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Abstract
In this paper, approximate solutions of second-order linear differential equations with
fuzzy boundary conditions, in which coefficient functions maintain the sign, are
investigated. The fuzzy linear boundary value problem is converted to a crisp function
system of linear equations by the undetermined fuzzy coefficients method. The fuzzy
approximate solution of the fuzzy linear differential equation is obtained by solving
the crisp linear equations. Some numerical examples are given to illustrate the
proposed method.
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1 Introduction
Nowadays, fuzzy differential equations (FDEs) is a popular topic studied by many re-
searchers since it is utilized widely for the purpose of modeling problems in science and
engineering. Most of the practical problems require the solution of a fuzzy differential
equation (FDE) which satisfies fuzzy initial or boundary conditions, therefore a fuzzy ini-
tial or boundary problem should be solved. However, many fuzzy initial or boundary value
problems could not be solved exactly, sometimes it is even impossible to find their analyti-
cal solutions. Thus, considering their approximate solutions is becomingmore important.
Prior to discussing fuzzy differential equations and their associated numerical algo-

rithms, it is necessary to present an appropriate brief introduction to derivative of the
fuzzy-valued function. The concept of a fuzzy derivative was first introduced by Chang
and Zadeh [], followed up by Dubois and Prade [] who used the extension principle in
their approach. Other fuzzy derivative concepts were proposed by Puri and Ralescu []
and Goetschel and Vaxman [] as an extension of the Hukuhara derivative of multivalued
functions. Kandel and Byatt [, ] applied the concept of fuzzy differential equation to the
analysis of fuzzy dynamical problems.
The numerical methods for solving fuzzy differential equation are introduced in [–].

In , Buckley and Feuring [] presented two analytical methods for solving an nth-
order fuzzy linear differential equation with fuzzy initial conditions. Their first method of
solution was to fuzzify the crisp solution and then check to see if it satisfies the fuzzy dif-
ferential equationswith fuzzy initial conditions. The secondmethodwas the reverse of the
first method; in that they firstly solved the fuzzy initial value problem and then checked
to see if it defined a fuzzy function. In , Allahviranllo et al. [] obtained the approx-
imate solution of nth-order linear differential equations with fuzzy initial conditions by
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using the collocation method. In , O’Regan et al. [] proved a super-linear result
for fuzzy boundary value problems relying on a general Schauder theorem in the met-
ric space. Meanwhile Lakshmikantham et al. [] investigated the solution of two-point
boundary value problems associated with nonlinear fuzzy differential equations by using
the extension principle. In , Chen Minghao et al. [] obtained the conclusion: two-
point boundary value problems have the analytic solution only on condition that the new
structure and properties to the fuzzy number are given. But for second-order fuzzy linear
boundary value problems

y′′ + p(t)y′ + q(t)y = g(t), t ∈ [a,b] (.)

associated with

y(a) = α̃, y(b) = β̃ , (.)

y′(a) = α̃, y′(b) = β̃ , (.)

y′(a) – αy(a) = α̃, y′(b) + βy(b) = β̃ , (.)

it is not the case. Once the coefficient functions p(t), q(t), g(t) are continuous on [a,b] and
p(t), q(t) maintain the sign on [a,b], a unique solution must exist.
In this paper, we consider the approximate solution of a class of second-order linear

differential Eq. (.) under fuzzy boundary value conditions (.), (.) and (.). Based on
the undetermined fuzzy coefficientsmethod, we convert a second-order linear differential
equation to the crisp system of linear equations. Secondly, we investigate their cases ac-
cording to indifferent cases of coefficient functions p(t) and q(t) from the original systems
and build the corresponding crisp systems of linear equations. Then we derive a fuzzy
approximate solution of the fuzzy linear differential equation from solving crisp function
systems of linear equations. Finally, some examples are given to illustrate the proposed
method. The structure of this paper is organized as follows.
In Section , we recall some basic definitions and results about fuzzy numbers as well

as fuzzy derivative of the fuzzy-valued function. In Sections ,  and , we build crisp
function systems of linear equations via analyzing different cases based on the coefficient
functions of the fuzzy linear differential equation in detail. The proposed algorithms are
illustrated by solving some examples in Section  and the conclusion is drawn in Section .

2 Preliminaries
2.1 Fuzzy numbers
Definition . [] A fuzzy number is a fuzzy set like u : R→ I = [, ] which satisfies:
() u is upper semi-continuous,
() u(x) =  outside some interval [c,d],
() there are real numbers a, b such that c≤ a ≤ b≤ d and

(.) u(x) is monotonic increasing on [c,a],
(.) u(x) is monotonic decreasing on [b,d],
(.) u(x) = , a≤ x ≤ b.
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Let E be the set of all real fuzzy numbers which are normal, upper semi-continuous,
convex and compactly supported fuzzy sets.

Definition . [] A fuzzy number u in a parametric form is a pair (u,u) of functions u(r),
u(r),  ≤ r ≤ , which satisfies the following requirements:
() u(r) is a bounded monotonic increasing left continuous function,
() u(r) is a bounded monotonic decreasing left continuous function,
() u(r)≤ u(r),  ≤ r ≤ .
A crisp number x is simply represented by (u(r),u(r)) = (x,x),  ≤ r ≤ . By appropriate

definitions, the fuzzy number space {(u(r),u(r))} becomes a convex cone E which could
be embedded isomorphically and isometrically into a Banach space [, ].

Definition . [] Let x = (x(r),x(r)), y = (y(r), y(r)) ∈ E,  ≤ r ≤  and arbitrary k ∈ R.
Then
() x = y iff x(r) = y(r) and x(r) = y(r),
() x + y = (x(r) + y(r),x(r) + y(r)),
() x – y = (x(r) – y(r),x(r) – y(r)),
() kx =

{ (kx(r),kx(r)), k ≥ ,
(kx(r),kx(r)), k < .

Definition . [] For arbitrary u = (u,u), v = (v, v) ∈ E, the quantity

D(u, v) =
(∫ 



(
u(r) – v(r)

) dr + ∫ 



(
u(r) – v(r)

) dr) 


is the distance between fuzzy numbers u and v.

2.2 Second-order fuzzy boundary value problem
Definition . [] Let x, y ∈ E. If there exists z ∈ E such that x = y + z, then z is called
the Hukuhara-difference of fuzzy numbers x and y, and it is denoted by z = x� y.

In this paper the � sign stands always for Hukuhara-difference, and let us remark that
x� y �= x + (–)y.

Definition . [] Let f : [a,b] → E and t ∈ [a,b]. We say that f is Hukuhara differ-
ential at t, if there exists an element f ′(t) ∈ E such that for all h >  sufficiently small,
∃f (t + h)f (t), f (t)� f (t – h) and the limits (in the metric D)

lim
h→

f (t + h)� f (t)
h

= lim
h→

f (t)� f (t – h)
h

= f ′(t).

Lemma . [] If g : [a,b] → R is differential on [a,b] such that g ′, g ′′ are nonnegative
and monotonic increasing on [a,b], then ∀c ∈ E, f (x) = c · g(x) is differential on [a,b] and

f ′(x) = c · g ′(x), f ′′(x) = c · g ′′(x), ∀x ∈ [a,b].

Definition . The second-order differential equation

y′′ = f
(
t, y, y′), t ∈ [a,b] (.)

http://www.boundaryvalueproblems.com/content/2013/1/212
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with the boundary value conditions

y(a) = α̃, y(b) = β̃ , α̃, β̃ ∈ E, (.)

y′(a) = α̃, y′(b) = β̃ , α̃, β̃ ∈ E, (.)

y′(a) – αy(a) = α̃, y′(b) + βy(b) = β̃ , α,β ≥ ,α + β > , (.)

are called the second-order fuzzy boundary value problems (FBVPs). The differential Eq.
(.) alongwith fuzzy boundary value conditions (.), (.) and (.) are said to be second-
order fuzzy differential equation No. , No.  and No.  boundary value problems, respec-
tively.

In particular, when f (t, y, y′) is a linear function with respect to y and y′, Eq. (.) is re-
duced to Eq. (.)

y′′ + p(t)y′ + q(t)y = g(t), t ∈ [a,b],

and it is a linear differential equation. In this paper, we discuss the approximate solution of
the second-order fuzzy linear differential function boundary value problem. For simplicity,
we only discuss the second-order fuzzy linear differential function with fuzzy boundary
value conditions (.) and (.).

3 Method for solving No. 2 FBVPs
3.1 The undetermined fuzzy coefficients method
The undetermined fuzzy coefficients method is to seek an approximate solution as

ỹN (t) =
N∑
k=

θ̃kφk(t), (.)

where φk(t), k = , , . . . ,N , are positive basic functions whose all differentiations are pos-
itive. We compute the fuzzy coefficients in (.) by setting the error to zero as follows:

E =D
(̃
y′′ + p(t)̃y′ + q(t)̃y, g̃(t)

)
+D

(̃
y′(a), α̃

)
+D

(̃
y′(b), β̃

)
. (.)

Then we substitute (.) in (.) and represent them in parametric forms, then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′′(t, r) + p(t)y′(t, r) + q(t)y(t, r) = g(t, r),
y′(a, r) = α(r),
y′(b, r) = β(r),
y′′(t, r) + p(t)y′(t, r) + q(t)y(t, r) = g(t, r),
y′(a, r) = α(r),
y′(b, r) = β(r).

(.)

Lemma . [] Let basic functions φk(t), k = , , . . . ,N , and all of their differentiations be
positive, without loss of generality. Then (y

N
)(i)(t) = y(i)N (t) and (y(i)N )(t) = y(i)N (t), i = , , .

In order to solve Eq. (.) with condition (.), we need to investigate the system of Eq.
(.). In this section we consider two cases.

http://www.boundaryvalueproblems.com/content/2013/1/212
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3.2 Case 1 p(t)q(t)≥ 0
Suppose that coefficients p(t), q(t) are nonnegative. From (.), we have

y′′(t, r) + p(t)y′(t, r) + q(t)y(t, r) = g(t, r), (.)

y′′(t, r) + p(t)y′(t, r) + q(t)y(t, r) = g(t, r), (.)

y′(a, r) = α(r), y′(b, r) = β(r), y′(a, r) = α(r), y′(b, r) = β(r). (.)

And when coefficients p(t), q(t) are negative, we have

y′′(t, r) – p(t)y′(t, r) – q(t)y(t, r) = g(t, r), (.)

y′′(t, r) – p(t)y′(t, r) – q(t)y(t, r) = g(t, r). (.)

If (.) is substituted in (.) and (.), respectively, then

N∑
k=

θ k(r)φ
′′
k (t) + p(t)

N∑
k=

θ k(r)φ
′
k(t) + q(t)

N∑
k=

θ k(r)φk(t) = g(t, r),

and

N∑
k=

θ k(r)φ′′
k (t) + p(t)

N∑
k=

θ k(r)φ′
k(t) + q(t)

N∑
k=

θ k(r)φk(t) = g(t, r),

also

N∑
k=

θ k(r)φ
′
k(a) = α(r),

N∑
k=

θ k(r)φ
′
k(b) = β(r),

N∑
k=

θ k(r)φ′
k(a) = α(r),

N∑
k=

θ k(r)φ′
k(b) = β(r).

By setting{
γk = φ′′

k (t) + p(t)φ′
k(t) + q(t)φk(t),

σak = φ′
k(a), σbk = φ′

k(b),
k = , , . . . ,N ,

the following system is obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
k= θ k(r)γk = g(t, r),∑N
k= θ k(r)σak = α(r),∑N
k= θ k(r)σbk = β(r)∑N
k= θ k(r)γk = g(t, r),∑N
k= θ k(r)σak = α(r),∑N
k= θ k(r)σbk = β(r).

(.)

Equation (.) is a system of linear equations S(t)X(r) = Y (r) such that

S =

(
S S
S S

)
,

http://www.boundaryvalueproblems.com/content/2013/1/212
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where

S =

⎛⎜⎝ γ γ · · · γN

σa σa · · · σaN

σb σb · · · σbN

⎞⎟⎠ , S =

⎛⎜⎝  · · · 
  · · · 
  · · · 

⎞⎟⎠ .

And

X = (θ, θ , . . . , θN , θ, θ , . . . , θN )�,

Y =
(
g(t, r),α(r),β(r), g(t, r),α(r),β(r)

)�.

The variables θ, θ , . . . , θN , θ, θ , . . . , θN are obtained by solving (.) by setting t = s, s ∈
[a,b]. These variables yield the fuzzy approximate solution (y(t, r), y(t, r)).
In the same way, when coefficients p(t), q(t) are negative, we build the corresponding

system of linear equations as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ γ · · · γN δ δ · · · δN

σa σa · · · σaN   · · · 
σb σb · · · σbN   · · · 
δ δ · · · δN γ γ · · · γN

  · · ·  σa σa · · · σaN

  · · ·  σb σb · · · σbN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ

θ 
...

θN

θ

θ 
...

θN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

g(t, r)
α(r)
β(r)
g(t, r)
α(r)
β(r)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (.)

where⎧⎪⎨⎪⎩
γk = φ′′

k (t),
δk = –p(t)φ′

k(t) – q(t)φk(t),
σak = φ′

k(a), σbk = φ′
k(b),

k = , , . . . ,N .

3.3 Case 2 p(t)q(t) < 0
Suppose that coefficient p(t) is nonnegative and q(t) is negative. From (.), we have

y′′(t, r) + p(t)y′(t, r) – q(t)y(t, r) = g(t, r), (.)

y′′(t, r) + p(t)y′(t, r) – q(t)y(t, r) = g(t, r). (.)

When coefficient p(t) is negative and q(t) is nonnegative, we have

y′′(t, r) – p(t)y′(t, r) + q(t)y(t, r) = g(t, r), (.)

y′′(t, r) – p(t)y′(t, r) + q(t)y(t, r) = g(t, r). (.)

If (.) is substituted in (.) and (.), respectively, then

N∑
k=

θ k(r)φ
′′
k (t) + p(t)

N∑
k=

θ k(r)φ
′
k(t) – q(t)

N∑
k=

θ k(r)φk(t) = g(t, r),

http://www.boundaryvalueproblems.com/content/2013/1/212
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and

N∑
k=

θ k(r)φ′′
k (t) + p(t)

N∑
k=

θ k(r)φ′
k(t) – q(t)

N∑
k=

θ k(r)φk(t) = g(t, r),

also

N∑
k=

θ k(r)φ
′
k(a) = α(r),

N∑
k=

θ k(r)φ
′
k(b) = β(r),

N∑
k=

θ k(r)φ′
k(a) = α(r),

N∑
k=

θ k(r)φ′
k(b) = β(r).

By setting

⎧⎪⎨⎪⎩
ζk = φ′′

k (t) + p(t)φ′
k(t),

ξk = –q(t)φk(t),
σak = φ′

k(a), σbk = φ′
k(b),

k = , , . . . ,N ,

the following system is obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
k= θ k(r)ζk +

∑N
k= θ k(r)ξk = g(t, r),∑N

k= θ k(r)σak = α(r),∑N
k= θ k(r)σbk = β(r)∑N
k= θ k(r)ζk +

∑N
k= θ k(r)ξk = g(t, r),∑N

k= θ k(r)σak = α(r),∑N
k= θ k(r)σbk = β(r).

(.)

Equation (.) is a system of linear equations S(t)X(r) = Y (r) such that

S =

(
S S
S S

)
,

where

S =

⎛⎜⎝ ζ ζ · · · ζN

σa σa · · · σaN

σb σb · · · σbN

⎞⎟⎠ , S =

⎛⎜⎝ξ ξ · · · ξN

  · · · 
  · · · 

⎞⎟⎠ .

And

X = (θ, θ , . . . , θN , θ, θ , . . . , θN )�,

Y =
(
g(t, r),α(r),β(r), g(t, r),α(r),β(r)

)�.

The variables θ, θ , . . . , θN , θ, θ , . . . , θN are obtained by solving (.) by setting t = s,
s ∈ [a,b]. These variables yield the fuzzy approximate solution (y(t, r), y(t, r)).

http://www.boundaryvalueproblems.com/content/2013/1/212
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In the same way, when coefficient p(t) is negative and q(t) is nonnegative, we set up the
corresponding system of linear equations as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ ζ · · · ζN ξ ξ · · · ξN

σa σa · · · σaN   · · · 
σb σb · · · σbN   · · · 
ξ ξ · · · ξN ζ ζ · · · ζN

  · · ·  σa σa · · · σaN

  · · ·  σb σb · · · σbN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ

θ 
...

θN

θ

θ 
...

αN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

g(t, r)
α(r)
β(r)
g(t, r)
α(r)
β(r)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (.)

where⎧⎪⎨⎪⎩
ζk = φ′′

k (t) + q(t)φk(t),
ξk = –p(t)φ′

k(t),
σak = φ′

k(a), σbk = φ′
k(b),

k = , , . . . ,N .

4 Method for solving No. 3 FBVPs
4.1 The undetermined fuzzy coefficients method
Similarly, we compute the fuzzy coefficients in (.) by setting the error to zero as follows:

E =D
(̃
y′′ + p(t)̃y′ + q(t)̃y, g̃(t)

)
+D

(̃
y′(a) – α̃y(a), α̃

)
+D

(̃
y′(b) + β̃y(b), β̃

)
. (.)

Then we substitute (.) in (.) and represent them in parametric forms:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′′(t, r) + p(t)y′(t, r) + q(t)y(t, r) = g(t, r),
y′(a, r) + αy(a, r) = α(r),
y′(b, r) + βy(b, r) = β(r),
y′′(t, r) + p(t)y′(t, r) + q(t)y(t, r) = g(t, r),
y′(a, r) + αy(a, r) = α(r),
y′(b, r) + βy(b, r) = β(r).

(.)

In order to solve Eq. (.) with Eq. (.), we need to investigate the system of Eq. (.).
In this section we also consider two cases.

4.2 Case 1 p(t)q(t)≥ 0
Suppose that coefficients p(t), q(t) are nonnegative. From (.), we have

y′′(t, r) + p(t)y′(t, r) + q(t)y(t, r) = g(t, r), (.)

y′′(t, r) + p(t)y′(t, r) + q(t)y(t, r) = g(t, r), (.)

y′(a, r) + αy(a, r) = α(r), y′(b, r) + βy(b, r) = β(r), (.)

y′(a, r) + αy(a, r) = α(r), y′(b, r) + βy(b, r) = β(r). (.)

http://www.boundaryvalueproblems.com/content/2013/1/212
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And when coefficients p(t), q(t) are negative, we have

y′′(t, r) – p(t)y′(t, r) – q(t)y(t, r) = g(t, r), (.)

y′′(t, r) – p(t)y′(t, r) – q(t)y(t, r) = g(t, r). (.)

If (.) is substituted in (.) and (.), respectively, then

N∑
k=

θ k(r)φ
′′
k (t) + p(t)

N∑
k=

θ k(r)φ
′
k(t) + q(t)

N∑
k=

θ k(r)φk(t) = g(t, r),

and

N∑
k=

θ k(r)φ′′
k (t) + p(t)

N∑
k=

θ k(r)φ′
k(t) + q(t)

N∑
k=

θ k(r)φk(t) = g(t, r),

also

N∑
k=

θ k(r)φ
′
k(a) + α

N∑
k=

θ k(r)φk(a) = α(r),

N∑
k=

θ k(r)φ
′
k(b) + β

N∑
k=

θ k(r)φk(b) = β(r),

N∑
k=

θ k(r)φ′
k(a) + α

N∑
k=

θ k(r)φk(a) = α(r),

N∑
k=

θ k(r)φ′
k(b) + β

N∑
k=

θ k(r)φk(b) = β(r).

By setting⎧⎪⎨⎪⎩
γk = φ′′

k (t) + p(t)φ′
k(t) + q(t)φk(t),

σak = φ′
k(a),σbk = αφk(a),

δ(k) = φ′
k(b) + βφk(b),

k = , , . . . ,N ,

the following system is obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
k= θ k(r)γk = g(t, r),∑N
k= θ k(r)σak +

∑N
k= θ k(r)σbk = α(r),∑N

k= θ k(r)δk = β(r)∑N
k= θ k(r)γk = g(t, r),∑N
k= θ k(r)σak +

∑N
k= θ k(r)σbk = α(r),∑N

k= θ k(r)δk = β(r).

(.)

Equation (.) is a system of linear equations S(t)X(r) = Y (r) such that

S =

(
S S
S S

)
,

http://www.boundaryvalueproblems.com/content/2013/1/212
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where

S =

⎛⎜⎝ γ γ · · · γN

σa σa · · · σaN

δb δb · · · δbN

⎞⎟⎠ , S =

⎛⎜⎝   · · · 
σb σb · · · σbN

  · · · 

⎞⎟⎠ .

And

X = (θ, θ , . . . , θN , θ, θ , . . . , θN )�,

Y =
(
g(t, r),α(r),β(r), g(t, r),α(r),β(r)

)�.

The variables θ, θ , . . . , θN , θ, θ , . . . , θN are obtained by solving (.) by setting t = s, s ∈
[a,b]. These variables yield the fuzzy approximate solution (y(t, r), y(t, r)).
Similarly, when coefficients p(t), q(t) are negative, we build the corresponding system of

linear equations as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ γ · · · γN η η · · · ηN

σa σa · · · σaN σb σb · · · σbN

δ δ · · · δN   · · · 
η η · · · ηN γ γ · · · γN

σb σb · · · σbN σa σa · · · σaN

  · · ·  δ δ · · · δN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ

θ 
...

θN

θ

θ 
...

θN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

g(t, r)
α(r)
β(r)
g(t, r)
α(r)
β(r)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (.)

where⎧⎪⎨⎪⎩
γk = φ′′

k (t), ηk = –p(t)φ′
k(t) – q(t)φk(t),

σak = φ′
k(a), σbk = αφk(a),

δ(k) = φ′
k(b) + βφk(b),

k = , , . . . ,N ,

4.3 Case 2 p(t)q(t) < 0
Suppose that coefficient p(t) is nonnegative and q(t) is negative. From (.), we have

y′′(t, r) + p(t)y′(t, r) – q(t)y(t, r) = g(t, r), (.)

y′′(t, r) + p(t)y′(t, r) – q(t)y(t, r) = g(t, r). (.)

When coefficient p(t) is negative and q(t) is nonnegative, we have

y′′(t, r) – p(t)y′(t, r) + q(t)y(t, r) = g(t, r), (.)

y′′(t, r) – p(t)y′(t, r) + q(t)y(t, r) = g(t, r). (.)

If (.) is substituted in (.) and (.), respectively, then

N∑
k=

θ k(r)φ
′′
k (t) – p(t)

N∑
k=

θ k(r)φ
′
k(t) + q(t)

N∑
k=

θ k(r)φk(t) = g(t, r),

http://www.boundaryvalueproblems.com/content/2013/1/212
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and

N∑
k=

θ k(r)φ′′
k (t) – p(t)

N∑
k=

θ k(r)φ′
k(t) + q(t)

N∑
k=

θ k(r)φk(t) = g(t, r),

also

N∑
k=

θ k(r)φ
′
k(a) + α

N∑
k=

θ k(r)φk(a) = α(r),

N∑
k=

θ k(r)φ
′
k(b) + β

N∑
k=

θ k(r)φk(b) = β(r),

N∑
k=

θ k(r)φ′
k(a) + α

N∑
k=

θ k(r)φk(a) = α(r),

N∑
k=

θ k(r)φ′
k(b) + β

N∑
k=

θ k(r)φk(b) = β(r).

By setting⎧⎪⎨⎪⎩
γk = φ′′

k (t) + p(t)φ′
k(t), ξk = –q(t)φk(t),

σak = φ′
k(a), σbk = αφk(a),

δ(k) = φ′
k(b) + βφk(b),

k = , , . . . ,N ,

the following system is obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
k= θ k(r)γk +

∑N
k= θ k(r)ξk = g(t, r),∑N

k= θ k(r)σak +
∑N

k= θ k(r)σbk = α(r),∑N
k= θ k(r)δk = β(r),∑N
k= θ k(r)γk +

∑N
k= θ k(r)ξk = g(t, r),∑N

k= θ k(r)σak +
∑N

k= θ k(r)σbk = α(r),∑N
k= θ k(r)δk = β(r).

(.)

Equation (.) is a system of linear equations S(t)X(t) = Y (r) such that

S =

(
S S
S S

)
,

where

S =

⎛⎜⎝ γ γ · · · γN

σa σa · · · σaN

δ δ · · · δN

⎞⎟⎠ , S =

⎛⎜⎝ ξ ξ · · · ξN

σb σb · · · σbN

  · · · 

⎞⎟⎠ .

And

X = (θ, θ , . . . , θN , θ, θ , . . . , θN )�,

Y =
(
g(t, r),α(r),β(r), g(t, r),α(r),β(r)

)�.

http://www.boundaryvalueproblems.com/content/2013/1/212
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The variables θ, θ , . . . , θN , θ, θ , . . . , θN are obtained by solving (.) by setting t = s,
s ∈ [a,b]. These variables yield the fuzzy approximate solution (y(t, r), y(t, r)).
Similarly, when coefficient p(t) is negative and q(t) is nonnegative, we extend the corre-

sponding system of linear equations as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ γ · · · γN ξ ξ · · · ξN

σa σa · · · σaN σb σb · · · σbN

δ δ · · · δN   · · · 
ξ ξ · · · ξN γ γ · · · γN

σb σb · · · σbN σa σa · · · σaN

  · · ·  δ δ · · · δN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ

θ 
...

θN

θ

θ 
...

θN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

g(t, r)
α(r)
β(r)
g(t, r)
α(r)
β(r)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (.)

where⎧⎪⎨⎪⎩
γk = φ′′

k (t) + q(t)φk(t), ξk = –p(t)φ′
k(t),

σak = φ′
k(a), σbk = αφk(a),

δ(k) = φ′
k(b) + βφk(b),

k = , , . . . ,N .

Likewise, for Eq. (.) with fuzzy boundary conditions (.), the following results are
obvious.

5 Approximate solutions of second-order FLBVPs
The above model linear Eqs. (.), (.), (.), (.), (.), (.), (.) and (.) are
× (N + ) function systems of linear equations and they have the same form as follows:

S(t)X(r) = Y (r). (.)

In the process of solving Eq. (.) by setting t = q, q ∈ [a,b], no matter whether it is con-
sistent or inconsistent, we obtain the minimal norm least squares solution [] by using
the generalized inverse of the coefficient matrix S, i.e.,

X(r) = S†(q)Y (r). (.)

Thus we get

θ, θ , . . . , θN , θ, θ , . . . , θN .

Therefore, we obtain the fuzzy approximate solution of the original fuzzy linear differen-
tial equation as follows:

y(t, r) = θ(r)φ(t) + θ (r)φ(t) + · · · + θN (r)φN (t),

y(t, r) = θ(r)φ(t) + θ (r)φ(t) + · · · + θN (r)φN (t). (.)

http://www.boundaryvalueproblems.com/content/2013/1/212


Guo et al. Boundary Value Problems 2013, 2013:212 Page 13 of 17
http://www.boundaryvalueproblems.com/content/2013/1/212

6 Numerical examples
Example . Consider the following second-order fuzzy linear differential equation:

⎧⎪⎨⎪⎩
y′′ + y = –t, t ∈ [, π

 ]
ỹ() = (–. + .r, . – .r),
ỹ(π

 ) = (–π
 + .r,  + π

 – .r).

The exact solution is as follows:

Y (t, r) = (–. + .r) cos t + (.r) sin t – t,

Y (t, r) = (. – .r) cos t + ( + π – .r) sin t – t.

If φk(t) = tk , k = , , , , then

y(t, r) = α + αt + αt
 + αt

, y(t, r) = α + αt + αt + αt.

From (.), we build the following system:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

 t  + t t + t    
       
       
     t  + t t + t

       
       

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ(r)
θ (r)
θ(r)
θ(r)
θ(r)
θ (r)
θ(r)
θ(r)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

–t
–. + .r
–π

 + .r
–t

. – .r
 + π

 – .r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By setting t = 
 , the parameters α, α, α, α, α, α, α, α are obtained, and by putting

them into (.), we have

y(t, r) = (–. + .r) + (. + .r)t

+ (–. – .r)t + (–. – .r)t,

y(t, r) = (. – .r) + (. – .r)t

+ (–. + .r)t + (–. + .r)t.

Tables , ,  and  show the comparisons between the exact solution and the approxi-
mate solution at t = . and t = . for some r ∈ [, ]; all data are computed by Mat-
lab.x.

Example . Consider the following second-order fuzzy linear differential equation:

⎧⎪⎨⎪⎩
y′′ – y′ + y = t – , t ≥ 
ỹ′() = ( + r,  – r),
ỹ′() = ((– + r)e + , ( – r)e + ).

http://www.boundaryvalueproblems.com/content/2013/1/212
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Table 1 Comparisons between the exact solution and the approximate solution

r Y(t, r) y(t, r) Error

0 –0.09911518137409 –0.09912683067200 0.11649297906799e-4
0.1 –0.08901568303658 –0.08902706143300 0.11378396415129e-4
0.2 –0.07891618469908 –0.07892729219400 0.11107494923460e-4
0.3 –0.06881668636157 –0.06882752295500 0.10836593431776e-4
0.4 –0.05871718802406 –0.05872775371600 0.10565691940079e-4
0.5 –0.04861768968655 –0.04862798447700 0.10294790448395e-4
0.6 –0.03851819134904 –0.03852821523800 0.10023888956719e-4
0.7 –0.02841869301153 –0.02842844599900 0.09752987465039e-4
0.8 –0.01831919467403 –0.01832867676000 0.09482085973359e-4
0.9 –0.00821969633652 –0.00822890752100 0.09211184481680e-4
1 0.00187980200099 0.00187086171800 0.08940282990000e-4

Table 2 Comparisons between the exact solution and the approximate solution

r Y(t, r) y(t, r) Error

0 0.10287478537607 0.10286855421000 0.62311660731923e-5
0.1 0.09277528703856 0.09276878497120 0.65020673648691e-5
0.2 0.08267578870106 0.08266901573240 0.67729686565599e-5
0.3 0.07257629036355 0.07256924649360 0.70438699482367e-5
0.4 0.06247679202604 0.06246947725480 0.73147712399066e-5
0.5 0.05237729368853 0.05236970801600 0.75856725315904e-5
0.6 0.04227779535102 0.04226993877720 0.78565738232741e-5
0.7 0.03217829701351 0.03217016953840 0.81274751149579e-5
0.8 0.02207879867601 0.02207040029960 0.83983764066348e-5
0.9 0.01197930033850 0.01197063106080 0.86692776983185e-5
1 0.00187980200099 0.00187086182200 0.89401789899965e-5

Table 3 Comparisons between the exact solution and the approximate solution

r Y(t, r) y(t, r) Error

0 –0.09991195018134 –0.09991206746457 0.11728323451310e-6
0.1 –0.08990195518300 –0.08990206974373 0.11456072925020e-6
0.2 –0.07989196018467 –0.07989207202289 0.11183822400118e-6
0.3 –0.06988196518634 –0.06988207430206 0.10911571875216e-6
0.4 –0.05987197018800 –0.05987207658122 0.10639321350314e-6
0.5 –0.04986197518967 –0.04986207886038 0.10367070826106e-6
0.6 –0.03985198019133 –0.03985208113954 0.10094820300510e-6
0.7 –0.02984198519300 –0.02984208341870 0.09822569775955e-6
0.8 –0.01983199019467 –0.01983208569786 0.09550319251053e-6
0.9 –0.00982199519633 –0.00982208797702 0.09278068726151e-6
1 0.00018799980200 0.00018790974382 0.09005818201011e-6

Table 4 Comparisons between the exact solution and the approximate solution

r Y(t, r) y(t, r) Error

0 0.10028794978534 0.10028788695321 0.62832127500911e-7
0.1 0.09027795478700 0.09027788923237 0.65554632569520e-7
0.2 0.08026795978867 0.08026789151153 0.68277137610373e-7
0.3 0.07025796479034 0.07025789379069 0.70999642678982e-7
0.4 0.06024796979200 0.06024789606985 0.73722147712896e-7
0.5 0.05023797479367 0.05023789834902 0.76444652760688e-7
0.6 0.04022797979534 0.04022790062818 0.79167157815418e-7
0.7 0.03021798479700 0.03021790290734 0.81889662859741e-7
0.8 0.02020798979867 0.02020790518650 0.84612167911002e-7
0.9 0.01019799480033 0.01019790746566 0.87334672960529e-7
1 0.00018799980200 0.00018790974482 0.90057178009920e-7
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Table 5 Comparisons between the exact solution and the approximate solution

r Y(t, r) y(t, r) Error

0 2.00400200066667 2.00300328843835 0.00099871222831
0.1 2.10430240100020 2.10320316558466 0.00109923541554
0.2 2.20460280133373 2.20340304273096 0.00119975860278
0.3 2.30490320166727 2.30360291987726 0.00130028179001
0.4 2.40520360200080 2.40380279702356 0.00140080497724
0.5 2.50550400233433 2.50400267416986 0.00150132816447
0.6 2.60580440266787 2.60420255131616 0.00160185135171
0.7 2.70610480300140 2.70440242846246 0.00170237453894
0.8 2.80640520333493 2.80460230560876 0.00180289772617
0.9 2.90670560366847 2.90480218275507 0.00190342091340
1 3.00700600400200 3.00500205990137 0.00200394410063

The exact solution of the equation is

Y (t, r) = ( + r)et + (– + r)tet + t,

Y (t, r) = ( – r)et + ( – r)tet + t.

The extended linear equations S(t)X(r) = Y (r) is as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

 t  + t t + t   t t

       
       
  t t  t  + t t + t

       
       

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α(r)
α(r)
α(r)
α(r)
α(r)
α(r)
α(r)
α(r)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

t – 
 + r

(– + r)e + 
t – 
 – r

( – r)e + 

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By setting t = 
 , the parameters α(r), α(r), α(r), α(r), α(r), α(r), α(r), α(r) are ob-

tained. Tables  and  show comparisons between the exact solution and the approximate
solution at t = . for some r ∈ [, ]; all data were calculated by Matlab.x.
Form Tables , , , ,  and , we know that the approximate solutions obtained from

the proposed method are best close to the exact solutions of original linear deferential
equations with fuzzy boundary value conditions.

7 Conclusion
In this paper the approximate method similar to the undetermined coefficients method,
based on a positive basis for solving second-order fuzzy linear boundary value problems,
was discussed. Three classes of boundary conditions and the general casewere considered.
According to the sign of coefficient functions of the fuzzy linear differential equation, the

http://www.boundaryvalueproblems.com/content/2013/1/212
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Table 6 Comparisons between the exact solution and the approximate solution

r Y(t, r) y(t, r) Error

0 4.01001000733734 4.00899990996165 0.00101009737569
0.1 3.90970960700380 3.90880003281535 0.00090957418846
0.2 3.80940920667027 3.80860015566904 0.00080905100122
0.3 3.70910880633673 3.70840027852274 0.00070852781399
0.4 3.60880840600320 3.60820040137644 0.00060800462676
0.5 3.50850800566967 3.50800052423014 0.00050748143953
0.6 3.40820760533613 3.40780064708384 0.00040695825230
0.7 3.30790720500260 3.30760076993754 0.00030643506506
0.8 3.20760680466907 3.20740089279124 0.00020591187783
0.9 3.10730640433553 3.10720101564493 0.00010538869060
1 3.00700600400200 3.00700113849863 0.00000486550337

corresponding function systems of linear equations were set up. Following each other,
fuzzy approximate solutions were obtained by solving a crisp function extended system of
linear equations. Numerical examples show that our methods are practical and efficient.
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