ′

ḡ
′(b)

)]
= –W (f , ḡ,b)W (f , ḡ, δi + ) = αiW (f , ḡ, δi – ).

Thus, we have 〈TF ,G〉 = 〈F ,TG〉, i.e., T is symmetric. �
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Lemma  Problem ()-() can be considered as the eigenvalue problem of the symmetric
operator T .

Corollary  All eigenvalues and eigenfunctions of problem ()-() are real, and two eigen-
functions ϕ(x,λ) and ϕ(x,λ), corresponding to different eigenvalues λ and λ, are orthog-
onal in the sense of

ααρ



∫ δ

a
ϕ(x,λ)ϕ(x,λ)dx + αρ




∫ δ

δ

ϕ(x,λ)ϕ(x,λ)dx

+ ρ


∫ b

δ

ϕ(x,λ)ϕ(x,λ)dx

+
αα

β

(
θ ′
ϕ(a,λ) – θ ′

ϕ
′(a,λ)

)(
θ ′
ϕ(a,λ) – θ ′

ϕ
′(a,λ)

)

+

β

(
γ ′
ϕ(b,λ) – γ ′

ϕ
′(b,λ)

)(
γ ′
ϕ(b,λ) – γ ′

ϕ
′(b,λ)

)
= .

We define the solutions

ϕ(x,λ) =

⎧⎪⎪⎨
⎪⎪⎩

ϕ(x,λ), x ∈ [a, δ),

ϕ(x,λ), x ∈ (δ, δ),

ϕ(x,λ), x ∈ (δ,b],

ψ(x,λ) =

⎧⎪⎪⎨
⎪⎪⎩

ψ(x,λ), x ∈ [a, δ),

ψ(x,λ), x ∈ (δ, δ),

ψ(x,λ), x ∈ (δ,b]

of equation () by the initial conditions

ϕ(a,λ) = λθ ′
 – θ, ϕ′

(a,λ) = λθ ′
 – θ,

ϕ(δ,λ) = θϕ(δ,λ) + γϕ
′
(δ,λ), ϕ′

(δ,λ) = θϕ(δ,λ) + γϕ
′
(δ,λ), ()

ϕ(δ,λ) = θϕ(δ,λ) + γϕ
′
(δ,λ), ϕ′

(δ,λ) = θϕ(δ,λ) + γϕ
′
(δ,λ),

and similarly,

ψ(b,λ) = λγ ′
 + γ, ψ ′

(b,λ) = λγ ′
 + γ,

ψ(δ,λ) =
γψ(δ,λ) – γψ

′
(δ,λ)

α
, ψ ′

(δ,λ) =
θψ(δ,λ) – θψ

′
(δ,λ)

–α
, ()

ψ(δ,λ) =
γψ(δ,λ) – γψ

′
(δ,λ)

α
, ψ ′

(δ,λ) =
θψ(δ,λ) – θψ

′
(δ,λ)

–α
,

respectively.
These solutions are entire functions of λ for each fixed x ∈ [a,b] and satisfy the relation

ψ(x,λn) = κnϕ(x,λn)

for each eigenvalue λn, where

κn =
θ ′
ψ

′(a,λn) – θ ′
ψ(a,λn)

β
.
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Lemma  Let λ = k, k = σ + iω.
Then the following integral equations and also asymptotic behaviors hold for ν = , :

dν

dxν
ϕ(x,λ) =

(
λθ ′

 – θ
) dν

dxν
coskρ(x – a)

+

kρ

(
λθ ′

 – θ
) dν

dxν
sinkρ(x – a)

+
ρ

k

∫ x

a

dν

dxν
sinkρ(x – t)q(t)ϕ(t,λ)dt

=
(
λθ ′

 – θ
) dν

dxν
coskρ(x – a)

+

kρ

(
λθ ′

 – θ
) dν

dxν
sinkρ(x – a) +O

(|k|ν+e| Imk|(x–a)ρ),
dν

dxν
ϕ(x,λ) =

(
θϕ(δ,λ) + γϕ

′
(δ,λ)

) dν

dxν
coskρ(x – δ)

+


kρ

(
θϕ(δ,λ) + γϕ

′
(δ,λ)

) dν

dxν
sinkρ(x – δ)

+
ρ

k

∫ x

δ

dν

dxν
sinkρ(x – t)q(t)ϕ(t,λ)dt

= –
(
λθ ′

 – θ
)
γkρ sinkρ(δ – a)

dν

dxν
coskρ(x – δ)

+O
(|k|ν+e| Imk|((δ–a)ρ+(x–δ)ρ)

)
,

dν

dxν
ϕ(x,λ) =

(
θϕ(δ,λ) + γϕ

′
(δ,λ)

) dν

dxν
coskρ(x – δ)

+


kρ

(
θϕ(δ,λ) + γϕ

′
(δ,λ)

) dν

dxν
sinkρ(x – δ)

+
ρ

k

∫ x

δ

dν

dxν
sinkρ(x – t)q(t)ϕ(t,λ)dt

=
(
λθ ′

 – θ
)
γγkρρ sinkρ(δ – a) sinkρ(δ – δ)

dν

dxν
coskρ(x – δ)

+O
(|k|ν+e| Imk|((δ–a)ρ+(δ–δ)ρ+(x–δ)ρ)

)
.

Lemma  Let λ = k, k = σ + iω.
Then the following integral equations and also asymptotic behaviors hold for ν = , :

dν

dxν
ψ(x,λ) =

(
λγ ′

 + γ
) dν

dxν
coskρ(x – b)

+


kρ

(
λγ ′

 + γ
) dν

dxν
sinkρ(x – b)

–
ρ

k

∫ b

x

dν

dxν
sinkρ(x – t)q(t)ψ(t,λ)dt

=
(
λγ ′

 + γ
) dν

dxν
coskρ(x – b)

+


kρ

(
λγ ′

 + γ
) dν

dxν
sinkρ(x – b) +O

(|k|ν+e| Imk|(x–b)ρ),

http://www.boundaryvalueproblems.com/content/2013/1/209
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dν

dxν
ψ(x,λ) =

γψ(δ,λ) – γψ
′
(δ,λ)

α

dν

dxν
coskρ(x – δ)

+


kρ

θψ(δ,λ) – θψ
′
(δ,λ)

–α

dν

dxν
sinkρ(x – δ)

–
ρ

k

∫ δ

x

dν

dxν
sinkρ(x – t)q(t)ψ(t,λ)dt

=
(

λγ ′
 + γ

α

)(
kργ sinkρ(δ – b)

dν

dxν
coskρ(x – δ)

)

+O
(|k|ν+e| Imk|((δ–b)ρ+(x–δ)ρ)

)
,

dν

dxν
ψ(x,λ) =

γψ(δ,λ) – γψ
′
(δ,λ)

α

dν

dxν
coskρ(x – δ)

+

kρ

θψ(δ,λ) – θψ
′
(δ,λ)

–α

dν

dxν
sinkρ(x – δ)

–
ρ

k

∫ δ

x

dν

dxν
sinkρ(x – t)q(t)ψ(t,λ)dt

=
(

λγ ′
 + γ

αα

)

×
(
kρργγ sinkρ(δ – b) sinkρ(δ – δ)

dν

dxν
coskρ(x – δ)

)

+O
(|k|ν+e| Imk|((δ–b)ρ+(δ–δ)ρ+(x–δ)ρ)

)
.

The function �(λ) is called the characteristic function, and numbers {μn}n≥ are called
the normalizing constants of problem ()-() such that

�(λ) = λ
(
γ ′
ϕ(b,λ) – γ ′

ϕ
′(b,λ)

)
+

(
γϕ(b,λ) – γ ′

ϕ
′(b,λ)

)
, ()

μn := ααρ

∫ δ

a
ϕ(x,λn)dx + αρ

∫ δ

δ

ϕ(x,λn)dx + ρ

∫ b

δ

ϕ(x,λn)dx

+
αα

β

(
θ ′
ϕ(a,λn) – θ ′

ϕ
′(a,λn)

) + 
β

(
γ ′
ϕ(b,λn) – γ ′

ϕ
′(b,λn)

). ()

Lemma  The following equality holds for each eigenvalue λn

αα�̇(λn) = κnμn.

Proof Since

–ρ(x)ψ ′′(x,λ) + q(x)ψ(x,λ) = λψ(x,λ), –ρ(x)ϕ′′(x,λn) + q(x)ϕ(x,λn) = λϕ(x,λn),

we get

ϕ′(x,λn)ψ(x,λ) –ψ ′(x,λ)ϕ(x,λn)
(|δa + |δδ + |bδ

)
= (λ – λn)ρ



∫ δ

a
ψ(x,λ)ϕ(x,λn)dx

+ (λ – λn)ρ


∫ δ

δ

ψ(x,λ)ϕ(x,λn)dx + (λ – λn)ρ


∫ b

δ

ψ(x,λ)ϕ(x,λn)dx.

http://www.boundaryvalueproblems.com/content/2013/1/209
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After that, add and subtract �(λ) on the left-hand side of the last equality, and by using
conditions ()-(), we obtain

�(λ) + (λ – λn)
(
θ ′
ψ(a,λ) – θ ′

ψ
′(a,λ)

)
– (λ – λn)

(
γ ′
ϕ(b,λn) – γ ′

ϕ
′(b,λn)

)
+ ( – α)

(
ψ

(
δ– ,λ

)
ϕ′(δ– ,λn

)
– ϕ

(
δ– ,λn

)
ψ ′(δ– ,λ))

+ ( – α)
(
ψ

(
δ– ,λ

)
ϕ′(δ– ,λn

)
– ϕ

(
δ– ,λn

)
ψ ′(δ– ,λ))

= (λ – λn)ρ


∫ δ

a
ψ(x,λ)ϕ(x,λn)dx + (λ – λn)ρ



∫ δ

δ

ψ(x,λ)ϕ(x,λn)dx

+ (λ – λn)ρ


∫ b

δ

ψ(x,λ)ϕ(x,λn)dx,

or

αα�(λ)
λ – λn

= ααρ



∫ δ

a
ψ(x,λ)ϕ(x,λn)dx + αρ




∫ δ

δ

ψ(x,λ)ϕ(x,λn)dx

+ ρ


∫ b

δ

ψ(x,λ)ϕ(x,λn)dx

+
αα

β

(
θ ′
ψ(a,λ) – θ ′

ψ
′(a,λ)

)(
θ ′
ϕ(a,λn) – θ ′

ϕ
′(a,λn)

)

+

β

(
γ ′
ϕ(b,λn) – γ ′

ϕ
′(b,λn)

)(
γ ′
ψ(b,λ) – γ ′

ψ
′(b,λ)

)
.

For λ → λn, αα�̇(λn) = κnμn is obtained by using the equality

ψ(x,λn) = κnϕ(x,λn)

and (). �

Corollary  The eigenvalues of problem L are simple.

Lemma  [] Let {αi}pi= be the set of real numbers satisfying the inequalities α > α >
· · · > αp– > , and let {ai}pi= be the set of complex numbers. If ap �= , then the roots of the
equation

eαλ + aeαλ + · · · + ap–eαλ + ap = 

have the form

λn =
πni
α

+�(n) (n = ,±, . . .),

where �(n) is a bounded sequence.
Now, from Lemma  and (), we can write

�(λ) –�(λ) =O
(
ke| Imk|((δ–a)ρ+(δ–δ)ρ+(b–δ)ρ)

)
,

where �(λ) = kθ ′
γ

′
γγρρρ sinkρ(δ – a) sinkρ(δ – δ) sinkρ(b – δ).

http://www.boundaryvalueproblems.com/content/2013/1/209
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We can see that non-zero roots, namely λ
n of the equation �(λ) = , are real and ana-

lytically simple.
Furthermore, it can be proved by using Lemma  that

√
λ
n =

nπ

(δ – a)ρ + (δ – δ)ρ + (b – δ)ρ
+�n, sup

n
|�n| < ∞. ()

Theorem The eigenvalues {λn}n≥ have the following asymptotic behavior for sufficiently
large n:

√
λn =

√
λ
n– + o(). ()

Proof Denote

Gn :=
{
λ : k = λ, |k| ≤ ∣∣kn ∣∣ + δ

}
,

where kn =
√

λ
n and δ is a sufficiently small number. The relations

∣∣�(λ)
∣∣ ≥ Cδ|k|e| Imk|((δ–a)ρ+(δ–δ)ρ+(b–δ)ρ)

and

�(λ) –�(λ) =O
(
ke| Imk|((δ–a)ρ+(δ–δ)ρ+(b–δ)ρ)

)

are valid for λ ∈ ∂Gn.
Then, by Rouche’s theorem that the number of zeros of �(λ) coincides with the num-

ber of zeros of �(λ) in Gn, namely n +  zeros, λ,λ,λ, . . . ,λn+. In the annulus, between
Gn and Gn+, �(λ) has accurately one positive zero, namely kn : kn =

√
λ
n + δn, for n ≥ .

So, it follows that λn+ = kn . Applying to Rouche’s theorem in ηε = {k : |k – kn | < ε} for suf-
ficiently small ε and sufficiently large n, we get δn = o(). Finally, we obtain the asymptotic
formula

√
λn =

√
λ
n– + o().

Denote

�i(λ) :=W (ϕi,ψi,x) := ϕiψ
′
i – ϕ′

iψi, x ∈ �i (i = , ),

which are independent of x ∈ �i and are entire functions such that � = [a, δ), � =
(δ, δ), � = (δ,b].
It can be easily seen that

�(λ) := �(λ) = α�(λ) = αα�(λ). �

Example Let q = , a = , b = π , δ = π
 , δ =

π
 , θ = γ = , γ = , θ = –, θ = γ = ,

γ = , θ = –, γ ′
 = , γ = –, γ ′

 = γ = , θ ′
 =  θ = –, θ ′

 = θ = .

http://www.boundaryvalueproblems.com/content/2013/1/209
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Since

�(λ) = ρρρk sinkρδ sinkρ(δ – δ) sinkρ(π – δ)

+O
(
ke| Imk|(δρ+(δ–δ)ρ+(π–δ)ρ)

)
,

the eigenvalues of the boundary value problem ()-() satisfy the following asymptotic
formulae:

√
λn = kn =

(n – )
ρ

+ εn,
√

λn = kn =
(n – )

ρ
+ εn,

√
λn = kn =

(n – )
ρ

+ εn,

where εn =O(n–).

3 Inverse problems
In this section, we study the inverse problems for the reconstruction of the boundary value
problem ()-() by Weyl function and spectral data.
We consider the boundary value problem L̃ with the same form of L but with different

coefficients q̃(x), θ̃i, γ̃i, δ̃j, θ̃ ′
j , γ̃ ′

j , i =  – , j = , .
If a certain symbol α denotes an object related to L, then the symbol α̃ denotes the

corresponding object related to L̃.

TheWeyl function Let �(x,λ) be a solution of equation (), which satisfies the condition
(λθ ′

 – θ)�(a,λ) – (λθ ′
 – θ)�(a,λ) =  and transmissions ()-().

Assume that the function χ (x,λ) is the solution of equation () that satisfies the condi-
tions χ (a,λ) = β–

 θ ′
, χ ′(a,λ) = β–

 θ ′
 and the transmission conditions ()-().

SinceW [χ ,ϕ] = , the functions χ and ϕ are linearly independent. Therefore, the func-
tion ψ(x,λ) can be represented by

ψ(x,λ) =
θ ′
ψ

′(a,λ) – θ ′
ψ(a,λ)

β
ϕ(x,λ) +�(λ)χ (x,λ)

or

�(x,λ) =
ψ(x,λ)
�(λ)

= χ (x,λ) +
θ ′
ψ

′(a,λ) – θ ′
ψ(a,λ)

β�(λ)
ϕ(x,λ) ()

that is called the Weyl solution, and

θ ′
ψ

′(a,λ) – θ ′
ψ(a,λ)

β�(λ)
=M(λ) ()

is called the Weyl function.

Theorem  If M(λ) = M̃(λ), then L = L̃, i.e., q(x) = q̃(x), a.e. and θi = θ̃i, γi = γ̃i, i =  – ,
δj = δ̃j, θ ′

j = θ̃ ′
j , γ ′

j = γ̃ ′
j , j = , .

http://www.boundaryvalueproblems.com/content/2013/1/209
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Proof We introduce a matrix P(x,λ) = [Pkj(x,λ)]k,j=, by the formula

P(x,λ)

(
ϕ̃ �̃

ϕ̃′ �̃′

)
=

(
ϕ �

ϕ′ �′

)

or

(
P(x,λ) P(x,λ)
P(x,λ) P(x,λ)

)
=

(
–ϕ�̃′ +�ϕ̃′ ϕ�̃ –�ϕ̃

–ϕ′�̃′ + ϕ̃′�′ ϕ′�̃ – ϕ̃�′

)
, ()

where �(x,λ) = ψ(x,λ)
�(λ) .

P(x,λ) = χ (x,λ)ϕ̃′(x,λ) – ϕ(x,λ)χ̃ ′(x,λ) +
(
M(λ) – M̃(λ)

)
ϕ(x,λ)ϕ̃′(x,λ),

P(x,λ) = ϕ(x,λ)χ̃(x,λ) – χ (x,λ)ϕ̃(x,λ) +
(
M̃(λ) –M(λ)

)
ϕ(x,λ)ϕ̃(x,λ).

Thus, if M(λ) ≡ M̃(λ), then the functions P(x,λ) and P(x,λ) are entire in λ for each
fixed x.
Denote Gw = {λ : λ = k, |k – kδ| > w, δ = , , . . .} and G̃w = {λ : λ = k, |k – k̃δ| > w, δ =

, , . . .}, where w is sufficiently small number, kδ and k̃δ are square roots of the eigenvalues
of the problem L and L̃, respectively. It is easily shown that

�
(ν)
i (x,λ)≤ Cw|k|ν–(+i)e–| Im√

λ|((δ–a)ρ+(δ–δ)ρ+(b–δ)ρ),

x ∈ �i (i = , , ),ν = ,  ()

are valid for sufficiently large |λ|, where � = [a, δ), � = (δ, δ) and � = (δ,b]. Hence,
Lemma  and () yield that

∣∣P(x,λ)
∣∣ ≤ Cw,

∣∣P(x,λ)
∣∣ ≤ Cw|k|– for λ ∈ � and for λ ∈ Gw ∩ G̃w. ()

According to (), and Liouville’s theorem, P(x,λ) = C(x) and P(x,λ) ≡  for x ∈
[a,b]\{δ, δ, δ̃, δ̃}. By virtue of (), we get

ϕ(x,λ) = C(x)ϕ̃(x,λ), �(x,λ) = C(x)�̃(x,λ). ()

It is obvious that

W
[
�(x,λ),ϕ(x,λ)

]
= �(a,λ)

(
θ ′
λ – θ

)
–�′(a,λ)

(
θ ′
λ – θ

)
=

ψ(a,λ)(θ ′
λ – θ) –ψ ′(a,λ)(θ ′

λ – θ)
�(λ)

≡ ,

and similarly,W [�̃(x,λ), ϕ̃(x,λ)]≡ . Thus, we have C(x)≡ .

http://www.boundaryvalueproblems.com/content/2013/1/209
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Otherwise, the following asymptotic expressions hold

ϕ(x,λ) = ϕ̃(x,λ) =
λ


e–ik(x–a)ρ

(
 + o()

)
for x < δ and x < δ̃,

ϕ(x,λ) = ϕ̃(x,λ) = –
λ\


e–ik((δ–a)ρ+(x–δ)ρ)

(
 + o()

)
for δ < x < δ and δ̃ < x < δ̃,

ϕ(x,λ) = ϕ̃(x,λ) =
λ


e–ik((δ–a)ρ+(δ–δ)ρ+(x–δ)ρ)

(
 + o()

)
for δ < x and δ̃ < x.

()

Without loss of generality, we assume that δ < δ̃ and δ < δ̃. From ()-(), we get
C(x) ≡  for x ∈ [a, δ)∪ (δ̃, δ)∪ (δ̃,b] and also


λ/

(
 + o()

)
C(x) = –e(x–δ)ρ

(
 + o()

)
for x ∈ (δ, δ̃),


λ/ e

(x–δ)ρ
(
 + o()

)
C(x) = –e(δ–δ)ρ+(x–δ)ρ

(
 + o()

)
for x ∈ (δ, δ̃).

()

As |λ| → ∞ in (), we contradict C(x) ≡ . Therefore, δ = δ̃, δ = δ̃. Thus, ϕ(x,λ) ≡
ϕ̃(x,λ), �(x,λ) ≡ �̃(x,λ) and ψ ′(x,λ)

ψ(x,λ) ≡ ψ̃ ′(x,λ)
ψ̃(x,λ) . Hence, from equation () and transmission

conditions ()-(), q(x) = q̃(x), a.e., θi = θ̃i, γi = γ̃i, i =  – , and from () and (), θi = θ̃i,
θ ′
j = θ̃ ′

j , γ ′
j = γ̃ ′

j , i, j = , . �

Lemma  The following representation holds

M(λ) =
∞∑
n=

αα

μn(λn – λ)
.

Proof Weyl functionM(λ) is a meromorphic function with respect to λ, which has simple
poles at λn. Therefore, we calculate

Re s
λ=λn

M(λ) =
θ ′
ψ

′(a,λn) – θ ′
ψ(a,λn)

β�̇(λn)
.

Since κn =
θ ′
ψ

′(a,λn)–θ ′
ψ(a,λn)

β
and �̇(λn) = κnμn

αα
,

Re s
λ=λn

M(λ) =
αα

μn
. ()

Let �N = {λ : λ = k, |k| = √
λN + ε}, where ε is a sufficiently small number. Consider the

contour integral IN (λ) = 
π i

∫
�n

M(μ)
μ–λ

dμ, λ ∈ int�N . For λ ∈Gw,

�(λ)≥ |λ|/Cwe| Im k|((δ–a)ρ+(δ–δ)ρ+(b–δ)ρ)

satisfies. Using this equality and (), we get

∣∣M(λ)
∣∣ ≤ Cw

|λ| for λ ∈Gw.

http://www.boundaryvalueproblems.com/content/2013/1/209
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Thus, limN→∞ IN (λ) = . As a result, the residue theorem and () yield

M(λ) =
∞∑
n=

αα

μn(λn – λ)
. �

Theorem  If λn = λ̃n and μn = μ̃n for all n, then L ≡ L̃, i.e., q(x) = q̃(x), a.e., θi = θ̃i, γi = γ̃i,
i =  – , δj = δ̃j, θ ′

j = θ̃ ′
j , γ ′

j = γ̃ ′
j , j = , . Hence, problem ()-() is uniquely determined by

spectral data {λn,μn}.

Proof If λn = λ̃n and μn = μ̃n for all n, then M(λ) = M̃(λ) by Lemma . Therefore, we get
L = L̃ by Theorem .
Let us consider the boundary value problem L that we get the condition θ ′

y′(a,λ) –
θ ′
y(a,λ) =  instead of condition () in L. Let {τn}n≥ be the eigenvalues of the problem L.
It is clear that τn are zeros of

�(τ ) := θ ′
ψ

′(a, τ ) – θ ′
ψ(a, τ ). �

Theorem If λn = λ̃n and τn = τ̃n for all n, then L(q, δj, θk ,γi,γ ′
j ) = L(q̃, δ̃j, θ̃k , γ̃i, γ̃ ′

j ), i = –,
k =  – , j = , .
Hence, the problem L is uniquely determined by the sequences {λn} and {τn}, except coef-

ficients θj and θ ′
j .

Proof Since the characteristic functions �(λ) and �(τ ) are entire of order 
 , functions

�(λ) and �(τ ) are uniquely determined up to multiplicative constant with their zeros by
Hadamard’s factorization theorem []

�(λ) = C
∞∏
n=

(
 –

λ

λn

)
,

�(τ ) = C

∞∏
n=

(
 –

τ

τn

)
,

where C and C are constants dependent on {λn} and {τn}, respectively. Therefore, when
λn = λ̃n and τn = τ̃n for all n, �(λ) ≡ �̃(λ) and �(τ ) ≡ �̃(τ ). Hence, θ ′

ψ
′(a, τ ) –

θ ′
ψ(a, τ ) = θ̃ ′

ψ̃
′(a, τ ) – θ̃ ′

ψ̃(a, τ ). As a result, we get M(λ) = M̃(λ) by (). So, the proof
is completed by Theorem . �
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