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Abstract
This paper addresses the stabilization problem of the nonlinear Kirchhoff string using
nonlinear boundary control. Nonlinear boundary control is the negative feedback of
the transverse velocity of the string at one end, which satisfies a polynomial-type
constraint. Employing the multiplier method, we establish explicit exponential and
polynomial stability for the Kirchhoff string. The theoretical results are assured by
numerical results of the asymptotic behavior for the system.

1 Introduction
Stabilization and vibration controllability of string or beam systems arising from different
engineering backgrounds has attracted attention of many researchers [–]. In particular,
boundary feedback stabilization of string and beam systems has become an important re-
search area [–]. This is because, in a practice system, vibration is more easily controlled
through a boundary point than using point sensors or actuators away from the boundaries
[, ].
There are several nonlinearmathematical models that describe the transversal vibration

of stretched strings. One such model is presented in the following equation:

ytt(x, t) =
[
a + b

∫ 


yx(x, t)dx

]
yxx(x, t) ()

for all x ∈ (, ) and t ≥ , where a > , b ≥  are two constants. Obviously, the above
equation is a simple prototype of the classical equation

ρhytt(x, t) =
[
T +

hE
l

∫ l


yx(x, t)dx

]
yxx(x, t),

which was proposed by Kirchhoff []. Here l is the length of the string; E is Young’s mod-
ulus of the material; ρ is density; h is the area of the cross section; y(x, t) is the transversal
displacement of the point x of the string at time t. This model has been studied by re-
searchers from the physical and mathematical points of view; see, e.g., references [–]
and the references therein.
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Figure 1 Schematic of the nonlinear Kirchhoff string with boundary control.

In this paper, we consider Kirchhoff string () with the following boundary conditions
(see Figure ):

y(, t) = , ()

T(t)yx(, t) = u(t) ()

for all t ≥ . T(t) denotes the tension in the string at time t. The boundary condition in
equation () implies that the string is fixed at x = . The boundary condition in equation
() represents the balance of the transversal component of the tension in the string and
the control input uwhich is applied transversally at x = . Because the tension in the string
represented by equation () is not constant and is given by

T(t) = a + b
∫ 


yx(x, t)dx ()

for all t ≥  (see []), the boundary condition in equation () can be written as

[
a + b

∫ 


yx(x, t)dx

]
yx(, t) = u(t). ()

Shahruz and Krishna [] investigated the stabilization of Kirchhoff string () with a
linear negative velocity control, which means the boundary control u has a linear negative
velocity feedback form

u(t) := u
(
yt(, t)

)
= –Lyt(, t) ()

for all t ≥ , where L is a positive constant. They established exponential stability. In [],
the absolute stability of the Kirchhoff string () with linear sector boundary control was
considered. It is well known that linear strings represented by equation (), for which b = ,
can be stabilized by the control law in equation (); see e.g., references [–]. Moreover,
Shahruz [], Fung et al. [], and Li and Hou [] developed linear boundary control laws
for axially moving strings. It is worth mentioning that Kobayashi [] designed a linear
parallel compensator based on boundary displacement observer and proved the string ()
can be stabilized by parallel compensator control.
In the literaturementioned above, such as [, ] and [], the exponential stabilization

result for various string systems by linear boundary control mainly relies on the Lyapunov
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direct method. In this work, we investigate the stabilization of string () with a more gen-
eral and ‘flexible’ boundary control (see hypothesis (H) in Section ). The feedback func-
tion u is not required to satisfy a strict control law such as (), but just satisfies some ap-
propriate polynomial-type constraint. In this general boundary control case, it seems that
the Lyapunov direct method is no more applicable. So, we need to use a more meticulous
method to deal with the stabilization problem. Applying the multiplier method, we estab-
lish not only exponential stability result but also polynomial stability result for Kirchhoff
string ().
The remainder of this technical paper is arranged as follows. Section  describes the

model of the Kirchhoff nonlinear string and introduces the control assumption. The prob-
lem of exponential and polynomial stability is addressed in Section . Finally, a numerical
example is demonstrated where the nonlinear distributed parameter infinite-dimensional
equation is solved by applying the finite element method in Section .

2 Problem formulation
Consider the nonlinear Kirchhoff string model as shown in Figure . For the sake of easy
reading and later referring, the governing equation, the boundary conditions and the ini-
tial functions are put together as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ytt(x, t) = [a + b

∫ 
 y


x(x, t)dx]yxx(x, t), (a)

y(, t) = , (b)
[a + b

∫ 
 y


x(x, t)dx]yx(, t) = u(yt(, t)), (c)

y(x, ) = f (x), yt(x, ) = g(x) (d)

for all x ∈ (, ) and t ≥ . Here f (x) and g(x) in equation (d) are the initial displacement
and velocity of the string, respectively. We assume that f ∈ C[, ], g ∈ C[, ] and that at
least one of the functions f or g is not identically zero over [, ].
To obtain a precise stabilization result, we make the following hypothesis on the con-

tinuous control feedback u : R → R:
(H) There exist constants L ≥ L >  and r ≥  such that

u(w) ∈ �(w) :=

{
–Co{Lw,Lw}, |w| > ,
–Co{Lwr ,Lw


r }, |w| ≤ .

()

Remark . Obviously, condition (H) is equivalent to, for all w ∈ R,

{
u(w)w≤ ,
Lmin{|w|, |w|r} ≤ |u(w)| ≤ Lmax{|w|, |w| r }.

Obviously, hypothesis (H) is a ‘flexible’ and ‘robust’ condition, which allows the feed-
back function u to vary in an appropriate geometric region given by a polynomial-type
constraint. For example, Figure  illustrates a feedback control u satisfying a linear sector
constraint (H) with r = , L = , L = , and Figure  shows a feedback control u satisfying
a nonlinear constraint (H) with r = , L = , L = . Since u(yt(, t))yt(, t) ≤ , for all t ≥ ,
the boundary control (c) is the negative feedback of transversal velocity of the string at
x = .

http://www.boundaryvalueproblems.com/content/2013/1/215
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Figure 2 Linear sector constraint.

Figure 3 Nonlinear sector constraint.

For the existence and uniqueness of the solution of the general Kirchhoff equation, we
refer to [, ] and references therein. In this work, we study the stabilization of the string
in (a) by this negative feedback boundary control u, which provides a dissipative effect.

Remark . According to boundary condition (b) at x = , we easily get

yt(, t) =  for all t ≥ . ()

http://www.boundaryvalueproblems.com/content/2013/1/215
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We define the natural energy function of time for system (a)-(d) and denote it by t →
E(t). The scalar-valued function E is defined as

E(t) :=



∫ 


yt (x, t)dx +




∫ 


ayx(x, t)dx +

b


[∫ 


yx(x, t)dx

]

. ()

Especially, from the initial displacement and velocity condition (d), we obtain the initial
energy as

E() =



∫ 



[
g(x) + af x (x)

]
dx +

b


[∫ 


f x (x)dx

]

.

Since at least one of the functions f and g is not identically zero over (, ) we have E() > .

3 Stabilization by boundary control
In this section we state and prove our main result. For this purpose we establish several
lemmas.

Lemma . Let y(·, ·) be the solution for system (a)-(d). Then

∫ 


yxyxt dx = yx(, t)yt(, t) –

∫ 


yxxyt dx, ()

∫ 


xyxyxx dx =



yx(, t) –




∫ 


yx(x, t)dx, ()

∫ 


xyxytt dx =

∫ 



(
[xyxyt]t +



yt

)
dx –



yt (, t). ()

Proof See the Appendix. �

Now, we give a property of the energy function E.

Proposition . The time-derivative of the energy function E in equation (), along the
solution of system (a)-(d) satisfies

E′(t) = u(t)yt(, t)≤  ()

for all t ≥ .

Proof Differentiating the energy function () with respect to t, we get

E′(t) =
∫ 


ytytt dx +

[
a + b

∫ 


yx dx

]∫ 


yxyxt dx. ()

According to equation () and boundary control (c), we get

[
a + b

∫ 


yx dx

]∫ 


yxyxt dx

= u(t)yt(, t) –
[
a + b

∫ 


yx dx

]∫ 


yxxyt dx. ()

http://www.boundaryvalueproblems.com/content/2013/1/215
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Substituting equation () into equation () and observing (a), we obtain

E′(t) = u(t)yt(, t) +
∫ 


yttyt dx –

[
a + b

∫ 


yx dx

]∫ 


yxxyt dx

= u(t)yt(, t) ()

for all t ≥ . We obtain equation (). �

Remark . From Proposition ., we obtain the energy identity for system (a)-(d),

E(S) – E(T) =
∫ S

T
u(t)yt(, t)dt.

Therefore, the energy E is a decreasing function of time.

During the subsequent stability analysis, we utilize the following inequality.

Lemma . Let y(·, ·) be the solution for system (a)-(d). Then

∫ 


xyx(x, t)yt(x, t)dx≤ max

{
,

a

}
E(t) ()

for all t ≥ .

Proof Applying the Cauchy-Schwarz inequality, we get

∫ 


xyx(x, t)yt(x, t)dx≤ 



∫ 


xyx dx +




∫ 


yt dx

≤ 


∫ 


yx dx +




∫ 


yt dx ()

for all t ≥ . On the other hand, the definition of energy function () implies

a


∫ 


yx dx +




∫ 


yt dx ≤ E(t)

for all t ≥ . It follows from the above inequality that




∫ 


yx dx +




∫ 


yt dx≤

{
E(t), a≥ ,

aE(t),  < a < .

()

Together with () and (), we get equation (). Hence we complete the proof of Lem-
ma .. �

Now, we present a Gronwall-type lemma (see Komornik [], pp.), which will play
an essential role when establishing the stabilization result.

Lemma . Let G : R+ → R+ be a non-increasing function. Assume that there exists a con-
stant ω >  such that∫ +∞

T
Gq+(t)dt ≤ 

ω
G(T) for all T ≥ .

http://www.boundaryvalueproblems.com/content/2013/1/215
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Then the following estimation is true, for all t ≥ ,

{
G(t)≤ G()e–ωt if q = ,
G(t)≤ G()( +qqωt )


q if q > .

We give a priori estimation for the energy function E(t), which was established in [].
For the sake of completeness, we give the proof here.

Lemma . The energy function E in equation (), along the solution of system (a)-(d),
satisfies

E(t)≤ –
∫ 


[xyxyt]t dx +



yt (, t) +


a

u
(
yt(, t)

)
()

for all t ≥ .

Proof We multiply equation (a) by xyx(x, t) and do integration over [, ], with respect
to x. We obtain

 =
∫ 


xyx

(
ytt –

[
a + b

∫ 


yx dx

]
yxx

)
dx

=
∫ 



(
[xyxyt]t +



yt

)
dx –



yt (, t)

–



[
a + b

∫ 


yx dx

](
yx(, t) –

∫ 


yx dx

)
, ()

using equations () and () in Lemma .. It follows from () that




∫ 


yt dx +




[
a + b

∫ 


yx dx

]∫ 


yx dx

= E(t) +
b


[∫ 


yx dx

]

. ()

Since a + b
∫ 
 y


x dx ≥ a, according to boundary control (c), we have

[
a + b

∫ 


yx dx

]
yx(, t)≤


a
u

(
yt(, t)

)
. ()

Hence, substituting equation () into equation () and using equation (), one has

E(t) +
b


[∫ 


yx dx

]

= –
∫ 


[xyxyt]t dx +



yt (, t) +




[
a + b

∫ 


yx dx

]
yx(, t)

≤ –
∫ 


[xyxyt]t dx +



yt (, t) +


a

u
(
yt(, t)

)
.

Since b
 [

∫ 
 y


x dx] ≥ , we complete the proof of Lemma .. �

http://www.boundaryvalueproblems.com/content/2013/1/215
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Lemma . For any constant q ≥ , the energy function E along the solution of system
(a)-(d) satisfies the following estimation, for all S > T ≥ ,

∫ S

T
Eq+(t)dt ≤ CEq+(T) +




∫ S

T
Eq(t)yt (, t)dt

+

a

∫ S

T
Eq(t)u

(
yt(, t)

)
dt, ()

where C = q+
q+ max{, a }.

Proof According to inequality () in Lemma ., we have, for all  ≤ T < S,

∫ S

T
Eq+(t)dt ≤ –

∫ S

T
Eq(t)

∫ 


[xyxyt]t dxdt

+



∫ S

T
Eq(t)yt (, t)dt +


a

∫ S

T
Eq(t)u

(
yt(, t)

)
dt. ()

Moreover, using integration by parts, we get

∫ S

T
Eq(t)

∫ 


[xyxyt]t dxdt =

∫ S

T

[
Eq(t)

∫ 


xyxyt dx

]
t
dt

–
∫ S

T
qE′(t)Eq–(t)

∫ 


(xyxyt)dxdt.

Hence, inequality () becomes

∫ S

T
Eq+(t)dt ≤ A +A +




∫ S

T
Eq(t)yt (, t)dt

+

a

∫ S

T
Eq(t)u

(
yt(, t)

)
dt, ()

where

A := –
∫ S

T

[
Eq(t)

∫ 


xyxyt dx

]
t
dt,

A :=
∫ S

T
qE′(t)Eq–(t)

∫ 


(xyxyt)dxdt.

Firstly, we estimate A and A,

A = –
∫ S

T

[
Eq(t)

∫ 


xyxyt dx

]
t
dt

≤
∣∣∣∣Eq(T)

∫ 


xyx(x,T)yt(x,T)dx

∣∣∣∣ +
∣∣∣∣Eq(S)

∫ 


xyx(x,S)yt(x,S)dx

∣∣∣∣ (by ())

≤ max

{
,

a

}
Eq+(T) +max

{
,

a

}
Eq+(S)

≤ max

{
,

a

}
Eq+(T), ()

http://www.boundaryvalueproblems.com/content/2013/1/215
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where the last inequality follows from the fact E(t) is a decreasing function. On the other
hand,

A =
∫ S

T
qE′(t)Eq–(t)

∫ 


xyxyt dxdt

≤
∫ S

T

∣∣qE′(t)Eq–(t)
∣∣∣∣∣∣
∫ 


xyxyt dx

∣∣∣∣dt
≤ max

{
,

a

}∣∣∣∣
∫ S

T
qE′(t)Eq(t)dt

∣∣∣∣ (by ())

=
q

q + 
max

{
,

a

}∣∣Eq+(S) – Eq+(T)
∣∣

≤ q
q + 

max

{
,

a

}
Eq+(T). ()

Finally, inserting the two inequalities, () and (), in (), we get inequality (). This
completes the proof of Lemma .. �

We now state the main stabilization result for system (a)-(d).

Theorem . Assume that assumption (H) holds. Then there exist three constants
k,k,σ >  such that, for all t ≥ ,

{
E(t)≤ ke–σ t if r = ,
E(t)≤ kt–


r– if r > .

()

Remark . It is worth to mention that Theorem . in [] can be viewed as a special
cases of Theorem .. Indeed, in the linear control case (), the exponential stability in
Theorem . coincides with the result in [].

Proof of Theorem . We distinguish two cases related to the parameter r to establish the
energy decay rate.

Case (I): r = ;
Case (II): r > .
In Case (I), we choose q = . According to hypothesis (H), we know that

s ≤ –

L

u(s)s, u(s)≤ –Lu(s)s for all s ∈ R.

Hence, from inequality () and equation (), we deduce that, for all S > T ≥ ,

∫ S

T
E(t)dt ≤ CE(T) +




∫ S

T

[
yt (, t) +


a
u

(
yt(, t)

)]
dt

≤ CE(T) –
a + LL
aL

∫ S

T
u(t)yt(, t)dt

= CE(T) +
a + LL
aL

∫ S

T
–E′(t)dt

≤ CE(T), ()

where C = C + 
 (


L

+ L
a ) and C is given in Lemma ..

http://www.boundaryvalueproblems.com/content/2013/1/215
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Now we deal with Case (II). In this case, we choose q = r–
 > . We first admit the fol-

lowing fact (the proof is given in the Appendix).

Claim  For any δ > , we have the following estimates, for all S > T ≥ ,

∫ S

T
Eq(t)yt (, t)dt ≤ r – 

r + 
δ
r+
r–

∫ S

T
Eq r+

r– (t)dt

+
δ– r+



(r + )L
E(T) +


(q + )L

Eq+(T), ()

∫ S

T
Eq(t)u

(
yt(, t)

)
dt ≤ r – 

r + 
δ
r+
r–

∫ S

T
Eq r+

r– (t)dt

+
Lrδ–

r+


(r + )
E(T) +

L
(q + )

Eq+(T). ()

Now, inserting inequalities () and () into (), we obtain, for all S > T ≥ ,

∫ S

T
Eq+(t)dt ≤

(


+


a

)
r – 
r + 

δ
r+
r–

∫ S

T
Eq r+

r– (t)dt

+CEq+(T) +CE(T), ()

where C = C + a+LL
a(q+)L

, C = 
(r+)L

δ–
r+
 + Lr

(r+)aδ
– r+

 and C is given in Lemma .. Now
we choose δ = [( + 

a )
r–
r+ ]

– r–
r+ . Then it is obvious that ( + 

a )
r–
r+δ

r+
r– = . Hence, inequality

() becomes

∫ S

T
Eq+(t)dt ≤ 



∫ S

T
Eq r+

r– (t)dt +CEq+(T) +CE(T).

Recalling q = r–
 , we get q +  = q r+

r– =
r+
 . Hence, the above inequality is rewritten as

∫ S

T
E

r+
 (t)dt ≤ CE

r+
 (T) + CE(T)

≤ 
(
CE

r–
 () +C

)
E(T), ()

where the last inequality follows from Remark .. Finally, by letting S → +∞ in (), ()
and using Lemma . with G(t) = E(t), we complete the proof of Theorem .. �

Remark . According to the proof of Theorem ., it is easy to see that the constants
σ , k and k in Theorem . can be chosen as, respectively, σ – = max{, a } + 

 (

L

+ L
a ),

k = eE(), and k = E()[ r+
r– (CE

r–
 () + C)]


r– with C = r–

r+ max{, a } + a+LL
a(r+)L

, C =


r+ (

L

+ Lr
a )[( +


a )

r–
r+ ]

r–
 . This means that the coefficients of the exponential or polyno-

mial decay rate are exactly determined only by the initial tension a, the initial energy E()
and the feedback control u. However, in the polynomial decay case, the order of decay rate
is determined only by the feedback control u.

Finally, it is shown that the boundary control u stabilizes the nonlinear Kirchhoff string.

http://www.boundaryvalueproblems.com/content/2013/1/215
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Theorem . Assume that assumption (H) holds. Then there exist two constants k′
,k′

 > 
such that for all x ∈ (, ) and t ≥ ,

{
|y(x, t)| ≤ k′

e–
σ t
 if r = ,

|y(x, t)| ≤ k′
t–


r– if r > ,

()

where k′
 =

√
k
a , k′

 =
√

k
a and k, k, σ are given in Theorem ..

Proof According to the fact that yx(, t) = , for all t ≥ , we get

∣∣y(x, t)∣∣ = ∣∣∣∣
∫ x


yx(z, t)dz

∣∣∣∣ ≤
∫ 



∣∣yx(z, t)∣∣dz
≤

(∫ 


yx(x, t)dx

) 


(by the Cauchy inequality)

≤
√
E(t)
a

(by equation ()) ()

for all x ∈ (, ) and t ≥ . By combining () with () in Theorem ., we complete the
proof of Theorem .. �

4 Numerical results
In this section we consider a computational example for the closed-loop system (a)-(d).
To illustrate the control performance of the boundary control law satisfying condition
(H), numerical simulations by using the finite element method (FEM) are performed. We
use Lagrange ‘hat’ basis with FEM equidistant meshes. The system parameters used in
the simulations are a = , b = . The initial conditions are f (x) = . sin(x) and g(x) =
. sin(x). That is we consider the following Kirchhoff system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ytt(x, t) = [ + 

∫ 
 y


x(x, t)dx]yxx(x, t),

y(, t) = ,
[a + b

∫ 
 y


x(x, t)dx]yx(, t) = u(yt(, t)),

y(x, ) = . sin(x), yt(x, ) = . sin(x).

()

The dynamic responses of the controlled Kirchhoff string were simulated under two feed-
back control laws:

u(x) = –x – sinx, x ∈ R

and

u(x) =

{
–
√|x|, |x| < ,

–x, |x| ≥ .

Obviously, the feedback control function u satisfies the constraint condition (H) with
r = , L = , L = , and u satisfies the constraint condition (H) with r = , L = L = .
Then, according to Theorem ., the asymptotic behavior of the transverse vibration of
system () under control law u (or control law u) possesses exponential decay (or poly-

http://www.boundaryvalueproblems.com/content/2013/1/215
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Figure 4 String response of closed-loop system (38) under control law u1.

Figure 5 String response of closed-loop system (38) under control law u2.

nomial decay with degree –, because r = ). The string response y(x, t) of closed-loop
system () with control law u and control law u are shown in Figure  and Figure ,
respectively. The corresponding transversal displacement at x = . is shown in Figures 
and , respectively.
From Figures  and , it can bee seen that, in the case of control law u, the decay of the

transverse vibration relatively slow compared to the case of control law u. Indeed, from
Figure  and Figure , we know that in the case of control law u, the transverse vibration
has been suppressed exponentially (|y(., t)| ≤ Ke–σ t), whereas in the case of control
law u, the transverse vibration has been suppressed polynomially (|y(., t)| ≤ Kt–). It
is coincident with the results of Theorem ..

Appendix
A.1 Proof of Lemma 3.1
Integrating by parts and () we get, for all t ≥ ,

∫ 


yx(x, t)yxt(x, t)dx =

∫ 



[
yx(x, t)yt(x, t)

]
x dx –

∫ 


yxx(x, t)yt(x, t)dx

= yx(, t)yt(, t) –
∫ 


yxx(x, t)yt(x, t)dx.

http://www.boundaryvalueproblems.com/content/2013/1/215
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Figure 6 Transverse displacement of the string at x = 0.5 under control law u1.

Figure 7 Transverse displacement of the string at x = 0.5 under control law u2.

So we obtain equation (). Next, integrating by parts we compute

∫ 


xyxyxx dx =




∫ 



[
xyx

]
x dx –




∫ 


yx dx =



yx(, t) –




∫ 


yx dx

for all t ≥ . That is, equation () holds. Finally, we write

∫ 


xyxytt dx =

∫ 


[xyxyt]t dx –

∫ 


xytyxt dx ()

and

∫ 


xytyxt dx =




∫ 



[
xyt

]
x dx –




∫ 


yt dx ()

for all t ≥ . Substituting equation () into equation (), we obtain equation (). Thus
the proof of Lemma . is complete.
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A.2 Proof of Claim 1
Since r > , hypothesis (H) implies

L|s|r ≤ ∣∣u(s)∣∣ ≤ L|s| r if |s| ≤ ,

L|s| ≤
∣∣u(s)∣∣ ≤ L|s| if |s| > .

Hence, it is true that, for all s ∈ R,

s ≤
(
–

L

u(s)s
) 

r+
–


L

u(s)s, ()

u(s) ≤ (
–Lru(s)s

) 
r+ – Lu(s)s. ()

Then, from () and Proposition . we have

∫ S

T
Eq(t)yt (, t)dt

≤
∫ S

T
Eq(t)

(
–

L

u(t)yt(, t)
) 

r+
dt +

∫ S

T
Eq(t)

(
–

L

u(t)yt(, t)
)
dt

=
∫ S

T
Eq(t)

(
–
E′(t)
L

) 
r+

dt –

L

∫ S

T
Eq(t)E′(t)dt

≤
∫ S

T
Eq(t)

(
–
E′(t)
L

) 
r+

dt +
Eq+(T)
(q + )L

. ()

From Young’s inequality, we have, for any α,β , δ > ,

αβ ≤ δρ αρ

ρ
+ δ–ρ′ βρ′

ρ ′ , ()

where ρ,ρ ′ >  and 
ρ
+ 

ρ′ = . Applying the above inequality with α = Eq(t), β = (– E′(t)
L

) 
r+ ,

ρ = r+
r– and ρ ′ = r+

 , we obtain, for any δ > ,

∫ S

T
E(t)q

(
–
E′(t)
L

) 
r+

dt

≤ r – 
r + 

δ
r+
r–

∫ S

T
Eq r+

r– (t)dt +
δ– r+



(r + )L

∫ S

T
–E′(t)dt

≤ r – 
r + 

δ
r+
r–

∫ S

T
Eq r+

r– (t)dt +
δ– r+



(r + )L
E(T). ()

By inserting () into (), we deduce inequality () in Claim . Similarly, from () and
Proposition . we have

∫ S

T
Eq(t)u

(
yt(, t)

)
dt

≤
∫ S

T
Eq(t)

(
–Lru(t)yt(, t)

) 
r+ dt + L

∫ S

T
Eq(t)

(
–u(t)yt(, t)

)
dt
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=
∫ S

T
Eq(t)

(
–LrE

′(t)
) 
r+ dt – L

∫ S

T
Eq(t)E′(t)dt

≤
∫ S

T
Eq(t)

(
–LrE

′(t)
) 
r+ dt +

L
(q + )

Eq+(T). ()

Applying again inequality () with α = Eq(t), β = [–LrE′(t)] 
r+ , ρ = r+

r– and ρ ′ = r+
 , we

obtain, for any δ > 

∫ S

T
E(t)q

(
–LrE

′(t)
) 
r+ dt

≤ r – 
r + 

δ
r+
r–

∫ S

T
Eq r+

r– (t)dt +
Lrδ–

r+


(r + )

∫ S

T
–E′(t)dt

≤ r – 
r + 

δ
r+
r–

∫ S

T
Eq r+

r– (t)dt +
Lrδ–

r+


(r + )
E(T). ()

Inserting () into (), we get inequality () in Claim .
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