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Abstract
In an unbounded domain, we consider a problem with conditions given on inner
characteristics in a hyperbolic part of the considered domain and on some parts of
the line of parabolic degeneracy. We prove the unique solvability of the mentioned
problem with the help of the extremum principle. The proof of solvability is based on
the theory of singular integral equations, Wiener-Hopf equations and Fredholm
integral equations.

Introduction and formulation of a problem
Swedish mathematician Gellerstedt [] investigated a boundary value problem for the
equation ymuxx + uyy =  (m is an odd number), in which the values of a sought function
are given on two pieces of characteristics, and on curve x +/(m + )ym+ =  (y > ), the
value of its derivative is given. This problemhas applications in transonic gas dynamics [].
The Gellerstedt problem and related problems for mixed elliptic-hyperbolic equations

were studied in the works [–]. The work [] is devoted to studying the Gellerstedt prob-
lem with data on one family of characteristics and with nonlocal gluing conditions. In the
work [] the unique solvability of theGellerstedt problem for a parabolic-hyperbolic equa-
tion of the second kind was studied. The Cauchy problem was investigated by Jachmann
and Reissig []. Flaisher [] studied a problem with data on characteristics, outgoing from
the origin.
In an unbounded domain, Wolfersdorf [] investigated the Tricomi problem for the

Gellerstedt equation (sign y)|y|muxx + uyy = ,m > .
Boundary value problems for the wave equation and equations of mixed type were in-

vestigated in []. In the work [] the general Tricomi-Rassias problem was investigated
for the generalizedChaplygin equation. In the paper, the representation of a solution of the
general Tricomi-Rassias problem was given for the first time; moreover, the uniqueness
and existence of a solution for the problem were proved by a new method. In the works
[, ], fundamental solutions were found and boundary value problems for degenerate
elliptic equations were solved.
Due to applications in gas dynamics, the interest in studying boundary value problems

for degenerate elliptic andmixed-type equations with singular coefficients has been grow-
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ing. Note the latest work [] on this topic, where the Dirichlet problem for a three-
dimensional elliptic equation with singular coefficients was investigated. Let D = D+ ∪
D– ∪ I be a domain of the complex plane z = x + iy, where D+ is a half-plane y > , D–

is a finite domain of the half-plane y < , bounded by characteristics AC and BC of the
equation

(sign y)|y|muxx + uyy +
α

|y|–m

ux +

β

y
uy = , ()

outgoing from the points A(–, ), B(, ), and by the segment AB of the straight line y = ,
I = {(x, y) : – < x < , y = }. In equation () assume that m, α, β are some real numbers
such that m > , –m/ < β < , |α| < m+

 .
Let D+

R be a finite domain separated from D+ by the arc ARBR of the normal curve x +
ym+/(m + ) = R, –R ≤ x≤ R,  ≤ y≤ ((m + )R/)/(m+), AR(–R, ), BR(R, ).
We introduce the following denotations: Ī = {(x, y) : –∞ < x ≤ –, y = }, Ī = {(x, y) :

 ≤ x < ∞, y = }, C(C) are points of intersection of the characteristic AC(BC) with that
outgoing from the point E(c, ), where c ∈ I is an arbitrary fixed number, DR = D+

R ∪ D–,
DR is a subdomain in the unbounded domain D.
Consider the diffeomorphism q(x) ∈ C[c, ]mapping the segment [c, ] into the segment

[–, c]; moreover, q′(x) < , q(c) = c, q() = –. As an example, we take a linear function
q(x) = p – kx, where k = ( + c)/( – c), p = c/( – c), p – k = –, p – kc = c.
Note that in the Gellerstedt problem the values of a sought function in the hyperbolic

part of the mixed domain D are given on the characteristics EC and EC: u|EC = ψ(x),
u|EC = ψ(x).
Boundary value problem for equation () in the case when α = , with data on the piece

of AC of the characteristic AC and with inner boundary local shifting condition on AB
of the line of degeneracy y = , was studied in the work [], and with data on pieces AC

and BC in the work [].
In the present work, we study a new boundary problem, where characteristic EC is

free from the conditions, and the needed condition of Gellerstedt is replaced by an inner
boundary condition with local shifting on the parabolic line of degeneracy.

Formulation of the problem
Problem G. In the domain D, find a function u(x, y) satisfying the following conditions:
() the function u(x, y) is continuous in any subdomain D̄R of the unbounded domain D;
() u(x, y) belongs to the space C(D+) and satisfies equation () in this domain;
() u(x, y) is a generalized solution from the class R (τ ′(x),ν(x) ∈H) in the domain

D– [];
() the following equalities are fulfilled:

lim
R→∞u(x, y) = , y≥ , R = x + (m + )–ym+; ()

() u(x, y) satisfies the boundary conditions

u(x, y)|y= = τi(x), ∀x ∈ Īi, i = , , ()

u(x, y)|EC = ψ(x), c≤ x ≤ (c + )/, ()

u
(
q(x), 

)
= μu(x, ) + f (x), c ≤ x≤ , ()
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and the conjugation condition

lim
y→+

yβuy = lim
y→–

(–y)βuy, x ∈ I\{c}. ()

Moreover, these limits at x = ±, x = c can have singularity of the order less than –α–β ,
where α = (m + (β + α))/((m + )), β = (m + (β – α))/((m + )) , f (x),ψ(x), τi(x) are
given functions such that f (x) ∈ C[c, ]∩C,δ (c, ), f (c) = , f () = ,ψ(x) ∈ C[c, (c+)/]∩
C,δ (c, (c+)/),ψ(c) = ,μ-const., the functions τi(x) are expressed as τi(x) = ( – x)τ̃i(x)
in a neighborhood of the points x = –, x = , and they satisfy Holder’s condition on any
intervals (–N , –), (,N), N > . For a sufficiently large absolute value |x|, they satisfy the
inequality |τi(x)| ≤M|x|–δ , where δ,M are positive constants.
Note that condition () is an inner boundary condition with local shifting on the

parabolic line of degeneracy [–].

The uniqueness of the solution of problem G
Theorem  Let conditions τi(x)≡ , i = , ,ψ(x)≡ , f (x)≡ ,  < μ <  be fulfilled. Then
problem G has only a trivial solution.

Proof Solution of the modified Cauchy problem for equation () in the domain D–, satis-
fying initial conditions limy→– u(x, y) = τ (x), x ∈ Ī , limy→–(–y)βuy = ν(x), x ∈ I , is given
by the formula []

u(x, y) = γ

∫ 

–
τ

[
x +

t
m + 

(–y)(m+)/
]
( + t)β–( – t)α– dt

+ γ(–y)–β

∫ 

–
ν

[
x +

t
m + 

(–y)(m+)/
]
( + t)–α( – t)–β dt, ()

where γ = 	(α + β)–α–β/	(β)	(α), γ = –	( – α – β)α+β–/(( – β)	( – α)	( – β)),
	(z) is Euler’s gamma function [].
Satisfying () to condition (), after some evaluations, we obtain

ν(X) = γD–α–β

c,X τ (X) +
(X), X ∈ (c, ), ()

where


(X) =
(X – c)αD–β

c,X ψ((X + c)/)

γ(m+
 )–α–β

	( – β)
, X = x – c,

γ = 	( – α)	(α + β)((m + )/)α+β/(	(β)	( – α – β)), Dl
c,x is a differential operator of

fractional order in a sense of Riemann-Liouville [].
Equality () is the first functional relation between functions τ (x) and ν(x), on an interval

of the axis y =  reduced from the domain D–.
Prove that if τi(x)≡ , i = , , ψ(x)≡ , f (x) ≡ ,  < μ < , then the solution of problem

G in the domain D+ ∪ I ∪ Ī ∪ I is trivial by virtue of equality ().
Let (x, y) be a point of positive maximum of the function u(x, y) in the domain D̄+

R. By
virtue of () for ∀ε > , there exists R = R(ε) such that at R > R(ε)

∣∣u(x, y)∣∣ < ε, (x, y) ∈ ARBR. ()
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Considering designation u(x, ) = τ (x), x ∈ Ī , condition () can be written as

τ
(
q(x)

)
= μτ (x) + f (x), x ∈ [c, ]. ()

Hence, at x = c (where f (x) ≡ ) we get τ (q(c)) = μτ (c). Then, taking q(c) = c into ac-
count, we have τ (c)(–μ) = , i.e., τ (c) = . By the Hopf principle [], the function u(x, y)
cannot reach its positive maximum and negative minimum on inner points of the do-
main D̄+

R. By virtue of  < μ < , from () (where f (x) ≡ ) it follows that there are no
points of extremum in the interval (–, c) of the axis y = .
Assume that the sought function reaches its positive maximum and negative minimum

on points of the interval (c, ) of the axis y = .
Let (x, ) (where x ∈ (c, )) be a point of positive maximum (negative minimum) of the

function u(x, ) = τ (x). Then []

ν(x) < 
(
ν(x) > 

)
. ()

It is well known that on the point of positive maximum (negative minimum) of the
function τ (x) for the differential operators of fractional order, the following inequality
D–α–β

c,x τ (x) >  (D–α–β
c,x τ (x) < ) holds. Hence, considering () (where 
(X) ≡ ), we de-

duce

ν(x) = γD–α–β
c,x τ (x) > 

(
ν(x) = γD–α–β

c,x τ (x) < 
)
. ()

Inequalities () and () contradict the gluing condition (), therefore x /∈ (c, ). Hence,
there is no point of positive maximum (negative minimum) of the function u(x, y) in the
interval AB. Let R > R. By the Hopf principle and the statements obtained above, it fol-
lows that (x, y) ∈ ARBR, and by virtue of (), |u(x, y)| < ε. Consequently, |u(x, y)| < ε for
∀(x, y) ∈ D̄+

R. From here, due to arbitrariness of ε at R → ∞, we conclude that u(x, y) ≡ 
in the domain D+ ∪ I ∪ Ī ∪ I. Then

lim
y→+

u(x, y) = , x ∈ Ī, lim
y→+

yβuy = , x ∈ I. ()

Considering (), due to continuity of the solution in D̄+
R and conjugation condition (),

we restore the desired function u(x, y) in the domain D– as a solution of the modified
Cauchy problem with homogeneous data and get u(x, y) ≡  in the domain D̄–. The proof
of Theorem  is complete. �

The existence of the solution of problem G
Theorem  Let the following conditions be fulfilled: q(x) = p– kx,  < μ < , λμkα+β+θ– 

 ×
πebπ < , 

 –(α + β + θ ) < , λ = e–bπ
γ	(–α–β)

k(–β)(m+)/ +
π

sin(α+β)π (ebπ–e–bπ cos(α+β)π )
> ,where b = – α

m+ ,

θ = arctg(λπ )
π

, k = 
π
( 
m+ )

–a 	(–l)	(–l̄)
	(–l–l̄) , a = α + β , l = a + bi. Then problem G has a solu-

tion.

Proof The solution of the Dirichlet problem satisfying condition () and the requirement
u(x, ) = τ (x), x ∈ Ī , can be represented in the form

u(x, y) = k( – β)y–β

∫ 

–
τ (t)

(
r

)a–
exp

(
–b arcsin

t – x
r

)
dt + F(x, y), ()
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where r = (x – t) + 
(m+)

ym+,

F(x, y) = k( – β)y–β

(∫ –

–∞
τ(t)

(
r

)a–
exp

(
–b arcsin

t – x
r

)
dt

+
∫ ∞


τ(t)

(
r

)a–
exp

(
–b arcsin

t – x
r

)
dt

)
.

Differentiating () along y and considering the equality

∂

∂y

{
y–β

(
r

)a–
exp

(
–b arcsin

t – x
r

)}

=
m + 


y–β
∂

∂t

{
(x – t)

(
r

)a–
exp

(
–b arcsin

t – x
r

)}
,

we get

∂u
∂y

= k( – β)
m + 


y–β

∫ 

–
τ (t)

∂

∂t

[
(x – t)

(
r

)a–
exp

(
–b arcsin

t – x
r

)]
dt

+
∂F(x, y)

∂y
.

Integrating by parts (taking τ (–) = , τ () =  into account), after some evaluations, we
have

∂u
∂y

= –k( – β)
m + 


y–β

∫ 

–
τ ′(t)

[
(x – t)

(
r

)a–
exp

(
–b arcsin

t – x
r

)]
dt

+
∂F(x, y)

∂y
. ()

Multiplying both sides of () to yβ , and passing to the limit at y→ +, we obtain

ν(x) = –k( – β)
m + 


∫ 

–
τ ′(t)(x – t)|x – t|a– exp

(
–b arcsin

t – x
|t – x|

)
dt +�(x),

x ∈ (–, ), ()

where �(x) = limy→+ yβ ∂F(x,y)
∂y = k( – β)(ebπ

∫ –
–∞

τ(t)dt
(x–t)–a

+ e–bπ
∫ ∞


τ(t)dt
(t–x)–a

).
Equation () is the second functional relation between unknown functions ν(x), τ (x) in

the interval I of the axis y =  deduced from the upper half-plane.
Note that relation () is valid for the whole I . Breaking (–, ) into the intervals (–, c)

and (c, ), then into the integral with bounds (–, c), we make change of variables t = q(s) =
p – ks. By virtue of (), from () we obtain

ν(x) = –k( – β)
m + 


×
[
–μebπ

∫ 

c

τ ′(s)ds
(x – q(s))–a

– ebπ
∫ 

c

f ′(s)ds
(x – q(s))–a

+ ebπ
∫ x

c
τ ′(t)(x – t)a– dt

– e–bπ
∫ 

x
τ ′(t)(t – x)a– dt

]
+�(x), x ∈ (c, ). ()
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Considering (), excluding the function ν(x) from () and (), we deduce

–γ
k( – β)(m + )

D–α–β
c,x τ (x) + F(x)

= –μebπ
∫ 

c

τ ′(s)ds
(x – q(s))–a

+ ebπ
∫ x

c

τ ′(t)dt
(x – t)–a

– e–bπ
∫ 

x

τ ′(t)dt
(t – x)–a

, ()

F(x) = –
(
(x) –�(x))
k( – β)(m + )

+ ebπ
∫ 

c

f ′(s)ds
(x – q(s))–a

.

Applying the operator 	( – α – β)Dα+β–
c,x to the both sides of (), considering Dα+β–

c,x ×
D–α–β

c,x τ (x) = τ (x), we have

–γ
k( – β)(m + )

	( – α – β)τ (x) + 	( – α – β)Dα+β–
c,x F(x)

= 	( – α – β)Dα+β–
c,x

×
[
–μebπ

∫ 

c

τ ′(s)ds
(x – q(s))–a

+ ebπ
∫ x

c

τ ′(t)dt
(x – t)–a

– e–bπ
∫ 

x

τ ′(t)dt
(t – x)–a

]
,

x ∈ [c, ]. ()

Further, one can easily prove that

–μebπ	( – α – β)Dα+β–
c,x

∫ 

c

τ ′(s)ds
(x – q(s))–α–β

= μebπ
∫ 

c

(
x – c

c – q(s)

)–α–β
τ (s)q′(s)ds
x – q(s)

, ()

ebπ	( – α – β)Dα+β–
c,x

∫ x

c

τ ′(t)dt
(x – t)–α–β

= ebπ	(α + β)	( – α – β)τ (x), ()

e–bπ	( – α – β)Dα+β–
c,x

∫ 

x

τ ′(t)dt
(t – x)–α–β

= e–bππ ctg
(
(α + β)π

)
τ (x) + e–bπ

∫ 

c

(
t – c
x – c

)α+β–
τ (t)dt
t – x

. ()

Substituting ()-() into (), after some calculations, we get the singular integral equa-
tion regarding the function τ (x):

τ (x) – λ

∫ 

c

(
x – c
t – c

)–α–β
τ (t)dt
t – x

= –μλebπ
∫ 

c

(
x – c

c – q(s)

)–α–β
τ (s)q′(s)ds
x – q(s)

+ F(x), ()

where F(x) = 	( – α – β)λebπDα+β–
c,x F(x), F(x) ∈ C[c, ]∩C,γ̄ (c, ), γ̄ > –β . The integral

operator on the right-hand side of () is not regular since expression under the integral
has isolated singularity of the first order at x = c, s = c, and this is why this item is written
separately. Setting the right-hand side of () temporarily as a known function, we rewrite

http://www.boundaryvalueproblems.com/content/2013/1/210
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it as follows:

τ (x) – λ

∫ 

c

(
x – c
t – c

)–α–β
τ (t)dt
t – x

= g(x), ()

where

g(x) = –μλebπ
∫ 

c

(
x – c

c – q(s)

)–α–β
τ (s)q′(s)ds
x – q(s)

+ F(x). ()

Setting (x – c)α+β–τ (x) = ρ(x), (x – c)α+β–g(x) = g(x), we rewrite equation () as

ρ(x) – λ

∫ 

c

ρ(t)dt
t – x

= g(x). ()

We search for a solution of equation () in the class of functions, satisfying Holder’s
condition on (c, ) and bounded at x → , and at x→ c they can tend to infinity with order
less than  – α – β . Index χ of this class is equal to zero, and solution can be explicitly
found by the method of Carleman-Vekua []:

ρ(x) =
g(x)

 + λπ +
λ

 + λπ

(
 – x
x – c

)θ ∫ 

c

(
t – c
 – t

)θ g(t)dt
t – x

,

where θ = ψ/π , ψ = arctg(λπ ),  < θ < /. From here, according to designation, we have

τ (x) =
g(x)

 + λπ +
λ

 + λπ

(
 – x
x – c

)θ ∫ 

c

(
t – c
 – t

)θ( t – c
 – t

)α+β– g(t)dt
t – x

. ()

Substituting () into (), after some evaluations, we obtain

τ (x) =
–λμebπ

 + λπ

∫ 

c

(
x – c

c – q(s)

)–α–β
τ (s)q′(s)ds
x – q(s)

–
λμebπ

 + λπ

(
 – x
x – c

)θ ∫ 

c

(
x – c

c – q(s)

)–α–β

τ (s)q′(s)ds

×
∫ 

c

(
t – c
 – t

)θ dt
(t – q(s))(t – x)

+ F(x), ()

where

F(x) =
F(x)

 + λπ +
λ

 + λπ

(
 – x
x – c

)θ∫ 

c

(
t – c
 – t

)θ( t – c
x – c

)α+β–
F(t)dt
t – x

.

Equation (), by virtue of q(x) = p – kx, where k = ( + c)/( – c), p = c/( – c), can be
rewritten as

τ (x) =
–λμkα+βebπ

 + λπ

∫ 

c

(
x – c
s – c

)–α–β
τ (s)ds

(p – ks) – x

+
λμkα+βebπ

 + λπ

(
 – x
x – c

)θ ∫ 

c

(
x – c
s – c

)–α–β

τ (s)ds

×
∫ 

c

(
t – c
 – t

)θ dt
(t – x)(t – (p – ks))

+ F(x), x ∈ [c, ]. ()

http://www.boundaryvalueproblems.com/content/2013/1/210
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Further, in () we calculate the inner integral

A(x, s) =
∫ 

c

(
t – c
 – t

)θ dt
(t – x)(t + ks – p)

.

Expanding the rational factor of the integrand in simple fractions and completing simple
calculations, we have

A(x, s) =


x + ks – p

(
–π ctg(πθ )( – x)–θ (x – c)θ +

π

sin(πθ )
kθ

(
s – c

 + ks – p

)θ)
. ()

Substituting () into (), considering ctg(arctgx) = 
x , x �= , after some calculations,

we get

τ (x) = –
λμkα+β+θebπ

 + λπ
π

sin(πθ )

×
∫ 

c

(
 – x

 + ks – p

)θ(x – c
s – c

)–α–β–θ
τ (s)ds

(p – ks) – x
+ F(x), x ∈ [c, ]. ()

Considering formulas sin(arctgx) = x√
+x

, π
sin(πθ ) =

√
+λπ

λ
, we rewrite equality () as

τ (x) = –
λμkα+β+θebπ√

 + λπ

×
∫ 

c

(
 – x

 + ks – p

)θ(x – c
s – c

)–α–β–θ
τ (s)ds

(p – ks) – x
+ F(x), x ∈ [c, ]. ()

In () allocating a characteristic part, we get

τ (x) = –
λμkα+β+θebπ√

 + λπ

×
∫ 

c

(
x – c
s – c

)–α–β–θ
τ (s)ds

(p – ks) – x
+ R

[
τ (x)

]
+ F(x), x ∈ [c, ], ()

where

R
[
τ (x)

]
=
–λμkα+β+θebπ√

 + λπ

×
∫ 

c

(
x – c
s – c

)–α–β–θ
τ (s)ds

(p – ks) – x

[(
 – x

 – (p – ks)

)θ

– 
]
ds

is a regular operator. We rewrite equation () as

τ (x) =
λμkα+β+θebπ√

 + λπ

×
∫ 

c

(
x – c
s – c

)–α–β–θ
τ (s)ds

(s – c)(k + x–c
s–c )

+ R
[
τ (x)

]
+ F(x), x ∈ [c, ]. ()
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Making change of variables x = c + ( – c)e–ξ , s = c + ( – c)e–t and designating ρ(ξ ) =
τ (c + ( – c)e–ξ )e(  –(α+β+θ))ξ , we write equation () as

ρ(ξ ) =
λμkα+β+θebπ√

 + λπ

∫ ∞



ρ(t)dt

ke
ξ–t
 + e–

ξ–t


+ R
[
ρ(ξ )

]
+ F(ξ ), ξ ∈ [,∞), ()

where

R
[
ρ(ξ )

]
= R

[
τ
(
c + ( – c)e–ξ

)]
e(


 –(α+β+θ ))ξ ,

F(ξ ) = F
(
c + ( – c)e–ξ

)
e(


 –(α+β+θ ))ξ .

We introduce the following notations:

H(ξ ) =
λμkα+β+θebπ√

 + λπ


keξ / + e–ξ / . ()

By virtue of (), equation () has the form

ρ(ξ ) =
∫ ∞


H(ξ – t)ρ(t)dt + R

[
ρ(ξ )

]
+ F(ξ ), ξ ∈ [,∞). ()

Equation () is an integral equation of Wiener-Hopf []. Functions H(ξ ), F(ξ ) are
indicative of decrease at infinity; moreover, H ′(ξ ) ∈ C(,∞), F(ξ ) ∈ Hα (,∞). Conse-
quently, H(ξ ),F(ξ ) ∈ L ∩Hα , and a solution of equation () will be sought in the class
{} []. Using Fourier transformation, equation () is deduced to the Riemann problem
and is solved in quadratures. Fredholm’s theorems are only valid in one particular case,
when the index of these equations is equal to zero.
Calculate the index of the expression  –H∧(ξ ), where

H∧(ξ ) =
∫ ∞

–∞
eiξ tH(t)dt =

λμkα+β+θebπ√
 + λπ

∫ ∞

–∞
eiξ t dt

ket/ + e–t/
. ()

Using the theory of residues, we find

∫ ∞

–∞
eiξ t dt

ket/ + e–t/
=

πe–iξ lnk√
k ch(πξ )

. ()

Substituting () into (), we have

H∧(ξ ) =
λμkα+β+θ– 

 πebπ√
 + λπ

e–iξ lnk

ch(πξ )
.

By virtue of the condition λμkα+β+θ– 
 πebπ < , and since

Re
(
H∧(ξ )

)
= Re

(
λμkα+β+θ– 

 πebπ√
 + λπ

e–iξ lnk

ch(πξ )

)

=
λμkα+β+θ– 

 πebπ√
 + λπ


ch(πξ )

cos(ξ lnk) < λμkα+β+θ– 
 πebπ < ,
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thenRe( –H∧(ξ )) > . Therefore, the index of equation () χ = – Ind( –H∧(ξ )) = , i.e.,
the variation of the argument of the expression –H∧(ξ ) on the real axis expressed in com-
plete revolutions equals zero []. Hence, taking into account the fact that the solution to
problemG is unique, we deduce the unique solvability of equation () and, consequently,
that of problem G. Theorem  is proved. �
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