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1 Introduction
In recent years, maximal regularity properties for differential operator equations, espe-
cially parabolic and elliptic-type, have been studied extensively, e.g., in [–] and the ref-
erences therein (for comprehensive references, see []). Moreover, in [, ], on em-
bedding theorems and maximal regular differential operator equations in Banach-valued
function spaces have been studied. Also, in [, ], on theorems on the multiplicators of
Fourier integrals obtained, which were used in studying isotropic as well as anisotropic
spaces of differentiable functions of many variables. In addition, multiplicators of Fourier
integrals for the spaces of Banach valued functions were studied. On the basis of these
results, embedding theorems are proved.
Moreover, convolution-differential equations (CDEs) have been treated, e.g., in [, –

] and []. Convolution operators in vector valued spaces are studied, e.g., in [–]
and []. However, the convolution-differential operator equations (CDOEs) are a rela-
tively less investigated subject (see []). The main aim of the present paper is to establish
the separability properties of the linear CDOE

∑
|α|≤l

aα ∗Dαu + (A + λ) ∗ u = f (x) (.)

and the existence and uniqueness of the following nonlinear CDOE

∑
|α|≤l

aα ∗Dαu +A ∗ u = F
(
x,Dσu

)
+ f (x), |σ | ≤ l – 
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in E-valued Lp spaces, where A = A(x) is a possible unbounded operator in a Banach
space E, and aα = aα(x) are complex-valued functions, and λ is a complex parameter. We
prove that the problem (.) has a unique solution u, and the following coercive uniform
estimate holds

∑
|α|≤l

|λ|– |α|
l
∥∥aα ∗Dαu

∥∥
Lp(Rn ;E) + ‖A ∗ u‖Lp(Rn ;E) + |λ|‖u‖Lp(Rn ;E) ≤ C‖f ‖Lp(Rn ;E)

for all f ∈ Lp(Rn;E), p ∈ (,∞) and λ ∈ Sϕ . The methods are based on operator-valued
multiplier theorems, theory of elliptic operators, vector-valued convolution integrals, op-
erator theory and etc. Maximal regularity properties for parabolic CDEs with bounded
operator coefficients were investigated in [].

2 Notations and background
Let Lp(�;E) denote the space of all strongly measurable E-valued functions that are de-
fined on the measurable subset � ⊂R

n with the norm

‖f ‖Lp(�;E) =
(∫ ∥∥f (x)∥∥p

E dx
) 

p
,  ≤ p < ∞,

‖f ‖L∞(�;E) = ess sup
x∈�

[∥∥f (x)∥∥E

]
, x = (x,x, . . . ,xn).

Let C be the set of complex numbers, and let

Sϕ =
{
λ; |λ ∈C, | argλ| ≤ ϕ

} ∪ {},  ≤ ϕ < π .

A linear operator A = A(x), x ∈ � is said to be uniformly positive in a Banach space E if
D(A(x)) is dense in E, does not depend on x, and there is a positive constantM so that

∥∥(
A(x) + λI

)–∥∥
B(E) ≤ M

(
 + |λ|)–

for every x ∈ � and λ ∈ Sϕ , ϕ ∈ [,π ), where I is an identity operator in E, and B(E) is
the space of all bounded linear operators in E, equipped with the usual uniform operator
topology. Sometimes, instead of A + λI , we write A + λ and denote it by Aλ. It is known
(see [], §..) that there exist fractional powers Aθof the positive operatorA. Let E(Aθ )
denote the space D(Aθ ) with the graphical norm

‖u‖E(Aθ ) =
(‖u‖p + ∥∥Aθu

∥∥p) 
p ,  ≤ p < ∞, –∞ < θ < ∞.

Let S(Rn;E) denote Schwartz class, i.e., the space of E-valued rapidly decreasing smooth
functions on R

n, equipped with its usual topology generated by semi-norms. S(Rn;C) de-
noted by just S. Let S′(Rn;E) denote the space of all continuous linear operators L : S → E,
equipped with the bounded convergence topology. Recall S(Rn;E) is norm dense in
Lp(Rn;E) when  ≤ p < ∞.

http://www.boundaryvalueproblems.com/content/2013/1/211
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Let α = (α,α, . . . ,αn), where αi are integers. An E-valued generalized function Dαf is
called a generalized derivative in the sense of Schwartz distributions of the function f ∈
S′(Rn,E) if the equality

(
Dαf

)
(ϕ) = (–)|α|f

(
Dαϕ

)

holds for all ϕ ∈ S.
Let F denote the Fourier transform. Through this section, the Fourier transformation of

a function f will be denoted by f̂ . It is known that

F
(
Dα

x f
)
= (iξ)α · · · (iξn)αn f̂ , Dα

ξ

(
F(f )

)
= F

[
(–ixn)α · · · (–ixn)αn f

]

for all f ∈ S′(Rn;E).
Let � be a domain in R

n. C(�;E) and C(m)(�;E) will denote the spaces of E-valued
bounded uniformly strongly continuous and m-times continuously differentiable func-
tions on �, respectively. For E = C the space C(m)(�;E) will be denoted by C(m)(�). Sup-
pose E and E are two Banach spaces. A function 
 ∈ L∞(Rn;B(E,E)) is called a mul-
tiplier from Lp(Rn;E) to Lp(Rn;E) if the map u → Tu = F–
(ξ )Fu, u ∈ S(Rn;E) is well
defined and extends to a bounded linear operator

T : Lp
(
R

n;E
) → Lp

(
R

n;E
)
.

Let Q denotes a set of some parameters. Let �h = {
h ∈Mp
p(E,E),h ∈Q} be a collection

of multipliers in Mp
p(E,E). We say that Wh is a collection of uniformly bounded multi-

pliers (UBM) if there exists a positive constantM independent on h ∈ Q such that

∥∥F–
hFu
∥∥
Lp(Rn ;E)

≤ M‖u‖Lp(Rn ;E)

for all h ∈Q and u ∈ S(Rn;E).
A Banach space E is called an UMD-space [, ] if the Hilbert operator

(Hf )(x) = lim
ε→

∫
{|x–y|>ε}

f (y)
x – y

dy

is bounded in Lp(R,E), p ∈ (,∞) []. The UMD spaces include, e.g., Lp, lp spaces and
Lorentz spaces Lpq, p,q ∈ (,∞).
A set W ⊂ B(E,E) is called R-bounded (see [, , ]) if there is a positive constant C

such that

∫ 



∥∥∥∥∥
m∑
j=

rj(y)Tjuj

∥∥∥∥∥
E

dy≤ C
∫ 



∥∥∥∥∥
m∑
j=

rj(y)uj

∥∥∥∥∥
E

dy

for all T,T, . . . ,Tm ∈ W and u,u, . . . ,um ∈ E, m ∈ N , where {rj} is a sequence of inde-
pendent symmetric {–, }-valued random variables on [, ]. The smallest C, for which
the above estimate holds, is called an R-bound of the collectionW and denoted by R(W ).

http://www.boundaryvalueproblems.com/content/2013/1/211
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A set Wh ⊂ B(E,E), dependent on parameters h ∈ Q, is called uniformly R-bounded
with respect to h if there is a positive constant C, independent of h ∈ Q, such that for all
T(h),T(h), . . . ,Tm(h) ∈Wh and u,u, . . . ,um ∈ E,m ∈N

∫ 



∥∥∥∥∥
m∑
j=

rj(y)Tj(h)uj

∥∥∥∥∥
E

dy ≤ C
∫ 



∥∥∥∥∥
m∑
j=

rj(y)uj

∥∥∥∥∥
E

dy.

This implies that suph∈Q R(Wh) ≤ C.

Definition . A Banach space E is said to be a space, satisfying the multiplier condition,
if for any 
 ∈ C(n)(Rn\{};B(E)) the R-boundedness of the set

{|ξ ||β|Dβ

ξ 
(ξ ) : ξ ∈R
n\,β = (β,β, . . . ,βn),βk ∈ {, }}

implies that 
 is a Fourier multiplier, i.e., 
 ∈Mp
p(E) for any p ∈ (,∞).

The uniform R-boundedness of the set

{|ξ ||β|Dβ
h(ξ ) : ξ ∈R
n\{},β ∈ {, }},

i.e.,

sup
h∈Q

R
({|ξ ||β|Dβ
h(ξ ) : ξ ∈R

n\,βk ∈ {, }}) ≤ C

implies that 
h is a uniformly bounded collection of Fourier multipliers (UBM) in
Lp(Rn;E).

Remark. Note that if E isUMD space, then by virtue of [, , , ], it satisfies themul-
tiplier condition. The UMD spaces satisfy the uniform multiplier condition (see Proposi-
tion .).

Definition. Apositive operatorA is said to be a uniformlyR-positive in a Banach space
E if there exists ϕ ∈ [,π ) such that the set

LA =
{
ξ (A + ξ )– : ξ ∈ Sϕ

}
is uniformly R-bounded.

Note that every norm bounded set in Hilbert spaces is R-bounded. Therefore, all secto-
rial operators in Hilbert spaces are R-positive.
Let h ∈ R,m ∈N and ek , k = , , . . . ,n be standard unit vectors of Rn,

�k(h)f (x) = f (x + hek) – f (x),

and let A = A(x), x ∈ R
n be a closed linear operator in E with domain D(A) independent

of x. The Fourier transformation of A(x) is a linear operator with the same domain D(A)

http://www.boundaryvalueproblems.com/content/2013/1/211
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defined as

Âu(ϕ) = Au(ϕ̂) for u ∈ S′(
R

n;E(A)
)
,ϕ ∈ S

(
R

n).
(For details see [, p.].) Let A = A(x) be a closed linear operator in E with domain D(A)
independent of x. Then, it is differentiable if there is the limit

(
∂A
∂xk

)
u = lim

h→

�k(h)A(x)u
h

, k = , , . . . ,n,u ∈D(A)

in the sense of E-norm.
Let A = A(x), x ∈ R

n be closed linear operator in E with domain D(A) independent of x
and u ∈ S′(Rn,E). We can define the convolution A ∗ u in the distribution sense by

A ∗ u(x) =
∫
Rn

A(x – y)u(y)dy =
∫
Rn

A(y)u(x – y)dy

(see []).
Let E and E be two Banach spaces, where E is continuously and densely embedded

into E. Let l be a integer number. Wl
p(Rn;E,E) denote the space of all functions from

S′(Rn;E) such that u ∈ Lp(Rn;E) and the generalized derivatives Dl
ku ∈ Lp(Rn;E) with

the following norm

‖u‖Wl
p(Rn ;E,E) = ‖u‖Lp(Rn ;E) +

n∑
k=

∥∥Dl
ku

∥∥
Lp(Rn ;E) <∞.

It is clearly seen that

Wl
p
(
R

n;E,E
)
=Wl

p
(
R

n;E
) ∩ Lp

(
R

n;E
)
.

A function u ∈Wl
p(Rn;E(A),E) satisfying the equation (.) a.e. on R

n, is called a solution
of equation (.).
The elliptic CDOE (.) is said to be separable in Lp(Rn;E) if for f ∈ Lp(Rn;E) the equa-

tion (.) has a unique solution u, and the following coercive estimate holds

∑
|α|≤l

∥∥aα ∗Dαu
∥∥
Lp(Rn ;E) + ‖A ∗ u‖Lp(Rn ;E) ≤ C‖f ‖Lp(Rn ;E),

where the constant C do not depend on f .
In a similar way as Theorem A in [], Theorem A and by reasoning as Theorem .

in [], we obtain the following.

Proposition . Let E be UMD space, 
h ∈ Cn(Rn\{};B(E)) and suppose there is a pos-
itive constant K such that

sup
h∈Q

R
({|ξ ||β|Dβ
h(ξ ) : ξ ∈R

n\{},βk ∈ {, }}) ≤ K .

Then 
h is UBM in Lp(Rn;E) for p ∈ (,∞).

http://www.boundaryvalueproblems.com/content/2013/1/211
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Proof Really, some steps of proof trivially work for the parameter dependent case (see []).
Other steps can be easily shown by setting

φh =
{|ξ ||β|Dβ
h(ξ ) : ξ ∈R

n\{},βk ∈ {, }}

instead of

{|ξ ||β|Dβ
(ξ ) : ξ ∈R
n\{},βk ∈ {, }}

and by using uniformly R-boundedness of set φh. However, parameter depended analog of
Proposition . in [] is not straightforward. Let Mh andMh,N ∈ Lloc (Rn,B(E)) be Fourier
multipliers in Lp(Rn;E). LetMh,N converge toMh in Lloc (Rn,B(E)), and letTh,N = F–Mh,NF
be uniformly bounded with respect to h and N . Then by reasoning as Proposition . in
[], we obtain that the operator function Th = F–MhF = limN→∞ F–Mh,NF is uniformly
bounded with respect to h. Hence, by using steps above, in a similar way as Theorem .
in [], we obtain the assertion.
Let E and E be two Banach spaces. Suppose that T ∈ B(E,E) and  ≤ p < ∞. Then

T̃ ∈ B(Lp(Rn;E),Lp(Rn;E)) will denote operator (T̃ f )(x) = T(f (x)) for f ∈ Lp(Rn;E) and
x ∈R

n. �

In a similar way as Proposition . in [], we have

Proposition . Let  ≤ p < ∞. If W ⊂ B(E,E) is R-bounded, then the collection W̃ =
{T̃ : T ∈W } ⊂ B(Lp(Rn;E),Lp(Rn;E)) is also R-bounded.

From [], we obtain the following.

Theorem . Let the following conditions be satisfied
. E is a Banach space satisfying the uniform multiplier condition, p ∈ (,∞) and

 < h≤ h <∞ are certain parameters;
. l is a positive integer, and α = (α,α, . . . ,αn) are n-tuples of nonnegative integer

numbers such that κ = |α|
l < ,  ≤ μ <  –κ;

. A is an R-positive operator in E with  ≤ ϕ < π .
Then the embedding DαWl

p(Rn;E(A),E)⊂ Lp(Rn;E(A–κ–μ)) is continuous, and there ex-
ists a positive constant Cμ such that

∥∥Dαu
∥∥
Lp(Rn ;E(A–κ–μ)) ≤ Cμ

[
hμ‖u‖Wl

p(Rn ;E(A),E) + h–(–μ)‖u‖Lp(Rn ;E)
]
.

Theorem . Let the following conditions be satisfied
. E is a Banach space satisfying the uniform multiplier condition, p ∈ (,∞) and

 < h≤ h <∞ are certain parameters;
. l is a positive integer, and α = (α,α, . . . ,αn) are n-tuples of nonnegative integer

numbers such that κ = p|α|+n
pl < ,  ≤ μ <  –κ;

. A is an R-positive operator in E with  ≤ ϕ < π .

http://www.boundaryvalueproblems.com/content/2013/1/211
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Then the embedding DαWl
p(Rn;E(A),E)⊂ C(Rn;E(A–κ–μ)) is continuous, and there ex-

ists a positive constant Cμ such that

∥∥Dαu
∥∥
C(Rn ;E(A–κ–μ)) ≤ Cμ

[
hμ‖u‖Wl

p(Rn ;E(A),E) + h–(–μ)‖u‖Lp(Rn ;E)
]

for all u ∈Wl
p(Rn;E(A),E).

3 Elliptic CDOE
Condition . Assume that aα ∈ L∞(Rn) and the following hold

L(ξ ) =
∑
|α|≤l

aα(ξ )(iξ )α ∈ Sϕ ,
∣∣L(ξ )∣∣ ≥ C

n∑
k=

|ak||ξk|l,

where ϕ ∈ [,π ), ξ = (ξ, ξ, . . . , ξn) ∈ R
n.

In the following, we denote the operator functions by σi(ξ ,λ) for i = , , .

Lemma . Assume Condition . holds, and A(ξ ) is a uniformly ϕ-positive operator in E
with  ≤ ϕ < π – ϕ. Then, the following operator functions

σ(ξ ,λ) = λD(ξ ,λ), σ(ξ ,λ) = A(ξ )D(ξ ,λ),

σ(ξ ,λ) =
∑
|α|≤l

|λ|– |α|
l aα(ξ )(iξ )αD(ξ ,λ)

are uniformly bounded, where D(ξ ,λ) = [A(ξ ) + L(ξ ) + λ]–.

Proof By virtue of Lemma . in [] for L(ξ ) ∈ Sϕ , λ ∈ Sϕ and ϕ +ϕ < π there is a positive
constant C such that

∣∣λ + L(ξ )
∣∣ ≥ C

(|λ| + ∣∣L(ξ )∣∣). (.)

Since L(ξ ) ∈ Sϕ , in view of (.) and resolvent properties of positive operators, we get that
A(ξ ) + L(ξ ) + λ is invertible and

∥∥σ(ξ ,λ)
∥∥
B(E) ≤ M|λ|[ + |λ| + ∣∣L(ξ )∣∣]– ≤ M,∥∥σ(ξ ,λ)

∥∥
B(E) =

∥∥I – (
λ + L(ξ )

)
D(ξ ,λ)

∥∥
B(E)

≤  +M
∣∣λ + L(ξ )

∣∣( + ∣∣λ + L(ξ )
∣∣)– ≤ M.

Next, let us consider σ. It is clearly seen that

∥∥σ(ξ ,λ)
∥∥
B(E) ≤ C

∑
|α|≤l

|λ|[|ξ ||λ|– 
l
]|α|∥∥D(ξ ,λ)∥∥B(E). (.)

Since A is uniformly ϕ-positive and L(ξ ) ∈ Sϕ , then setting yk = (|λ|– 
l |ξk|)αk in the follow-

ing well-known inequality

yα
 yα

 · · · yαn
n ≤ C

(
 +

n∑
k=

ylk

)
, yk ≥ , |α| ≤ l, (.)

http://www.boundaryvalueproblems.com/content/2013/1/211
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we obtain

∥∥σ(ξ ,λ)
∥∥
B(E) ≤ C

∑
|α|≤l

|λ|
[
 +

n∑
k=

|ξk|l|λ|–
][

 +
∣∣λ + L(ξ )

∣∣]–.
Taking into account the Condition . and (.)-(.), we get

∥∥σ(ξ ,λ)
∥∥
B(E) ≤ C

(
|λ| +

n∑
k=

|ξk|l
)[

 + |λ| + ∣∣L(ξ )∣∣]– ≤ C. �

Lemma . Assume Condition . holds, and aα ∈ C(n)(Rn). Let A(ξ ) be a uniformly ϕ-
positive operator in a Banach space E with  ≤ ϕ < π – ϕ, [DβA(ξ )]A–(ξ ) ∈ C(Rn;B(E))
and let

|ξ |β ∣∣Dβaα(ξ )
∣∣ ≤ C, βk ∈ {, }, ξ ∈R

n\{},  ≤ |β| ≤ n, (.)∥∥|ξ |β[
DβA(ξ )

]
A–(ξ )

∥∥
B(E) ≤ C, βk ∈ {, }, ξ ∈R

n\{}. (.)

Then, operator functions |ξ |βDβσi(ξ ,λ) are uniformly bounded.

Proof Let us first prove that ξk
∂σ
∂ξk

is uniformly bounded. Really,

∥∥∥∥ξk
∂σ

∂ξk

∥∥∥∥
B(E)

≤ ‖I‖B(E) + ‖I‖B(E) + ‖I‖B(E),

where

I =
[
ξk

∂A(ξ )
∂ξk

]
D(ξ ,λ), I = A(ξ )

[
ξk

∂A(ξ )
∂ξk

][
D(ξ ,λ)

]

and

I = A(ξ )
[
ξk

∂L(ξ )
∂ξk

]
D(ξ ,λ).

By using (.) and (.), we get

‖I‖B(E) ≤
∥∥∥∥
[
ξk

∂A(ξ )
∂ξk

]
A–(ξ )

∥∥∥∥
B(E)

‖σ‖B(E) ≤ C.

Due to positivity of A, by using (.) and (.), we obtain

‖I‖B(E) ≤
∥∥∥∥
[
ξk

∂A(ξ )
∂ξk

]
A–(ξ )

∥∥∥∥
B(E)

‖σ‖B(E) ≤ C.

Since, A(ξ ) is uniformly ϕ-positive, by using (.), (.) and (.) for λ ∈ S(ϕ) and
ϕ + ϕ < π , we get

‖I‖B(E) ≤
∣∣∣∣ξk ∂L

∂ξk

∣∣∣∣∥∥D(ξ ,λ)∥∥B(E)

∥∥σ(ξ ,λ)
∥∥
B(E) ≤ C.

http://www.boundaryvalueproblems.com/content/2013/1/211
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In a similar way, the uniform boundedness of σ(ξ ,λ) is proved. Next, we shall prove
ξk

∂σ
∂ξk

is uniformly bounded. Similarly,

∥∥∥∥ξk
∂σ

∂ξk

∥∥∥∥
B(E)

≤ ‖J‖B(E) + ‖J‖B(E),

where

J =
∑
|α|≤l

|λ|– |α|
l

(
ξk

∂aα

∂ξk

)[
(iξ )α + aα(ξ )iαk(iξ )α

]
D(ξ ,λ),

J =
∑
|α|≤l

|λ|– |α|
l aα(ξ )(iξ )α

[
ξk

∂aα

∂ξk
+ aα(ξ )(iξ )α + ξk

∂A(ξ )
∂ξk

][
D(ξ ,λ)

].
Let us first show that J is uniformly bounded. It is clear that

‖J‖B(E) ≤
∑
|α|≤l

∣∣∣∣ξk ∂aα

∂ξk

∣∣∣∣∥∥ξα|λ|– |α|
l D(ξ ,λ)

∥∥
B(E).

Due to positivity of A, by virtue of (.) and (.)-(.), we obtain ‖J‖B(E) ≤ C. In a
similar way, we have ‖J‖B(E) ≤ C. Hence, operator functions ξk

∂σi
∂ξk

, i = , ,  are uni-
formly bounded. From the representations of σi(ξ ,λ), it easy to see that operator func-
tions |ξ |βDβσi(ξ ,λ) contain similar terms as Ik , namely, the functions |ξ |βDβσi(ξ ,λ) will
be represented as combinations of principal terms

ξσ
[
Dγ

ξ A(ξ ) +Dγ

ξ aα(ξ )
][
D(ξ ,λ)

]|β|, (.)∑
|α|≤l

|λ|– |α|
l ξσDγ

ξ

[
A(ξ ) + aα(ξ )

][
D(ξ ,λ)

]|β|,

where |σ |+ |γ | ≤ |β|. Therefore, by using similar arguments as above and in view of (.),
one can easily check that

|ξ |β∥∥Dβσi(ξ ,λ)
∥∥ ≤ C, i = , , . �

Lemma . Let all conditions of the Lemma . hold. Suppose that E is a Banach space
satisfying the uniform multiplier condition, and A(ξ ) is a uniformly R positive operator
in E. Then, the following sets

S(ξ ,λ) =
{|ξ |βDβ

ξ σ(ξ ,λ); ξ ∈R
n\{}},

S(ξ ,λ) =
{|ξ |βDβ

ξ σ(ξ ,λ); ξ ∈R
n\{}},

S(ξ ,λ) =
{|ξ |βDβ

ξ σ(ξ ,λ); ξ ∈ R
n\{}}

are uniformly R-bounded for βk ∈ {, } and ≤ |β| ≤ n.

Proof Due to R-positivity of A we obtain that the set

B(ξ ,λ) =
{[

λ + L(ξ )
]
D(ξ ,λ); ξ ∈R

n\{}}

http://www.boundaryvalueproblems.com/content/2013/1/211
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is R bounded. Since

I – σ (ξ ,λ) = AD(ξ ,λ), σ (ξ ,λ) =
[
λ + L(ξ )

]
D(ξ ,λ),

the set B(ξ ,λ) = {AD(ξ ,λ); ξ ∈R
n\{}} is R -bounded. Moreover, in view of Condition .

and (.), there is a positive constantM such that

|λ|∣∣λ + L(ξ )
∣∣– ≤ M.

Then, by virtue of Kahane’s contraction principle, Lemma . in [], we obtain that the set
B(ξ ,λ) = {λD(ξ ,λ); ξ ∈ R

n\{}} is uniformly R-bounded. Then by Lemma ., we obtain
the uniform R-boundedness of sets Bk(ξ ,λ), i.e,

sup
λ

R
{
Bk(ξ ,λ)

} ≤ Mk , k = , , . (.)

Moreover, due to boundedness of aα(ξ ), in view of Condition . and by virtue of (.) and
(.), we obtain

∣∣∣∣∑
|α|≤l

|λ|– |α|
l aα(ξ )(iξ )α

∣∣∣∣ ≤ C
(
 + |λ| + ∣∣L(ξ )∣∣) ≤ C

(
 +

∣∣λ + L(ξ )
∣∣). (.)

In view of representation (.) and estimate (.), we need to show uniform R-bound-
edness of the following sets

{
ξσ

[
Dγ

ξ A(ξ ) +Dγ

ξ aα(ξ )
][
D(ξ ,λ)

]|β|
; ξ ∈R

n\{}},{∑
|α|≤l

|λ|– |α|
l ξσ

[
Dγ

ξ A(ξ ) +Dγ

ξ aα(ξ )
][
D(ξ ,λ)

]|β|; ξ ∈R
n\{}

}

for |σ | + |γ | ≤ |β|. By virtue of Kahane’s contraction principle, additional and product
properties of R-bounded operators, see, e.g., Lemma ., Proposition . in [], and in
view of (.), it is sufficient to prove uniform R-boundedness of the following set

B(ξ ,λ) =
{
Q(ξ ,λ); ξ ∈R

n\{}}, Q(ξ ,λ) =
∑
|α|≤l

|λ|– |α|
l aα(ξ )ξαD(ξ ,λ).

Since

Q(ξ ,λ) =
∑
|α|≤l

|λ|– |α|
l aα(ξ )ξα

[
λ + L(ξ )

]–
σ (ξ ,λ),

thanks to R-boundedness of B(ξ ,λ), we have

∫ 



∥∥∥∥∥
m∑
j=

rj(y)σ (ηj,λ)uj

∥∥∥∥∥
E

dy≤ C
∫ 



∥∥∥∥∥
m∑
j=

rj(y)uj

∥∥∥∥∥
E

dy (.)

for all ξ, ξ, . . . , ξm ∈ R
n, ηj = (ξj, ξj, . . . , ξjn) ∈ R

n, u,u, . . . ,um ∈ E, m ∈ N , where {rj} is
a sequence of independent symmetric {–, }-valued random variables on [, ]. Thus, in

http://www.boundaryvalueproblems.com/content/2013/1/211
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view of Kahane’s contraction principle, additional and product properties of R-bounded
operators and (.), we obtain

∫ 



∥∥∥∥∥
m∑
j=

rj(y)Q(ηj,λ)uj

∥∥∥∥∥
E

dy≤ C
∫ 



∥∥∥∥∥
m∑
j=

σ (ηj,λ)rj(y)uj

∥∥∥∥∥
E

dy (.)

≤ C
∫ 



∥∥∥∥∥
m∑
j=

rj(y)uj

∥∥∥∥∥
E

dy. (.)

The estimate (.) implies R-boundedness of the set B(ξ ,λ). Moreover, from Lemma .,
we get

sup
λ

R
{
Q(ξ ,λ) : ξ ∈R

n\{}} ≤ C,

i.e., we obtain the assertion. �

The following result is the corollary of Lemma . and Proposition ..

Result . Suppose that all conditions of Lemma . are satisfied, E is UMD space, and
A(ξ ) is a uniformly R-positive operator in E. Then the sets Si(ξ ,λ), i = , ,  are uniformly
R-bounded.

Now, we are ready to present our main results. We find sufficient conditions that guar-
antee separability of problem (.).

Condition . Suppose that the following are satisfied
. For ϕ ∈ [,π ) and ξ ∈ R

n, L(ξ ) =
∑

|α|≤l âα(ξ )(iξ )α ∈ Sϕ , |L(ξ )| ≥ C
∑n

k= |âkξk|l ;
. âα ∈ C(n)(Rn) and |ξ |β |Dβ âα(ξ )| ≤ C, βk ∈ {, },  ≤ |β| ≤ n;
. For  ≤ |β| ≤ n and ξ ∈R

n\{},
[
DβÂ(ξ )

]
Â–(ξ ) ∈ C

(
R

n;B(E)
)
, |ξ |β∥∥[

DβÂ(ξ )
]
Â–(ξ )

∥∥
B(E) ≤ C.

Theorem . Suppose that Condition . holds, and E is a Banach space satisfying the
uniform multiplier condition. Let Â be a uniformly R-positive in E with  ≤ ϕ < π – ϕ.
Then, problem (.) has a unique solution u, and the following coercive uniform estimate
holds

∑
|α|≤l

|λ|– |α|
l
∥∥aα ∗Dαu

∥∥
Lp(Rn ;E) + ‖A ∗ u‖Lp(Rn ;E) + |λ|‖u‖Lp(Rn ;E)

≤ C‖f ‖Lp(Rn ;E) (.)

for all f ∈ Lp(Rn;E), p ∈ (,∞) and λ ∈ Sϕ .

Proof By applying the Fourier transform to equation (.), we get

û(ξ ) =D(ξ ,λ)f̂ (ξ ), D(ξ ,λ) =
[
Â(ξ ) + L(ξ ) + λ

]–.

http://www.boundaryvalueproblems.com/content/2013/1/211
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Hence, the solution of equation (.) can be represented as u(x) = F–D(ξ ,λ)f̂ . Then there
are positive constants C and C, so that

C|λ|‖u‖Lp(Rn ;E) ≤
∥∥F–[σ(ξ ,λ)f̂

]∥∥
Lp(Rn ;E) ≤ C|λ|‖u‖Lp(Rn ;E),

C‖A ∗ u‖Lp(Rn ;E) ≤
∥∥F–[σ(ξ ,λ)f̂

]∥∥
Lp(Rn ;E) ≤ C‖A ∗ u‖Lp(Rn ;E),

C
∑
|α|≤l

|λ|– |α|
l
∥∥aα ∗Dαu

∥∥
Lp(Rn ;E) ≤

∥∥F–[σ(ξ ,λ)f̂
]∥∥

Lp(Rn ;E)

≤ C
∑
|α|≤l

|λ|– |α|
l
∥∥aα ∗Dαu

∥∥
Lp(Rn ;E), (.)

where σi(ξ ,λ) are operator functions defined in Lemma .. Therefore, it is sufficient to
show that the operator-functions σi(ξ ,λ) are UBM in Lp(Rn;E). However, these follow
from Lemma .. Thus, from (.), we obtain

|λ|‖u‖Lp(Rn ;E) ≤ C‖f ‖Lp(Rn ;E), ‖A ∗ u‖Lp(Rn ;E) ≤ C‖f ‖Lp(Rn ;E),∑
|α|≤l

|λ|– |α|
l
∥∥aα ∗Dαu

∥∥
Lp(Rn ;E) ≤ C‖f ‖Lp(Rn ;E)

for all f ∈ Lp(Rn;E). Hence, we get assertion.
Let O be an operator in X = Lp(Rn;E) that is generated by the problem (.) for λ = ,

i.e.,

D(O)⊂Wl
p
(
R

n;E(A),E
)
, Ou =

∑
|α|≤l

aα ∗Dα +A ∗ u.
�

Result . Theorem . implies that the operator O is separable in X, i.e., for all f ∈ X,
all terms of equation (.) also are from X, and for solution u of equation (.), there are
positive constants C and C so that

C‖Ou‖X ≤
∑
|α|≤l

∥∥aα ∗Dαu
∥∥
X + ‖A ∗ u‖X ≤ C‖Ou‖X .

Condition . Let D(A) =D(Â) =D(Â(ξ)) for ξ ∈R
n. Moreover, there are positive con-

stants C and C so that for u ∈D(A), x ∈R
n

C
∥∥Â(ξ)u∥∥ ≤ ∥∥A(x)u∥∥ ≤ C

∥∥Â(ξ)u∥∥.
Remark . Condition . is checked for the regular elliptic operators with smooth
coefficients on sufficiently smooth domains � ⊂ Rm considered in the Banach space
E = Lp (�), p ∈ (,∞) (see Theorem .).

Theorem . Assume that all conditions of Theorem . and Condition . are satisfied.
Let E be aBanach space satisfying the uniformmultiplier condition.Then, problem (.) has

http://www.boundaryvalueproblems.com/content/2013/1/211
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a unique solution u ∈Wl
p(Rn;E(A),E), and the following coercive uniform estimate holds

∑
|α|≤l

|λ|– |α|
l
∥∥Dαu

∥∥
Lp(Rn ;E) + ‖Au‖Lp(Rn ;E) ≤ M‖f ‖Lp(Rn ;E)

for all f ∈ Lp(Rn;E), p ∈ (,∞) and λ ∈ S(ϕ).

Proof By applying the Fourier transform to equation (.), we obtain D(ξ ,λ)û(ξ ) = f̂ (ξ ),
where

D(ξ ,λ) =
[
Â(ξ ) + L(ξ ) + λ

]–.
So, we obtain that the solution of equation (.) can be represented as u(x) = F–D(ξ ,λ)f̂ .
Moreover, by Condition ., we have

∥∥AF–D(ξ ,λ)f̂
∥∥
Lp(Rn ;E) ≤ M

∥∥Â(ξ)F–D(ξ ,λ)f̂
∥∥
Lp(Rn ;E).

Hence, by using estimates (.), it is sufficient to show that the operator functions∑
|α|≤l |λ|– |α|

l ξαD(ξ ,λ) and Â(ξ)D(ξ ,λ) are UBM in Lp(Rn;E). Really, in view of Condi-
tion ., and uniformly R-positivity of Â, these are proved by reasoning as in Lemma ..

�

Condition . There are positive constants C and C such that

C

n∑
k=

|akξk|l ≤
∣∣L(ξ )∣∣ ≤ C

n∑
k=

|akξk|l

for ξ ∈R
n and

C
∥∥A(x)u∥∥ ≤ ∥∥A(x)u∥∥ ≤ C

∥∥A(x)u∥∥
in cases, where D(A) = D(Â) = D(A(x)), Â(ξ )A–(x) ∈ L∞(Rn;B(E)) for ξ ,x,x ∈ R

n and
u ∈ D(A).

Theorem . Let all conditions of Theorem . and Condition . hold. Then for u ∈
Wl

p(Rn;E(A),E), there are positive constants M and M, so that

M‖u‖Wl
p(Rn ;E(A),E) ≤

∑
|α|≤l

∥∥aα ∗Dαu
∥∥
X + ‖A ∗ u‖X

≤ M‖u‖Wl
p(Rn ;E(A),E).

Proof The left part of the inequality above is derived from Theorem .. So, it remains
to prove the right side of the estimate. Really, from Condition . for u ∈Wl

p(Rn;E(A),E)
we have

‖A ∗ u‖X ≤ M
∥∥F–Âû

∥∥
X ≤ C

∥∥F–ÂA–(x)A(x)û
∥∥
X ≤ C

∥∥F–A(x)û
∥∥
X ≤ C‖Au‖X .
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Hence, applying the Fourier transform to equation (.), and by reasoning as Theorem.,
it is sufficient to prove that the function

∑
|α|≤l

âαξα

[ n∑
k=

ξ
lk
k

]–

is a multiplier in Lp(Rn;E). In fact, by using Condition . and the proof of Lemma .,
we get desired result. �

Result . Theorem . implies that for all u ∈ Wl
p(Rn;E(A),E), there are positive con-

stants C and C, so that

C‖u‖Wl
p(Rn ;E(A),E) ≤ ‖Ou‖Lp(Rn ;E) ≤ C‖u‖Wl

p(Rn ;E(A),E).

From Theorem ., we have the following.

Result . Assume all conditions of Theorem . hold. Then, for all λ ∈ Sϕ , the resolvent
of operator O exists, and the following sharp estimate holds

∑
|α|≤l

|λ|– |α|
l
∥∥aα ∗Dα(O + λ)–

∥∥
B(X) +

∥∥A ∗ (O + λ)–
∥∥
B(X) +

∥∥λ(O + λ)–
∥∥
B(X) ≤ C.

Result . Theorem . particularly implies that the operator O + a for a >  is positive
in Lp(Rn;E), i.e., if Â is uniformly R-positive for ϕ ∈ (π

 ,π ), then (see, e.g., [], §..) the
operator O + a is a generator of an analytic semigroup in Lp(Rn;E).

From Theorems ., ., . and Proposition ., we obtain the following.

Result . Let conditions of Theorems ., ., . hold for Banach spaces E ∈ UMD,
respectively. Then assertions of Theorems ., ., . are valid.

4 The quasilinear CDOE
Consider the equations

∑
|α|=l

aα ∗Dαu +
(
A ∗Dσu

)
u = F

(
x,Dσu

)
+ f (x), x ∈R

n (.)

in E-valued Lp spaces, whereA = A(x) is a possible unbounded operator in Banach space E,
aα = aα(x) are complex-valued functions, and Dσ denote all differential operators that
|σ | ≤ l – . Let

X = Lp
(
R

n;E
)
, Y =Wl

p
(
R

n;E(A),E
)
,

Ej =
(
E(A),E

)
κσ ,p

, κσ =
p|σ | + 

pl
, E =

∏
|σ |<l–

Eκσ .
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Remark . By using Theorem ., we obtain that the embedding Dκσ Y ∈ Eκσ is contin-
uous, and by trace theorem [] (or []) for w ∈ Y ,W = {wκσ }, wκσ =Dσw(·), |σ | < l – ,

∏
|σ |<l–

∥∥Dσw
∥∥
C((Rn),Eκσ ) =

∏
|σ |<l–

sup
x∈Rn

∥∥Djw(x)
∥∥
Eκσ

≤ ‖w‖Y ,

Er =
{
υ ∈ E,‖υ‖E ≤ r

}
,  < r ≤ r.

Let A(x, ) denote by A(x). Consider the linear CDOE

∑
|α|=l

aα ∗Dαw +A ∗w =Q(x). (.)

From Theorem ., we conclude that problem (.) has a unique solution w ∈ Wl
p(Rn;

E(A),E), and the coercive uniform estimate holds

∑
|α|≤l

∥∥Dαw
∥∥
Lp(Rn ;E) + ‖Aw‖Lp(Rn ;E) ≤ M‖f ‖Lp(Rn ;E) (.)

for all Q ∈ Lp(Rn;E), p ∈ (,∞).

Condition . Assume that all conditions of Theorem . are satisfied for A = A and
‖aα‖L < 

 . Suppose that
. The function: υ → A(x,υ) is a Lipschitz function from E to B(E(A),E), i.e.,

∥∥A(x,u) –A(x,υ)
∥∥
B(E(A),E) ≤ L‖u – υ‖E

for all x ∈R
n;

. F :Rn × E → E is a measurable function for each u, ū ∈ Er , u = {υκσ }, ū = {ūκσ },
uκσ , ūκσ ∈ Eκσ , and F(x, ·) is continuous with respect to x ∈R

n, F(x, ) ∈ X .
Moreover, there exists gi(x) such that

∥∥F(x,u)∥∥E ≤ g(x)‖u‖E ,∥∥F(x,u) – F(x, ū)
∥∥
E ≤ g(x)‖u – ū‖E ,

for all x ∈R
n, u,υ ∈ Er , gi ∈ Lp(Rn) and ‖gi‖Lp(Rn) ≤ M–, i = , .

Theorem . Let Condition . hold. Then, there exist a radius  < r ≤ r and δ >  such
that for each f ∈ Lp(Rn,E) with ‖f ‖Lp(RnE)

≤ δ there exists a unique u ∈ Wl
p(Rn;E(A),E)

with ‖u‖Wl
p(Rn ;E(A),E) ≤ r satisfying equation (.).

Proof We want to to solve problem (.) locally by means of maximal regularity of the
linear problem (.) via the contraction mapping theorem. For this purpose, let w be a
solution of the linear BVP (.). Consider the following ball

Br =
{
υ ∈ Y ,‖υ‖Y ≤ r

}
.

Let f ∈ Lp(Rn;E) such that ‖f ‖Lp(Rn) ≤ δ. Let υ ∈ Y , ‖υ‖Y ≤ r.
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Define a map G on Br by

Gυ = u, (.)

where u is a solution of problem (.). We want to show that Q(Br) ⊂ Br , and that L is a
contraction operator in Y . Consider the function

Q(x) =
(
(A –A) ∗Dσ υ

)
υ + F

(
x,Dσ υ

)
+ f (x).

We claim thatQ ∈ X, moreover, δ and gi can be chosen such thatM‖Q‖X ≤ δ. In fact, since
by Theorem ., υ ∈ C(Rn;Eκσ ), and one has

A(x,u) –A(x) ∈ C
(
R

n;B
(
E(A),E

))
.

Thus, Q is measurable and

‖Q‖E ≤ L‖υ‖C(Rn ;Eκσ )‖υ‖E(A) + g(x)‖υ‖C(Rn ;Eκσ ) + ‖f ‖X .

Now, by Remark ., ‖υ‖C(Rn ;Eκσ ) ≤ ‖υ‖Y ≤ r, by choosing MLr +M‖h‖Lp < 
 and δ =

r( M
– – Lr – ‖h‖Lp ), it follows that

M‖Q‖Y ≤ M
[
Lr‖υ‖Lp(RnE) + r‖h‖Lp + δ

]
≤ M

[
Lr + r‖h‖Lp + δ

]
<


r.

Moreover, by Theorem . and by embedding Theorem ., we get

∥∥∥∥∑
|α|=l

aα ∗Dαυ

∥∥∥∥
Lp(RnE)

<


r.

Thus, Gmaps the set Br to Br . Let us show that G is a strict contraction. Let

u =Gυ, u =Gυ, υ,υ ∈ Br .

It is clearly seen that u – u is a solution of the linear problem (.) for

Q =
(
(A –A) ∗Dσ υ

)
υ + F

(
x,Dσ υ

)
.

Then, by using estimate (.) and reasoning as above, we get

‖u – u‖Y ≤ M‖Q‖X
≤ M

{
Lr‖υ – υ‖X + L‖υ – υ‖Y‖υ‖Lp(Rn ;E(A))‖h‖Lp‖υ – υ‖Y

}
≤ M

(
Lr + ‖h‖Lp

)‖υ – υ‖Y .

Choose h, so that ‖h‖Lp < 
M – Lr, we obtain that G is a strict contraction. Then by

virtue of contractionmapping principle, we obtain that problem (.) has a unique solution
u ∈ Wl

p(Rn;E(A),E). �
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5 Boundary value problems for integro-differential equations
In this section, by applying Theorem ., the BVP for the anisotropic type convolution
equations is studied. Themaximal regularity of this problem inmixed Lp norms is derived.
In this direction, we can mention, e.g., the works [, , ] and [].
Let �̃ =R

n ×�, where � ⊂ Rμ is an open connected set with a compact Cm-boundary
∂�. Consider the BVP for integro-differential equation

(L + λ)u =
∑
|α|≤l

aα ∗Dαu +
∑

|α|≤m

(
bαηαDα

y + λ
) ∗ u = f (x, y), x ∈R

n, y ∈ �, (.)

Bju =
∑

|β|≤mj

bjβ (y)Dβ
y u(x, y) = , y ∈ ∂�, j = , , . . . ,m, (.)

where

Dj = –i
∂

∂yj
, y = (y, . . . , yμ), bα = bα(x), ηα = ηα(y),

aα = aα(x), α = (α,α, . . . ,αn), aα = aα(x), u = u(x, y).

In general, l = m, so equation (.) is anisotropic. For l = m, we get isotropic equation.
If �̃ = R

n × �, p = (p,p), Lp(�̃) will denote the space of all p-summable scalar-valued
functions with a mixed norm (see, e.g., []), i.e., the space of all measurable functions f
defined on �̃, for which

‖f ‖Lp(�̃) =
(∫

Rn

(∫
�

∣∣f (x, y)∣∣p dx)
p
p
dy

) 
p
< ∞.

Analogously, Wl
p(�̃) denotes the Sobolev space with a corresponding mixed norm [].

LetQ denote the operator, generated by problem (.) and (.). In this section, we present
the following result.

Theorem . Let the following conditions be satisfied
. ηα ∈ C(�̄) for each |α| = m and ηα ∈ L∞(�) + Lrk (�) for each |α| = k < m with

rk ≥ p, p ∈ (,∞) and m – k > l
rk
, να ∈ L∞;

. bjβ ∈ Cm–mj (∂�) for each j,β ,mj < m, p ∈ (,∞), λ ∈ Sϕ , ϕ ∈ [,π );
. For y ∈ �̄, ξ ∈ Rμ, σ ∈ Sϕ , ϕ ∈ (, π

 ), |ξ | + |σ | =  let σ +
∑

|α|=m ηα(y)ξα = ;
. For each y ∈ ∂� local BVP in local coordinates corresponding to y

σ +
∑

|α|=m
ηα(y)Dαϑ(y) = ,

Bjϑ =
∑

|β|=mj

bjβ (y)Dβϑ(y) = hj, j = , , . . . ,m

has a unique solution ϑ ∈ C(R+) for all h = (h,h, . . . ,hm) ∈ Rm and for ξ ′ ∈ Rμ–

with |ξ ′| + |λ| = ;
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. The () part of Condition . is satisfied, âα , b̂α ∈ C(n)(Rn), and there are positive
constants Ci, i = , , so that

|ξ |β ∣∣Dβ âα(ξ )
∣∣ ≤ C, |ξ |β ∣∣Dβ b̂α(ξ )

∣∣ ≤ C
∣∣b̂α(ξ )

∣∣,
ξ ∈R

n\{}, βk ∈ {, },  ≤ |β| ≤ n.

Then, for f ∈Wl
p(�̃) and λ ∈ Sϕ problems (.) and (.) have a unique solution u ∈Wl

p(�̃),
and the following coercive uniform estimate holds

∑
|α|≤l

|λ|– |α|
l
∥∥aα ∗Dαu

∥∥
Lp(�̃) +

∥∥|λ|u∥∥
Lp(�̃) +

∑
|α|≤m

∥∥bαηαDα ∗ u
∥∥
Lp(�̃) ≤ C‖f ‖Lp(�̃).

Proof Let E = Lp (�). It is known [] that Lp (�) is UMD space for p ∈ (,∞). Consider
the operator A in Lp (�), defined by

D(A) =W m
p (�;Bju = ), A(x)u =

∑
|α|≤m

bα(x)ηα(y)Dαu(y). (.)

Therefore, problems (.) and (.) can be rewritten in the form of (.), where u(x) =
u(x, ·), f (x) = f (x, ·) are functions with values in E = Lp (�). It is easy to see that Â(ξ ) and
DβÂ(ξ ) are operators in Lp (�) defined by

D(Â) =D
(
DβÂ

)
=W m

p (�;Bju = ), Â(ξ )u =
∑

|α|≤m

b̂α(ξ )ηα(y)Dαu(y),

Dβ

ξ Â(ξ )u =
∑

|α|≤m

Dβ

ξ b̂α(ξ )ηα(y)Dαu(y).
(.)

In view of conditions and by [, Theorem .] operators Â(ξ ) +μ and DβÂ(ξ ) +μ for suf-
ficiently large μ > , are uniformly R-positive in Lp (�). Moreover, by (.), the problems

μu(y) +
∑

|α|≤m

b̂α(ξ )ηα(y)Dαu(y) = f (y),

Bju =
∑

|β|≤mj

bjβ (y)Dβu(y) = , j = , , . . . ,m,

(.)

μu(y) +
∑

α≤m

Dβ b̂α(ξ )ηα(y)Dαu(y) = f (y),

Bju =
∑

|β|≤mj

bjβ (y)Dβu(y) = , j = , , . . . ,m

(.)

for f ∈ Lp (�) and for sufficiently large μ, have unique solutions that belong to Wl
p (�),

and the coercive estimates hold

‖u‖Wl
p (�) ≤ C

∥∥(Â +μ)u
∥∥
Lp (�), ‖u‖Wm

p (�) ≤ C
∥∥(
DβÂ +μ

)
u
∥∥
Lp (�)
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for solutions of problems (.) and (.). Then in view of () condition and by virtue of
embedding theorems [], we obtain

∥∥(Â +μ)u
∥∥
Lp (�) ≤ C‖u‖Wm

p (�) ≤ C
∥∥(Â +μ)u

∥∥
Lp (�),∥∥(

DβÂ +μ
)
u
∥∥
Lp (�) ≤ C‖u‖Wm

p (�) ≤ C
∥∥(
DβÂ +μ

)
u
∥∥
Lp (�).

(.)

Moreover by using () condition for u ∈W m
p (�) we have

|ξ |β∥∥(
Dβ

ξ Â +μ
)
u
∥∥
Lp (�) ≤ C

∥∥(Â +μ)u
∥∥
Lp (�),

i.e., all conditions of Theorem . hold, and we obtain the assertion. �

6 Infinite system of IDEs
Consider the following infinity system of a convolution equation

∑
|α|≤l

aα ∗Dαum +
∞∑
j=

(dj + λ) ∗ uj(x) = fm(x) (.)

for x ∈R
n andm = , , . . . .

Condition . There are positive constants C and C, so that for {dj(x)}∞ ∈ lq for all
x ∈R

n and some x ∈R
n,

C
∣∣dj(x)∣∣ ≤ ∣∣dj(x)∣∣ ≤ C

∣∣dj(x)∣∣.
Suppose that âα , d̂m ∈ C(n)(Rn), and there are positive constantsMi, i = , , so that

|ξ |β ∣∣Dβ âα(ξ )
∣∣ ≤ M, |ξ |β ∣∣Dβ d̂m(ξ )

∣∣ ≤ M
∣∣d̂m(ξ )∣∣,

ξ ∈R
n\{}, βk ∈ {, },  ≤ |β| ≤ n.

Let

D(x) =
{
dm(x)

}
, dm > , u = {um}, D ∗ u = {dm ∗ um},

lq(D) =

{
u ∈ lq,‖u‖lq(D) =

( ∞∑
m=

∣∣dm(x) ∗ um
∣∣q)


q

<∞
}
,  < q <∞.

Let Q be a differential operator in Lp(Rn; lq), generated by problem (.) and B =
B(Lp(Rn; lq)). Applying Theorem ., we have the following.

Theorem. Suppose that () part of Condition . and Condition . are satisfied.Then
. For all f (x) = {fm(x)}∞ ∈ Lp(Rn; lq(D)), for λ ∈ Sϕ , ϕ ∈ [,π ) the equation (.) has a

unique solution u = {um(x)}∞ that belongs toWl
p(Rn; lq(D), lq), and the coercive

uniform estimate holds

∑
|α|≤l

|λ|– |α|
l
∥∥aα ∗Dαu

∥∥
Lp(Rn ;lq)

+ ‖D ∗ u‖Lp(Rn ;lq) + |λ|‖u‖Lp(Rn ;lq) ≤ C‖f ‖Lp(Rn ;lq);
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. For λ ∈ Sϕ , there exists a resolvent (Q + λ)– of operator Q and

∑
|α|≤l

|λ|– |α|
l
∥∥aα ∗ [

Dα(Q + λ)–
]∥∥

B +
∥∥D ∗ (Q + λ)–

∥∥
B +

∥∥λ(Q + λ)–
∥∥
B ≤ C.

Proof Really, let E = lq and A = [dm(x)δjm],m, j = , , . . . . Then

Â(ξ ) =
[
d̂m(ξ )δjm

]
, DβÂ(ξ ) =

[
Dβ d̂m(ξ )δjm

]
, m, j = , , . . . .

It is easy to see that Â(ξ ) is uniformly R-positive in lq, and all conditions of Theorem .
are hold. Therefore, by virtue of Theorem . and Result ., we obtain the assertions.

�

Remark . There are a lot of positive operators in concrete Banach spaces. Therefore,
putting concrete Banach spaces instead of E and concrete positive differential, pseudo
differential operators, or finite, infinitematrices, etc. instead of operatorA in (.) and (.),
we can obtain the maximal regularity of different class of convolution equations, Cauchy
problems for parabolic CDEs or it’s systems, by virtue of Theorem . and Theorem .,
respectively.
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